
NPFL122, Lecture 4

Function Approximation,

Deep Q Network
Milan Straka

October 25, 2021

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Where Are We

Until now, we have solved the tasks by explicitly calculating expected return, either as

or as .

Finite number of states and actions.
We do not share information between different states or actions.
We use if we do not have the environment model (a model-free method); if we

do, it is usually better to estimate and choose actions as .

The methods we know differ in several aspects:
Whether they compute return by simulating a whole episode (Monte Carlo methods), or
by bootstrapping (temporal difference, i.e., , possibly -step).

TD methods more noisy and unstable, but can learn immediately and explicitly
assume Markovian property of value function.

Whether they estimate the value function of the same policy they use to generate the
episodes (on-policy) or not (off-policy).

The off-policy methods are more noisy and unstable, but more flexible.

v(s)
q(s, a)

q(s, a)
v(s) arg max E[R+a v(s)]′

G ≈t R +t v(S)t n

2/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Function Approximation

We will approximate value function and/or state-value function , selecting it from a family

of functions parametrized by a weight vector .

We will denote the approximations as

Weights are usually shared among states. Therefore, we need to define state distribution

to obtain an objective for finding the best function approximation (if we give preference to some
states, improving their estimates might worsen estimates in other states).

The state distribution gives rise to a natural objective function called Mean Squared Value

Error, denoted :

v q

w ∈ Rd

(s;w),v̂

 (s, a;w).q̂

μ(s)

μ(s)
V E

(w)V E =def
 μ(s) v (s) − (s;w) .

s∈S

∑ [π v̂]2

3/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Function Approximation

For on-policy algorithms, is often the on-policy distribution (fraction of time spent in).

For episodic tasks, let be a probability that an episodes starts in state , and let

denote the number of time steps spent, on average, in state in a single episode:

The on-policy distribution is then obtained by normalizing:

If there is discounting (), it should be treated as a form of

termination, by including a factor to the second term of the

 equation.

For continuing tasks, we require , and employ the same

definition as in the episodic case.

μ(s) s

h(s) s η(s)
s

η(s) = h(s) + η(s) π(a∣s)p(s∣s , a).∑
s′

′ ∑
a

′ ′

μ(s) =
def

 .
 η(s)∑

s′ ′
η(s)

γ < 1
γ

η(s)

γ < 1

4/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Gradient and Semi-Gradient Methods

The functional approximation (i.e., the weight vector) is usually optimized using gradient

methods, for example as

As usual, the is estimated by a suitable sample. In Monte Carlo methods, we use

episodic return , and in temporal difference methods, we employ bootstrapping and use

w

w t+1 ← w − α∇ v (S) − (S ;w)t 2
1

w t
[π t v̂ t t]2

← w + α v (S) − (S ;w) ∇ (S ;w).t [π t v̂ t t] w t
v̂ t t

v (S)π t

G t

R +t+1 γ (S ;w).v̂ t+1

5/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Monte Carlo Gradient Policy Evaluation

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".

6/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Linear Methods

A simple special case of function approximation are linear methods, where

The is a representation of state , which is a vector of the same size as . It is

sometimes called a feature vector.

The SGD update rule then becomes

This rule is the same as in tabular methods, if is one-hot representation of state .

(x(s);w)v̂ =def
x(s) w =T x(s) w .∑ i i

x(s) s w

w ←t+1 w +t α v (S) − (x(S);w) x(S).[π t v̂ t t] t

x(s) s

7/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

State Aggregation

Simple way of generating a feature vector is state aggregation, where several neighboring
states are grouped together.

For example, consider a 1000-state random walk, where transitions lead uniformly randomly to
any of 100 neighboring states on the left or on the right. Using state aggregation, we can
partition the 1000 states into 10 groups of 100 states. Monte Carlo policy evaluation then
computes the following:

Figure 9.1 of "Reinforcement Learning: An Introduction, Second Edition".

8/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Feature Construction for Linear Methods

Many methods developed in the past:

polynomials,

Fourier bases,

radial basis functions,

tile coding, …

But of course, nowadays we use deep neural networks, which construct a suitable feature vector
automatically as a latent variable (the last hidden layer).

9/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Tile Coding

Figure 9.9 of "Reinforcement Learning: An Introduction, Second Edition".

If overlapping tiles are used, the learning rate is usually normalized as .t α/t

10/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Tile Coding

For example, on the 1000-state random walk example, the performance of tile coding surpasses
state aggregation:

Figure 9.10 of "Reinforcement Learning: An Introduction, Second Edition".

11/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Asymmetrical Tile Coding

In higher dimensions, the tiles should have asymmetrical offsets, with a sequence of

 proposed as a good choice.

Figure 9.11 of "Reinforcement Learning: An Introduction, Second Edition".

(1, 3, 5, … , 2d − 1)

12/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Temporal Difference Semi-Gradient Policy Evaluation

In TD methods, we again use bootstrapping to estimate as

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".

v (S)π t R +t+1 γ (S ;w).v̂ t+1

13/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Why Semi-Gradient TD

Note that the above algorithm is called semi-gradient, because it does not backpropagate
through :

In other words, the above rule is in fact not an SGD update, because there does not exist a
function , for which we would get the above update.

To sketch a proof, consider a linear and assume such a exists.

Then

Now considering second derivatives, we see they are not equal, which is a contradiction:

(S ;w)v̂ t+1

w ← w+ α[R +t+1 γ (S ;w) −v̂ t+1 (S ;w)]∇ (S ;w).v̂ t w t
v̂ t

J(w)

(S ;w) =v̂ t x(S) w ∑i t i i J(w)

 J(w) =∂w i

∂ [R +t+1 γ (S ;w) −v̂ t+1 (S ;w)]x(S) .v̂ t t i

 J(w)∂w i

∂
∂w j

∂

 J(w)∂w j

∂
∂w i

∂

= [γx(S) − x(S)]x(S) = γx(S) x(S) − x(S) x(S) t+1 i t i t j t+1 i t j t i t j

= [γx(S) − x(S)]x(S) = γx(S) x(S) − x(S) x(S) t+1 j t j t i t+1 j t i t i t j

14/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Temporal Difference Semi-Gradient Convergence

It can be proven (by using separate theory than for SGD) that the linear semi-gradient TD
methods converge.

However, they do not converge to the optimum of . Instead, they converge to a different

TD fixed point .

It can be proven that

However, when is close to one, the multiplication factor in the above bound is quite large.

V E

w TD

(w) ≤V E TD (w).
1 − γ

1
w

minV E

γ

15/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Temporal Difference Semi-Gradient Policy Evaluation

As before, we can utilize -step TD methods.

Algorithm 9.5 of "Reinforcement Learning: An Introduction, Second Edition".

n

16/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Temporal Difference Semi-Gradient Policy Evaluation

On the left, the results of one-step TD(0) algorithm is presented. The effect of increasing in

an -step variant is displayed on the right.

Figure 9.2 of "Reinforcement Learning: An Introduction, Second Edition".

n

n

17/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Sarsa with Function Approximation

Until now, we talked only about policy evaluation. Naturally, we can extend it to a full Sarsa
algorithm:

Algorithm 10.1 of "Reinforcement Learning: An Introduction, Second Edition".

18/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Sarsa with Function Approximation

Additionally, we can incorporate -step returns:

Algorithm 10.2 of "Reinforcement Learning: An Introduction, Second Edition".

n

19/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Mountain Car Example

Figure 10.1 of "Reinforcement Learning: An Introduction, Second Edition".

The performances are for semi-gradient Sarsa() algorithm (which we did not talked about yet)

with tile coding of 8 overlapping tiles covering position and velocity, with offsets of .

λ

(1, 3)
20/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Mountain Car Example

Figure 10.3 of "Reinforcement Learning: An Introduction, Second Edition".

Figure 10.4 of "Reinforcement Learning: An Introduction, Second Edition".

21/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Off-policy Divergence With Function Approximation

Consider a deterministic transition between two states whose values are computed using the
same weight:

Figure from Section 11.2 of "Reinforcement Learning: An Introduction, Second Edition".

If initially , the TD error will be also 10 (or nearly 10 if).

If for example , will be increased to 11 (by 10%).

This process can continue indefinitely.

However, the problem arises only in off-policy setting, where we do not decrease value of the
second state from further observation.

w = 10 γ < 1
α = 0.1 w

22/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Off-policy Divergence With Function Approximation

The previous idea can be realized for instance by the following Baird's counterexample:

Figure 11.1 of "Reinforcement Learning: An Introduction, Second Edition".

The rewards are zero everywhere, so the value function is also zero everywhere. We assume the
initial values of weights are 1, except for , and that the learning rate .w =7 10 α = 0.01

23/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Off-policy Divergence With Function Approximation

However, for off-policy semi-gradient Sarsa, or even for off-policy dynamic-programming update,
where we compute expectation over all following states and actions, the weights diverge to

(while using on-policy distribution converges fine).

Figure 11.1 of "Reinforcement Learning: An Introduction, Second Edition".

Figure 11.2 of "Reinforcement Learning: An Introduction, Second Edition".

+∞

w ← w+ (E [R +
∣S∣
α

s

∑ π t+1 γ (S ;w)∣S =v̂ t+1 t s]− (s;w))∇ (s;w)v̂ v̂

24/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Off-policy Divergence With Function Approximation

The divergence can happen when all following elements are combined:

functional approximation;

bootstrapping;

off-policy training.

In the Sutton's and Barto's book, these are called the deadly triad.

25/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Deep Q Networks

Volodymyr Mnih et al.: Playing Atari with Deep Reinforcement Learning (Dec 2013 on arXiv),

In Feb 2015 accepted in Nature, as Human-level control through deep reinforcement learning.

Off-policy Q-learning algorithm with a convolutional neural network function approximation of
action-value function.

Training can be extremely brittle (and can even diverge as shown earlier).

26/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Deep Q Network

Figure 1 of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.

27/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Deep Q Networks

Preprocessing: 128-color images are converted to grayscale and then resized to

.

Frame skipping technique is used, i.e., only every frame (out of 60 per second) is

considered, and the selected action is repeated on the other frames.
Input to the network are last frames (considering only the frames kept by frame skipping),

i.e., an image with channels.

The network is fairly standard, performing
32 filters of size with stride 4 and ReLU,

64 filters of size with stride 2 and ReLU,

64 filters of size with stride 1 and ReLU,

fully connected layer with 512 units and ReLU,
output layer with 18 output units (one for each action)

210 × 160
84 × 84

4th

4
4

8 × 8
4 × 4
3 × 3

28/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Deep Q Networks

Network is trained with RMSProp to minimize the following loss:

An -greedy behavior policy is utilized (starts at and gradually decreases to).

Important improvements:

experience replay: the generated episodes are stored in a buffer as quadruples,

and for training a transition is sampled uniformly (off-policy training);
separate target network : to prevent instabilities, a separate target network is used to

estimate state-value function. The weights are not trained, but copied from the trained
network once in a while;
reward clipping: because rewards have wildly different scale in different games, all positive
rewards are replaced by and negative by ; life loss is used as end of episode.

furthermore, is also

clipped to (i.e., a loss or Huber loss).

L =def E (r + s not terminal ⋅ γ max Q(s , a ;) − Q(s, a; θ)) .(s,a,r,s)∼data′ [[′] a′
′ ′ θ̄ 2]

ε ε = 1 0.1

(s, a, r, s)′

θ̄

+1 −1
(r + s not terminal ⋅[′] γ max Q(s , a ;) −a′

′ ′ θ̄ Q(s, a; θ))
[−1, 1] smooth L 1

29/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Deep Q Networks

Algorithm 1 of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.

30/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Deep Q Network

Figure 3 of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.

31/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Deep Q Network

Extended Data Figure 2a of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.

32/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Deep Q Network

Extended Data Figure 2b of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.

33/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

Deep Q Networks Hyperparameters

Hyperparameter Value

minibatch size 32

replay buffer size 1M

target network update frequency 10k

discount factor 0.99

training frames 50M

RMSProp learning rate and momentum 0.00025, 0.95

initial , final (linear decay) and frame of final 1.0, 0.1, 1M

replay start size 50k

no-op max 30

ε ε ε

34/34NPFL122, Lecture 4 Function Approximation Tile Coding Semi-Gradient TD Off-policy Divergence DQN

