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Recall that a Markov decision process (MDP) is a quadruple (S, .4, p, ), where:

® S is a set of states,

e Ais a set of actions,

® p(Sii1 =58,Ri1 =7r|S; =s,A; = a) is a probability that action a € A will lead from
state s € S to 8’ € S, producing a reward r € R,

e v < [0,1] is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a
sextuple (S, A, p,~, O, 0), where in addition to an MDP

® (D is a set of observations,
® 0(O¢|St, At—1) is an observation model, which is used as agent input instead of S;.
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In Deep RL, partially observable MDPs are usually handled using recurrent networks. After
suitable encoding of input observation O; and previous action A;_1, a RNN (usually LSTM)

unit is used to model the current Sy (or its suitable latent representation), which is in turn
utilized to produce A;.
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However, keeping all information in the RNN state is substantially limiting. Therefore, memory-
augmented networks can be used to store suitable information in external memory (in the lines

of NTM, DNC or MANN models).
We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).
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Let M be a memory matrix of size Npyem X 2|e]. b IRL-MEM

Assume we have already encoded observations as e; and previous
action a;_1. We concatenate them with K previously read vectors

and process then by a deep LSTM (two layers are used in the ENVIRONMENT
h (s v rey, 07 )~ W B —...
paper) to compute h;.
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Then, we apply a linear layer to h;, computing K key vectors
ki,...kx of length 2|e| and K positive scalars 81, ..., Bk.

Reading: For each i, we compute cosine similarity of k; and all memory rows M, multiply the
similarities by 3; and pass them through a softmax to obtain weights w;. The read vector is
then computed as Mw;.

Writing: We find one-hot write index v, to be the least used memory row (we keep usage
indicators and add read weights to them). We then compute V. < YUt + (1 — )0y, and
update the memory matrix using M < M + v, |e;, 0] + v,4]0, e;].

MERLIN 5/15



However, updating the encoder and memory content purely using RL is inefficient. Therefore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations z and storing them in

memory.

According to the paper, the idea of unsupervised and predictive modeling has been entertained
for decades, and recent discussions have proposed such modeling to be connected to
hippocampal memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a prior distribution over z; predicts next state variable conditioned on history of
state variables and actions p(2¢|2¢-1,a¢-1,...,21,0a1), and posterior corrects the prior using
the new observation 0y, forming a better estimate q(2¢|0¢, 2¢-1,a¢-1,-..,21,01).
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To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state

variable posterior, and add the difference of the reconstruction and ground truth to the loss.

between the prior and posterior.

We also add KL divergence of the prior and posterior to the loss, to ensure consistency
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MERLIN — Algorithm Urzt

Algorithm 1 MERLIN Worker Pseudocode

/I Assume global shared parameter vectors ¢ for the policy network and y for the memory-
based predictor; global shared counter 7" := 0
/I Assume thread-specific parameter vectors ¢’, '
/I Assume discount factor y € (0, 1] and bootstrapping parameter A € [0, 1]
Initialize thread step counter ¢ := 1
repeat
Synchronize thread-specific parameters 6 := 6; ' := y
Zero model’s memory & recurrent state if new episode begins

toar =t
repeat
Prior N (11}, log ©¥) = p(hy—1,m4-1)
e; = enc(o;)
Posterior N (1}, log 37) = q(es, he—1,ms—1, 1f, log 3F)
Sample z ~ N (uf,log ¥}) :
Policy network update ; = rec(h;_1, 77, StopGradient(z))
Policy distribution 7, = 7 (h¢, StopGradient(z;))
Sample a; ~ m;
hy = rec(hi—1, my, 2t)
Update memory with 2z, by Methods Eq. 2
Ry, o) = dec(z, 7, ar)
Apply a, to environment and receive reward 7, and observation 0,1
ti=t+ LT =T+1
until environment termination or ¢t — tgux == Twindow
If not terminated, run additional step to compute V" (211, log m+1)
and set Ry := V™ (2441, log m41) // (but don’t increment counters)
Reset performance accumulators A := 0; £ := 0;H :=0
for k from ¢ down to g, do
) 0, if k& is environment termination
i v, otherwise
Ry := 1+ ni Ry
O =T+ 1V (241,108 Tp1) — V7 (24, log mg)
Ap = 0 + (YA Ak
L:=L+ Ly (Eq.T7)
A= A+ Aplog m|ak]
H = "H — Qenwropy >_; Tk 1] log mi[i] (Entropy loss)
end for
dXI = VX/E
d9’ = Vgr(.A + H)
Asynchronously update via gradient ascent 6 using df’ and y using dx’
until 7' > T,

Algorithm 1 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN Uzt
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Figure 2 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN
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Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne
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MERLIN URRL
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Extended Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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For the Win agent for Capture The Flag ezt

(a) FTW Agent Architecture (b) Progression During Training
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Figure 2 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

® Extension of the MERLIN architecture.
® Hierarchical RNN with two timescales.

® Population based training controlling KL divergence penalty weights, slow ticking RNN
speed and gradient flow factor from fast to slow RNN.
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For the Win agent for Capture The Flag

(a) Agent (b) Policy (e) Recurrent processing with LSTM
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Figure 510 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

Phase 1 Learning the basics of the game + Phase 2 Increasing navigation, tagging, and coordination skills ' Phase 3 Perfecting strategy and memory
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Figure 4 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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