NPFL122, Lecture 13 Us

Explicit Memory, MERLIN, FTW

Milan Straka

m January 5, 2021

a N Charles University in Prague @ 3) (0
L EUROPEAN UNION Faculty of Mathematics and Physics -~
European Structural and Investment Fund

ol Proorartms Recears Institute of Formal and Applied Linguistics .
LAN GTECH 82vel::pmeln't:angd EducatiR::Jn " pp g UnleSS Othel’Wlse Stated

Recall that a Markov decision process (MDP) is a quadruple (S, .4, p,), where:

® S is a set of states,

e Ais a set of actions,

® p(Sii1 =58,Ri1 =7r|S; =s,A; = a) is a probability that action a € A will lead from
state s € S to 8’ € S, producing a reward r € R,

e v < [0,1] is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a
sextuple (S, A, p,~, O, 0), where in addition to an MDP

® (D is a set of observations,
® 0(O¢|St, At—1) is an observation model, which is used as agent input instead of S;.

POMDP 2/15

In Deep RL, partially observable MDPs are usually handled using recurrent networks. After
suitable encoding of input observation O; and previous action A;_1, a RNN (usually LSTM)

unit is used to model the current Sy (or its suitable latent representation), which is in turn
utilized to produce A;.

a. RL-LSTM
h
ENVIRONMENT POLICY
v
(L, Ve, 71, Lp) TR0 = Ty a0 —...
T ENCODER o
o (Up_1

POMDP 3/15

However, keeping all information in the RNN state is substantially limiting. Therefore, memory-
augmented networks can be used to store suitable information in external memory (in the lines

of NTM, DNC or MANN models).
We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

b. RL-MEM
POLICY d
' & t
‘) jq:..
114{%%“ """"" }tt
¢%
""4 N
my
ENVIRONMENT

(Iy,vg, 141, T3)=—» Ot —» €

aee
ENCODER
T Policy Loss

cee—iPp a,t_ 1

MERLIN 4/15

Let M be a memory matrix of size Npyem X 2|e]. b IRL-MEM

Assume we have already encoded observations as e; and previous
action a;_1. We concatenate them with K previously read vectors

and process then by a deep LSTM (two layers are used in the ENVIRONMENT
h (s v rey, 07)~ W B —...
paper) to compute h;.

ssssssssss

o (1

Then, we apply a linear layer to h;, computing K key vectors
ki,...kx of length 2|e| and K positive scalars 81, ..., Bk.

Reading: For each i, we compute cosine similarity of k; and all memory rows M, multiply the
similarities by 3; and pass them through a softmax to obtain weights w;. The read vector is
then computed as Mw;.

Writing: We find one-hot write index v, to be the least used memory row (we keep usage
indicators and add read weights to them). We then compute V. < YUt + (1 —)0y, and
update the memory matrix using M < M + v, |e;, 0] + v,4]0, e;].

MERLIN 5/15

However, updating the encoder and memory content purely using RL is inefficient. Therefore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations z and storing them in

memory.

According to the paper, the idea of unsupervised and predictive modeling has been entertained
for decades, and recent discussions have proposed such modeling to be connected to
hippocampal memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a prior distribution over z; predicts next state variable conditioned on history of
state variables and actions p(2¢|2¢-1,a¢-1,...,21,0a1), and posterior corrects the prior using
the new observation 0y, forming a better estimate q(2¢|0¢, 2¢-1,a¢-1,-..,21,01).

MERLIN 6/15

To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state

variable posterior, and add the difference of the reconstruction and ground truth to the loss.

between the prior and posterior.

We also add KL divergence of the prior and posterior to the loss, to ensure consistency

c. MERLIN READ-ONLY POLICY
MEMORY-BASED PREDICTOR " % ') ‘ i ')
kt > ‘Mt‘ ‘kt «— ht
sue Q &)
2 A O
PRIOR ‘) ‘ : 4 o
. e =P Input
Gy, —» nt “— Pt h’t =1 mt —J» Neural Network
ENVIRONMENT T T qi& == Memory read/write
ENCODER KL Loss SR Sample
Sum
(It, ve, mg—1, T¢) —> Ot 9 B —— P 1 > (G5 = [() ot o
BORIERIOR Policy Loss / Stopped gradient
l DECODER
csempp a,t_ 1

(It:Rt-: ﬁt; a’t—la ft—laj—;f)

Reconstruction Loss

POMDP MERLIN CTF-FTW

7/15

MERLIN — Algorithm Urzt

Algorithm 1 MERLIN Worker Pseudocode

/I Assume global shared parameter vectors ¢ for the policy network and y for the memory-
based predictor; global shared counter 7" := 0
/I Assume thread-specific parameter vectors ¢’, '
/I Assume discount factor y € (0, 1] and bootstrapping parameter A € [0, 1]
Initialize thread step counter ¢ := 1
repeat
Synchronize thread-specific parameters 6 := 6; ' := y
Zero model’s memory & recurrent state if new episode begins

toar =t
repeat
Prior N (11}, log ©¥) = p(hy—1,m4-1)
e; = enc(o;)
Posterior N (1}, log 37) = q(es, he—1,ms—1, 1f, log 3F)
Sample z ~ N (uf,log ¥}) :
Policy network update ; = rec(h;_1, 77, StopGradient(z))
Policy distribution 7, = 7 (h¢, StopGradient(z;))
Sample a; ~ m;
hy = rec(hi—1, my, 2t)
Update memory with 2z, by Methods Eq. 2
Ry, o) = dec(z, 7, ar)
Apply a, to environment and receive reward 7, and observation 0,1
ti=t+ LT =T+1
until environment termination or ¢t — tgux == Twindow
If not terminated, run additional step to compute V" (211, log m+1)
and set Ry := V™ (2441, log m41) // (but don’t increment counters)
Reset performance accumulators A := 0; £ := 0;H :=0
for k from ¢ down to g, do
) 0, if k& is environment termination
i v, otherwise
Ry := 1+ ni Ry
O =T+ 1V (241,108 Tp1) — V7 (24, log mg)
Ap = 0 + (YA Ak
L:=L+ Ly (Eq.T7)
A= A+ Aplog m|ak]
H = "H — Qenwropy >_; Tk 1] log mi[i] (Entropy loss)
end for
dXI = VX/E
d9’ = Vgr(.A + H)
Asynchronously update via gradient ascent 6 using df’ and y using dx’
until 7' > T,

Algorithm 1 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

POMDP MERLIN CTF-FTW 8/15

MERLIN Uzt

a Memory Game b o 9 0
10+ g 2
. U4HN Y4NN 4Y4HN
. XTe4y XTe4Y XTe4WY
e — I FESY FaEN [YEEy
: — o Ik o X® ialxl¢ 723k
v wws NEG. VLB i i
_8 s RL-LSTM =4 2 o e e
g w—RL-MEM -3 = ,
5 L2 URINR Y4 RN Y4$HNKN
| XTeY XTe4 XTeY
B Y2y Y2 M2 <
0"6 T T T T T 1= 3Tx¢ ;TX<P 3Tx<P
1 2 3 4 5 6
Number of Environment Steps 108
C Large Environment d Large Environment
00 - f 15000
250 | 5-14000
% 200 | = RMEM é—mooog
E 150 4 12000 %
o] —_ S
2 400 - - 11000 &
& i z
50 yf = e 5—10000
0 s [T) 9000
0.0 0.5 1.0 1.5 20
Number of Environment Steps 10°

Figure 2 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

NPFL122, Lecture 13 del¥iols MERLIN CTF-FTW 9/15

MERLIN

NPFL122, Lecture 13 POMDP

=
a b g_ MERUNMBP o= RL-LSTM @ RL-MEM
oy 10| «@= MERLINConvnet «@e RL-LSTM Convnet =@ RL-MEM Convnet
25
130 uenL 8% o] S =—=—0$0333
AL-LSTM os 81 @
— 120 : RL-MEM o0
© - Qc
S 110 oF
3 =% g
£ 100 3 S8
g o0 25
T 80 o= 4
2 BO
70 o2z
o [0} o
£ 60 o2 2
F =1
50 5£ —
=
40]
————————— 8% o0 ; ; : : |
1 2 3 4 5 6 7 8 Z 0 2 4 6 8 10
Sub-Episodes Sub-Episodes
d e
3.0 2 250
£
8 25 g
g2 S 200
S 20 u
S
2 & 150
'-g 15 s
T 10 g 10
£ MERUIN 3
3 05 - RL-LSTM @D 50
@ - w— RL-MEM [0}
: 8
0.0, T T | 2 oy T T T 1
-30 -20 -10 o w 10" 10° 10" 10° 10
Agent Steps to Goal Return Cost Coefficient
c
)
2
= - -
>
S
Q
w
o
@)

MERLIN

I

No Return Prediction
Gradient to z

=-20

MERLIN

=-10

Agent Steps to Goal

CTF-FTW

Read Head 1

C MERLIN Return Prediction

% Variance Explained

15.0

Return Prediction Value

08

0.6

0.4

0.2

0.0

T T T T 1
10" 10° 10’ 10° 10
Return Cost Coefficient

Read Head 2 Read Head 3

- Agent
= Read Head 1
= Read Head 2
mm Read Head 3

Distance to the Goal (Pixels)
8
h

'
u

-30

T T 1
-20 -10 0

Agent Steps to Goal

Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne

10/15

MERLIN URRL

alpha=0.1 alpha=1 alpha=5 alpha=10 alpha=100 alpha=1000 alpha=0.1 alpha=1 alpha=5 alpha=10 alpha=100 alpha=1000

i % -
a @

= = _—

< c

2 2

& , s . . " 8

) P e B - W e B - AR i 3 o R o

s})

= =

o xz

8 8

alpha=0.1 alpha=1 alpha=5 alpha=10 alpha=100 alpha=1000 alpha=0.1 alpha=1 alpha=5 alpha=10 alpha=100 alpha=1000

; :

= =

o o .-- - -

-

Observation

Ob'lservation
L
L
L
:
H

..... ; - : : 3

. _u- = H : H 2 % s ; \ "lﬁ. :
Extended Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

NPFL122, Lecture 13 [delVvlx MERLIN CTF-FTW 11/15

Posterior

Posterior

For the Win agent for Capture The Flag ezt

(a) FTW Agent Architecture (b) Progression During Training

OK 150K 300K 450K
Winning (SR | | | |
signal ™ 1600 —

+ 1500 -/ Agent Elo FTW
W Internal 1400 —
reward 1300 = = = = = = = = = /= & — _ m mm - - - == Strong Human
; Action 1200 - Self-play + RS
Game points Py E 1100 4 . .
i 1000 - verage Human
! 900 -
600 H Self-pl
500 L\/\/\/-—/—\— e-play
Slow RNN Sampled
> latent Learning Rate
variable de-4 _g\
4e-5 —

KL Weightin
Fast RNN le-3 e

5e-4 -
Internal Timescale
Observation x; 15 S
5 _
T T T 1
oK 150K 300K 450K

Games played
Figure 2 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

NPFL122, Lecture 13 [delVvlx MERLIN CTF-FTW 12/15

For the Win agent for Capture The Flag

® Extension of the MERLIN architecture.
® Hierarchical RNN with two timescales.

® Population based training controlling KL divergence penalty weights, slow ticking RNN
speed and gradient flow factor from fast to slow RNN.

NPFL122, Lecture 13 POMDP MERLIN CTF-FTW

U=

13/15

For the Win agent for Capture The Flag

(a) Agent (b) Policy (e) Recurrent processing with LSTM

B e-E-
@ (5}
(ar) :

2 - s>
Visual Recurrent
=" embedding processing

.. (f) Recurrent processing with

Reward : temporal hierarchy
predi ; , \ ,

(d) Visual embedding

A

(h) Reward prediction

@[T @ =

(i) Pixel control

| [y
i

-6 g

Legend
1 Convolution X Deconvolution LSTM with X '?:‘gij;"e%o”\‘y @ [:\il?)grr(:\';elﬂ

with X with X @ wil B
x KxK filters KxK filters neurons slots of size K distribution

Linear layer Linear layer with RelLU Softmax Softplus
with X XYz X-Y-Z neurons non-linearity non-linearity non-linearity

neurons reshaped to 3D
tensor
Pointwise Module

@ addition ® Outer product) 'nEUVS”"i“‘_» iiiii Samplmg» Concatenation

Figure 510 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

Lecture 1 POMDP MERLIN CTF-FTW 14/15

For the Win agent for Capture The Flag

Phase 1 Learning the basics of the game + Phase 2 Increasing navigation, tagging, and coordination skills ' Phase 3 Perfecting strategy and memory

“I have the flag”
° “My flag is taken” “Teammate has the flag”

Single Neuron “l am respawning”
Response r ’
T 45K | |

7 200K o0 I 450K
100% =
)
S 75%=
2 50%=1
/o'
E 25%— _/
* . /
0% =
Agent Tagged Opponent
Relative
Internal Reward Agent Picked up Flag
Magnitude
Opponent Captured Flag
Beating Beating :
Agent . i
Strengtn Weak NEIEEN Beating Strang Humans
O Human -
Behaviour
= © 0 ll Opponent Base Camping
» N
oK 10K 30K 350K 350K 450K
Visitation Map Top Memory Read Locations Visitation Map Top Memory Read Locations Visitation Map Top Memory Read Locations

Memory
Usage

Figure 4 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

, Lecture 13 POMDP MERLIN CTF-FTW

15/15

