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MDPs and Partially Observable MDPs

Recall that a Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action  will lead from

state  to , producing a reward ,

 is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a
sextuple , where in addition to an MDP

 is a set of observations,

 is an observation model, which is used as agent input instead of .
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Partially Observable MDPs

In Deep RL, partially observable MDPs are usually handled using recurrent networks. After
suitable encoding of input observation  and previous action , a RNN (usually LSTM)

unit is used to model the current  (or its suitable latent representation), which is in turn

utilized to produce .

 

Figure 1a of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

However, keeping all information in the RNN state is substantially limiting. Therefore, memory-
augmented networks can be used to store suitable information in external memory (in the lines
of NTM, DNC or MANN models).

We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

 

Figure 1b of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN – Memory Module

 

Figure 1b of paper "Unsupervised Predictive Memory in a
Goal-Directed Agent" by Greg Wayne et al.

Let  be a memory matrix of size .

Assume we have already encoded observations as  and previous

action . We concatenate them with  previously read vectors

and process then by a deep LSTM (two layers are used in the
paper) to compute .

Then, we apply a linear layer to , computing  key vectors 

 of length  and  positive scalars .

Reading: For each , we compute cosine similarity of  and all memory rows , multiply the

similarities by  and pass them through a  to obtain weights . The read vector is

then computed as .

Writing: We find one-hot write index  to be the least used memory row (we keep usage

indicators and add read weights to them). We then compute , and

update the memory matrix using .
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MERLIN — Prior and Posterior

However, updating the encoder and memory content purely using RL is inefficient. Therefore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations  and storing them in

memory.

According to the paper, the idea of unsupervised and predictive modeling has been entertained
for decades, and recent discussions have proposed such modeling to be connected to
hippocampal memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a prior distribution over  predicts next state variable conditioned on history of

state variables and actions , and posterior corrects the prior using

the new observation , forming a better estimate .
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MERLIN — Prior and Posterior

To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state
variable posterior, and add the difference of the reconstruction and ground truth to the loss.

We also add KL divergence of the prior and posterior to the loss, to ensure consistency
between the prior and posterior.

 

Figure 1c of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN — Algorithm

 

Algorithm 1 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

 

Figure 2 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

 

Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

 

Extended Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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For the Win agent for Capture The Flag

 

Figure 2 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

Extension of the MERLIN architecture.

Hierarchical RNN with two timescales.

Population based training controlling KL divergence penalty weights, slow ticking RNN
speed and gradient flow factor from fast to slow RNN.
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For the Win agent for Capture The Flag

 

Figure S10 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

 

Figure 4 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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