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PopArt Normalization

An improvement of IMPALA from Sep 2018, which performs normalization of task rewards
instead of just reward clipping. PopArt stands for Preserving Outputs Precisely, while Adaptively

Rescaling Targets.

Assume the value estimate  is computed using a normalized value predictor 

and further assume that  is an output of a linear function

We can update the  and  using exponentially moving average with decay rate  (in the

paper, first moment  and second moment  is tracked, and the standard deviation is

computed as ; decay rate  is employed).

v(s; θ,σ,μ) n(s; θ)

v(s; θ,σ,μ) =def
σn(s; θ) + μ

n(s; θ)

n(s; θ) =def
ω f(s; θ −T {ω, b}) + b.

σ μ β

μ υ

σ =  υ − μ2 β = 3 ⋅ 10−4
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PopArt Normalization

Utilizing the parameters  and , we can normalize the observed (unnormalized) returns as 

 and use an actor-critic algorithm with advantage .

However, in order to make sure the value function estimate does not change when the
normalization parameters change, the parameters  used to compute the value estimate

are updated under any change  and  as

In multi-task settings, we train a task-agnostic policy and task-specific value functions
(therefore, ,  and  are vectors).

μ σ

(G− μ)/σ (G− μ)/σ − n(S; θ)

ω, b

v(s; θ,σ,μ) =def
σ(ω f(s; θ −T {ω, b}) + b) + μ

μ → μ′ σ → σ′
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PopArt Results

 

Table 1 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

 

Figures 1, 2 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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PopArt Results

 

Figure 3 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

Normalization statistics on chosen environments.
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PopArt Results

 

Figures 4, 5 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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Transformed Rewards

So far, we have clipped the rewards in DQN on Atari environments.

Consider a Bellman operator 

Instead of reducing the magnitude of rewards, we might use a function  to reduce

their scale. We define a transformed Bellman operator  as

T

(T q)(s, a) =def E  [r +s ,r∼p′ γ  q(s , a )].
a′

max ′ ′

h : R → R
T  h

(T q)(s, a)h =def E  [h(r +s ,r∼p′ γ  h (q(s , a )))].
a′

max −1 ′ ′
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Transformed Rewards

It is easy to prove the following two propositions from a 2018 paper Observe and Look Further:

Achieving Consistent Performance on Atari by Tobias Pohlen et al.

1. If  for , then .

The statement follows from the fact that it is equivalent to scaling the rewards by a
constant .

2. When  is strictly monotonically increasing and the MDP is deterministic, then 

.

This second proposition follows from

where the last equality only holds if the MDP is deterministic.

h(z) = αz α > 0 T  q  h
k k→∞

h ∘ q  =∗ αq  ∗

α

h

T  q  h
k k→∞

h ∘ q  ∗

h ∘ q  =∗ h ∘ T q  =∗ h ∘ T (h ∘−1 h ∘ q  ) =∗ T  (h ∘h q  ),∗
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Transformed Rewards

The authors use the following transformation for the Atari environments

with . The additive regularization term ensures that  is Lipschitz continuous.

It is straightforward to verify that

h(x) =
def

sign(x)  − 1 +( ∣x∣ + 1 ) εx

ε = 10−2 h−1

h (x) =−1 sign(x)   − 1  .
⎝

⎛
(

2ε
 − 11 + 4ε(∣x∣ + 1 + ε)

)

2

⎠

⎞
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Recurrent Replay Distributed DQN (R2D2)

Proposed in 2019, to study the effects of recurrent state, experience replay and distributed
training.

R2D2 utilizes prioritized replay, -step double Q-learning with , convolutional layers

followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a
large number of actors (256; each performing approximately 260 steps per second) and learning
from batches by a single learner (achieving 5 updates per second using mini-batches of 64
sequences of length 80).

Instead of individual transitions, the replay buffer consists of fixed-length ( ) sequences

of , with adjacent sequences overlapping by 40 time steps.

n n = 5

m = 80
(s, a, r)
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 1 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 2 of the paper "Recurrent Experience Replay in Distributed
Reinforcement Learning" by Steven Kapturowski et al.

 

Table 1 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Table 2 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 9 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

Ablations comparing the reward clipping instead of value rescaling (Clipped), smaller discount
factor  (Discount) and Feed-Forward variant of R2D2. Furthermore, life-loss reset

evaluates resetting an episode on life loss, with roll preventing value bootstrapping (but not
LSTM unrolling).

 

Figure 4 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

 

Figure 7 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

γ = 0.99
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Utilization of LSTM Memory During Inference

 

Figure 5 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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MuZero

The MuZero algorithm extends the AlphaZero by a trained model, alleviating the requirement
for a known MDP dynamics.

At each time-step , for each of  steps, a model , with parameters , conditioned

on past observations  and future actions , predicts three future

quantities:

the policy ,

the value function ,

the immediate reward ,

where  are the observed rewards and  is the behaviour policy.

t 1 ≤ k ≤ K μ  θ θ

o  , … , o  1 t a  , … , a  t+1 t+k

p  ≈t
k π(a  ∣o  , … , o  , a  , … , a  )t+k+1 1 t t+1 t+k

v  ≈t
k E[u  +t+k+1 γu  +t+k+2 … ∣o  , … , o  , a  , … , a  ]1 t t+1 t+k

r  ≈t
k u  t+k

u  i π
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MuZero

At each time-step  (omitted from now on for simplicity), the model is composed of three

components, a representation function, a dynamics function and a prediction function.

The dynamics function, , simulates the MDP dynamics and predicts

an immediate reward  and an internal state . The internal state has no explicit

semantics, its only goal is to accurately predict rewards, values and policies.

The prediction function , computes the policy and value function, similarly

as in AlphaZero.

The representation function, , generates an internal state encoding the

past observations.

t

r , s =k k g  (s , a )θ
k−1 k

rk sk

p , v =k k f  (s )θ
k

s =0 h  (o  , … , o  )θ 1 t
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MuZero

 

Figure 1 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero

To select a move, we employ a MCTS algorithm similar to the AlphaZero. It produces a policy 

 and value estimate , and an action is then sampled from the policy .

During training, we utilize a sequence of  moves. We estimate the return using bootstrapping 

. The values  and  are used in

the paper.

The loss is then composed of the following components:

Note that in Atari, rewards are scaled by  for , and

authors utilize a cross-entropy loss with 601 categories for values , which they

claim to be more stable.

π  t ν  t a  ∼t+1 π  t

k

z  =t u  +t+1 γu  +t+2 … + γ u  +n−1
t+n γ ν  

n
t+n k = 5 n = 10

L  (θ) =t  L (u  , r  ) +
k=0

∑
K

r
t+k t

k L (z  , v  ) +v
t+k t

k L (π  ,p  ) +p
t+k t

k c∥θ∥ .2

sign(x)(  −∣x∣ + 1 1)+ εx ε = 10−3

−300, … , 300
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MuZero

  

ν ,π  t t

a  t

Model

   p , v , r = μ  (o  , ..., o  , a , ..., a )
s0

r , sk k

p , vk k

= h  (o  , ..., o  )θ 1 t

= g  (s , a )θ
k−1 k

= f  (s )θ
k ⎭⎪

⎬
⎪⎫

k k k
θ 1 t

1 k

Search

= MCTS(s  ,μ  )t
0

θ

∼ π  t
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MuZero

  

p  , v  , r  t
k

t
k

t
k

z  t

L  (θ)t

L (u, r)r

L (z, q)v

L (π, p)p

Learning Rule

= μ  (o  , … , o  , a  , ..., a  )θ 1 t t+1 t+k

=   {
u  T

u  + γu  + ... + γ u  + γ ν  t+1 t+2
n−1

t+n
n

t+n

 for games 
 for general MDPs 

=  L (u  , r  ) + L (z  , v  ) + L (π  ,p  ) + c∥θ∥
k=0

∑
K

r
t+k t

k v
t+k t

k p
t+k t

k 2

Losses

=   {
0
ϕ(u) log rT

 for games 
 for general MDPs 

=   {
(z − q)2

ϕ(z) logqT

 for games 
 for general MDPs 

= π logpT
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MuZero – Evaluation

 

Figure 2 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Atari Results

 

Table 1 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Planning Ablations

 

Figure 3 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Planning Ablations

 

Figure S3 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Detailed Atari Results

 

Table S1 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Detailed Atari Results

 

Table S1 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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