
NPFL122, Lecture 10

UCB, Monte Carlo Tree Search,

AlphaZero
Milan Straka

December 07, 2020

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Upper Confidence Bound

Revisiting multi-armed bandits with -greedy exploration, we note that using same epsilon for

all actions in -greedy method seems inefficient.

One possible improvement is to select action according to upper confidence bound (instead of
choosing a random action with probability):

where:

 is the number of times any action has been taken;

 is the number of times the action has been taken;

if , the right expression is frequently assumed to have a value of .

The updates are then performed as before (e.g., using averaging, or fixed learning rate).

ε

ε

ε

A t+1 =def
 Q (a) + c ,

a
arg max [t

N (a)t

ln t
]

t

N (a)t a

N (a) =t 0 ∞

α

2/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

Motivation Behind Upper Confidence Bound

Actions with little average reward are probably selected too often.

Instead of simple -greedy approach, we might try selecting an action as little as possible, but

still enough to converge.

Assuming that random variables bounded by and ,

(Chernoff-)Hoeffding's inequality states that

Our goal is to choose such that for every action,

We can fulfil the required inequality if , which yields

ε

X i [0, 1] =X̄ X

N
1 ∑i=1

N
i

P(E[] −X̄ ≥X̄ δ) ≤ e .−2Nδ2

δ

P(Q (a) ≤t q (a) −∗ δ) ≤ .(
t

1
)
α

e ≤−2N (a)δt
2

 (
t
1)

α

δ ≥ α/2 ⋅ .(ln t)/N (a)t

3/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

Asymptotical Optimality of UCB

We define regret as the difference of maximum of what we could get (i.e., repeatedly using the
action with maximum expectation) and what a strategy yields, i.e.,

It can be shown that regret of UCB is asymptotically optimal, see Lai and Robbins (1985),
Asymptotically Efficient Adaptive Allocation Rules.

regret N =def
N q (a) −

a
max ∗ E[R].

i=1

∑
N

i

4/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

Upper Confidence Bound Results

Figure 2.4 of "Reinforcement Learning: An Introduction, Second Edition".

5/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

Multi-armed Bandits Comparison

Figure 2.6 of "Reinforcement Learning: An Introduction, Second Edition".

6/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero

On 7 December 2018, the AlphaZero paper came out in Science journal. It demonstrates
learning chess, shogi and go, tabula rasa – without any domain-specific human knowledge or
data, only using self-play. The evaluation is performed against strongest programs available.

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

7/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Overview

AlphaZero uses a neural network predicting for a given state , where:

 is a vector of move probabilities, and

 is expected outcome of the game in range .

Instead of the usual alpha-beta search used by classical game playing programs, AlphaZero uses
Monte Carlo Tree Search (MCTS).

By a sequence of simulated self-play games, the search can improve the estimate of and ,

and can be considered a powerful policy evaluation operator – given a network predicting

policy and value estimate , MCTS produces a more accurate policy and better value

estimate for a given state :

(p(s), v(s)) = f(s; θ) s

p(s)
v(s) [−1, 1]

p v

f

p v π

w s

(π(s),w(s)) ← MCTS(p(s), v(s), f) for (p(s), v(s)) = f(s; θ).

8/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Overview

The network is trained from self-play games.

A game is played by repeatedly running MCTS from a state and choosing a move ,

until a terminal position is encountered, which is then scored according to game rules as

.

Finally, the network parameters are trained to minimize the error between the predicted outcome
 and the simulated outcome , and maximize the similarity of the policy vector and the

search probabilities (in other words, we want to find a fixed point of the MCTS):

The loss is a combination of:

a mean squared error for the value functions;
a crossentropy/KL divergence for the action distribution;
L2 regularization.

s t a ∼t π t

s T

z ∈ {−1, 0, 1}

v z p

π

L =
def

(z − v) +2 π logp+T c∥θ∥ .2

9/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Monte Carlo Tree Search

MCTS keeps a tree of currently explored states from a fixed root state. Each node corresponds
to a game state and to every non-root node we got by performing an action from the parent

state. Each state-action pair stores the following set of statistics:

visit count ,

total action-value ,

mean action value , which is usually not stored explicitly,

prior probability of selecting action in state .

a

(s, a)

N(s, a)
W(s, a)
Q(s, a) =def

W(s, a)/N(s, a)
P (s, a) a s

10/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Monte Carlo Tree Search

Each simulation starts in the root node and finishes in a leaf node . In a state , an action

is selected using a variant of PUCT algorithm as

where

with being slightly time-increasing exploration rate.

The paper uses , without any supporting experiments.

Also, the reason for the modification of the UCB formula was never discussed in any AlphaZero
paper and is not obvious.

s L s t

a =t arg max (Q(s , a) +a t U(s , a)),t

U(s, a) =def
C(s)P (s, a) ,

1 + N(s, a)
 N(s)

C(s) = log +(
c base

1+N(s)+c base) c init

c =init 1.25 c =base 19652

11/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Monte Carlo Tree Search

Additionally, exploration in the root state is supported by including a random sample from

Dirichlet distribution,

with and for chess, shogi and go, respectively.

Note that using makes the Dirichlet noise non-uniform, with a smaller number of actions

with high probability.

The Dirichlet distribution can be seen as a limit of the Pólya’s urn scheme, where in each step
we sample from a bowl of balls (with the initial counts) and return an additional ball of the

same color to the bowl.

To sample from a symmetric Dirichlet distribution, we can:

sample from a Gamma distribution ,

normalize the sampled values to sum to one, .

s root

P (s , a) =root (1 − ε)p +a εDir(α),

ε = 0.25 α = 0.3, 0.15, 0.03

α < 1

α

x i x ∼i Gamma(α)
p =i

 x ∑
j j

x i

12/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Monte Carlo Tree Search

When reaching a leaf node , we:

evaluate it by the network, generating ,

add all its children with and the prior probability ,

in the backward pass for all , we update the statistics in nodes by performing

, and

, depending on the player on turn.

Figure 2 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.

s L

(p, v)
N = W = 0 p

t ≤ L

N(s , a) ←t t N(s , a) +t t 1
W(s , a) ←t t W(s , a) ±t t v

13/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Monte Carlo Tree Search

The Monte Carlo Tree Search runs usually several hundreds simulations in a single tree. The
result is a distribution proportional to exponentiated visit counts using a

temperature (is mostly used), together with the predicted value function.

The next move is chosen as either:

proportional to visit counts :

deterministically as the most visited action

During self-play, the stochastic policy is used for the first 30 moves of the game, while the
deterministic is used for the rest of the moves. (This does not affect the internal MCTS search,
there we always sample according to PUCT rule.)

N(s , a)root

τ
1

τ τ = 1

N(s , ⋅)root

τ
1

π (a) ∝root N(s , a) ,root
 τ

1

π =root N(s , a).
a

arg max root

14/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Monte Carlo Tree Search Example

Figure 4 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

Visualization of the
10 most visited
states in a MCTS
with a given number
of simulations. The
displayed numbers
are predicted value
functions from the
white's perspective,
scaled to

range. The border
thickness is
proportional to a
node visit count.

[0, 100]

15/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Network Architecture

The network processes game-specific input, which consists of a history of 8 board positions
encoded by several planes, and some number of constant-valued inputs.

Output is considered to be a categorical distribution of possible moves. For chess and shogi, for
each piece we consider all possible moves (56 queen moves, 8 knight moves and 9
underpromotions for chess).

The input is processed by:

initial convolution block with CNN with 256 kernels with stride 1, batch

normalization and ReLU activation,
19 residual blocks, each consisting of two CNN with 256 kernels with stride 1, batch

normalization and ReLU activation, and a residual connection around them,
policy head, which applies another CNN with batch normalization, followed by a convolution
with 73/139 filters for chess/shogi, or a linear layer of size 362 for go,
value head, which applies another CNN with one kernel with stride 1, followed by a

ReLU layer of size 256 and a final layer of size 1.

N × N

3 × 3

3 × 3

1 × 1
tanh

16/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Network Inputs

Table S1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

17/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Network Outputs

Table S2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

18/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Training

Training is performed by running self-play games of the network with itself. Each MCTS uses
800 simulations. A replay buffer of one million most recent games is kept.

During training, 5000 first-generation TPUs are used to generate self-play games.
Simultaneously, network is trained using SGD with momentum of 0.9 on batches of size 4096,
utilizing 16 second-generation TPUs. Training takes approximately 9 hours for chess, 12 hours
for shogi and 13 days for go.

19/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Training

Figure 1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

Table S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

20/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Training

According to the authors, training is highly repeatable.

Figure S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

21/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Symmetries

In the original AlphaGo Zero, symmetries (8 in total, using rotations and reflections) were
explicitly utilized, by

randomly sampling a symmetry during training,
randomly sampling a symmetry during MCTS evaluation.

However, AlphaZero does not utilize symmetries in any way (because chess and shogi do not
have them).

Figure S1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

22/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Inference

During inference, AlphaZero utilizes much less evaluations than classical game playing programs.

Table S4 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

23/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Ablations

Table S8 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

Table S9 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

24/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Ablations

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

25/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Ablations

Figure 4 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.

26/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

AlphaZero – Preferred Chess Openings

Figure S2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

27/27NPFL122, Lecture 10 UCB AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation

