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Upper Confidence Bound

Revisiting multi-armed bandits with -greedy exploration, we note that using same epsilon for

all actions in -greedy method seems inefficient.

One possible improvement is to select action according to upper confidence bound (instead of
choosing a random action with probability ):

where:

 is the number of times any action has been taken;

 is the number of times the action  has been taken;

if , the right expression is frequently assumed to have a value of .

The updates are then performed as before (e.g., using averaging, or fixed learning rate ).
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Motivation Behind Upper Confidence Bound

Actions with little average reward are probably selected too often.

Instead of simple -greedy approach, we might try selecting an action as little as possible, but

still enough to converge.

Assuming that random variables  bounded by  and ,

(Chernoff-)Hoeffding's inequality states that

Our goal is to choose  such that for every action,

We can fulfil the required inequality if , which yields
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Asymptotical Optimality of UCB

We define regret as the difference of maximum of what we could get (i.e., repeatedly using the
action with maximum expectation) and what a strategy yields, i.e.,

It can be shown that regret of UCB is asymptotically optimal, see Lai and Robbins (1985),
Asymptotically Efficient Adaptive Allocation Rules.
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Upper Confidence Bound Results

 

Figure 2.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Multi-armed Bandits Comparison

 

Figure 2.6 of "Reinforcement Learning: An Introduction, Second Edition".
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AlphaZero

On 7 December 2018, the AlphaZero paper came out in Science journal. It demonstrates
learning chess, shogi and go, tabula rasa – without any domain-specific human knowledge or
data, only using self-play. The evaluation is performed against strongest programs available.

 

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Overview

AlphaZero uses a neural network predicting  for a given state , where:

 is a vector of move probabilities, and

 is expected outcome of the game in range .

Instead of the usual alpha-beta search used by classical game playing programs, AlphaZero uses
Monte Carlo Tree Search (MCTS).

By a sequence of simulated self-play games, the search can improve the estimate of  and ,

and can be considered a powerful policy evaluation operator – given a network  predicting

policy  and value estimate , MCTS produces a more accurate policy  and better value

estimate  for a given state :

(p(s), v(s)) = f(s; θ) s

p(s)
v(s) [−1, 1]

p v

f

p v π

w s

(π(s),w(s)) ← MCTS(p(s), v(s), f)  for  (p(s), v(s)) = f(s; θ).
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AlphaZero – Overview

The network is trained from self-play games.

A game is played by repeatedly running MCTS from a state  and choosing a move ,

until a terminal position  is encountered, which is then scored according to game rules as 

.

Finally, the network parameters are trained to minimize the error between the predicted outcome
 and the simulated outcome , and maximize the similarity of the policy vector  and the

search probabilities  (in other words, we want to find a fixed point of the MCTS):

The loss is a combination of:

a mean squared error for the value functions;
a crossentropy/KL divergence for the action distribution;
L2 regularization.

s  t a  ∼t π  t
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AlphaZero – Monte Carlo Tree Search

MCTS keeps a tree of currently explored states from a fixed root state. Each node corresponds
to a game state and to every non-root node we got by performing an action  from the parent

state. Each state-action pair  stores the following set of statistics:

visit count ,

total action-value ,

mean action value , which is usually not stored explicitly,

prior probability  of selecting action  in state .

a

(s, a)

N(s, a)
W(s, a)
Q(s, a) =def

W(s, a)/N(s, a)
P (s, a) a s
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AlphaZero – Monte Carlo Tree Search

Each simulation starts in the root node and finishes in a leaf node . In a state , an action

is selected using a variant of PUCT algorithm as

where

with  being slightly time-increasing exploration rate.

The paper uses ,  without any supporting experiments.

Also, the reason for the modification of the UCB formula was never discussed in any AlphaZero
paper and is not obvious.

s  L s  t

a  =t arg max  (Q(s  , a) +a t U(s  , a)),t
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AlphaZero – Monte Carlo Tree Search

Additionally, exploration in the root state  is supported by including a random sample from

Dirichlet distribution,

with  and  for chess, shogi and go, respectively.

Note that using  makes the Dirichlet noise non-uniform, with a smaller number of actions

with high probability.

The Dirichlet distribution can be seen as a limit of the Pólya’s urn scheme, where in each step
we sample from a bowl of balls (with the initial counts ) and return an additional ball of the

same color to the bowl.

To sample from a symmetric Dirichlet distribution, we can:

sample  from a Gamma distribution ,

normalize the sampled values to sum to one, .

s  root

P (s  , a) =root (1 − ε)p  +a εDir(α),

ε = 0.25 α = 0.3, 0.15, 0.03

α < 1

α

x  i x  ∼i Gamma(α)
p  =i  

 x  ∑
j j

x  i
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AlphaZero – Monte Carlo Tree Search

When reaching a leaf node , we:

evaluate it by the network, generating ,

add all its children with  and the prior probability ,

in the backward pass for all , we update the statistics in nodes by performing

, and

, depending on the player on turn.

 

Figure 2 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.
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AlphaZero – Monte Carlo Tree Search

The Monte Carlo Tree Search runs usually several hundreds simulations in a single tree. The
result is a distribution proportional to exponentiated visit counts  using a

temperature  (  is mostly used), together with the predicted value function.

The next move is chosen as either:

proportional to visit counts :

deterministically as the most visited action

During self-play, the stochastic policy is used for the first 30 moves of the game, while the
deterministic is used for the rest of the moves. (This does not affect the internal MCTS search,
there we always sample according to PUCT rule.)
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AlphaZero – Monte Carlo Tree Search Example

 

Figure 4 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

Visualization of the
10 most visited
states in a MCTS
with a given number
of simulations. The
displayed numbers
are predicted value
functions from the
white's perspective,
scaled to 

range. The border
thickness is
proportional to a
node visit count.

[0, 100]
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AlphaZero – Network Architecture

The network processes game-specific input, which consists of a history of 8 board positions
encoded by several  planes, and some number of constant-valued inputs.

Output is considered to be a categorical distribution of possible moves. For chess and shogi, for
each piece we consider all possible moves (56 queen moves, 8 knight moves and 9
underpromotions for chess).

The input is processed by:

initial convolution block with CNN with 256  kernels with stride 1, batch

normalization and ReLU activation,
19 residual blocks, each consisting of two CNN with 256  kernels with stride 1, batch

normalization and ReLU activation, and a residual connection around them,
policy head, which applies another CNN with batch normalization, followed by a convolution
with 73/139 filters for chess/shogi, or a linear layer of size 362 for go,
value head, which applies another CNN with one  kernel with stride 1, followed by a

ReLU layer of size 256 and a final  layer of size 1.

N × N

3 × 3

3 × 3

1 × 1
tanh
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AlphaZero – Network Inputs

 

Table S1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Network Outputs

 

Table S2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Training

Training is performed by running self-play games of the network with itself. Each MCTS uses
800 simulations. A replay buffer of one million most recent games is kept.

During training, 5000 first-generation TPUs are used to generate self-play games.
Simultaneously, network is trained using SGD with momentum of 0.9 on batches of size 4096,
utilizing 16 second-generation TPUs. Training takes approximately 9 hours for chess, 12 hours
for shogi and 13 days for go.
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AlphaZero – Training

 

Figure 1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

 

Table S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Training

According to the authors, training is highly repeatable.

 

Figure S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Symmetries

In the original AlphaGo Zero, symmetries (8 in total, using rotations and reflections) were
explicitly utilized, by

randomly sampling a symmetry during training,
randomly sampling a symmetry during MCTS evaluation.

However, AlphaZero does not utilize symmetries in any way (because chess and shogi do not
have them).

 

Figure S1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Inference

During inference, AlphaZero utilizes much less evaluations than classical game playing programs.

 

Table S4 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations

 

Table S8 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

 

Table S9 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations

 

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations

 

Figure 4 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.
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AlphaZero – Preferred Chess Openings

 

Figure S2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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