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Off-policy Correction Using Control Variates

Let Gt.41n be the estimated n-step return

t+n—1
Gitin = ( Z 7ktRk+1) + [episode still running in ¢ + n|y"V (Siip),
k=t

which can be written recursively as

0 if episode ended before ¢,
Gitin § V(St) if n =0,
\Rt_|_1 + 7Gt+1:t+n otherwise.
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Off-policy Correction Using Control Variates Vet

Note that we can write

Gt:t—l—n — V(St) — Rt—i—l + ’YGt—Fl:t—l—n — V(St)
= Ry11 + ’Y(Gt+1:t+n — V(St+1)) - W’V(Stﬂ) — V(St),

which yields
Gitin — V(St) = Rip1 + YV (Se41) — VI(Se) + ¥(Gri1ien — V(Set1)).

def

Denoting the TD error as §; = Ry 1 + YV (St11) — V(St), we can therefore write the n-step
estimated return as a sum of TD errors:

n—1

Grtin = V(5t) + 27i5t+z'-

1=0
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Off-policy Correction Using Control Variates et

Now consider applying the IS off-policy correction to Gy.¢4r, using the importance sampling
ratio

ar T(At|S) w T
pt — b(At‘St) 9 pt:t—l—n — gpt-l—’l,'

First note that

which can be extended to

£y, [Pt:t+n] = 1.
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Off-policy Correction Using Control Variates

Until now, we used
def
Gt t+n — Ptit+n— 1Gttin-

However, such correction has unnecessary variance. Notably, when expanding Gt.t1n

Gt t+n — Ptt+n—1 (Rt—l—l - 7Gt—|—1:t+n)7

the R;, 1 depends only on p;, not on p;,1.t1,, and given that the expectation of the
importance sampling ratio is 1, we can simplify to

Gt t+n T pth—i—l + pt:t—l—n—l'YGt—i—lzt—l—n-
Such an estimate can be written recursively as

Gt t4n — Pt (Rt-|—1 —+ 7Gt+1 t—l—n)
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We can reduce the variance even further — when p; = 0, we might consider returning the value
of V(S;) instead of 0.

Therefore, we might add another term, the so-called control variate, to the estimate

def

Gt ttn — Pt (Rt+1 -+ 7Gt+1 t—|—n) + (1 - Pt)V(St),

which is valid, since the expected value of 1 — p; is zero and p; and S; are independent.

Similarly as before, rewriting to

Gt ‘t+n V(St) — Pt (Rt+1 + 7Gt+1 t+n) — PtV(S)
= pt(Res1 + YV (Sts1) — V(St) + Y(Gitipsn — V(Sex1)))

results in

n—1 .
G?Xrn =V (St) + Zizo V' Pttt Otri-
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Eligibility Traces Fx

Eligibility traces are a mechanism of combining multiple n-step return estimates for various
values of n.
First note instead of an m-step return, we can use any average of n-step returns for different

values of n, for example %Gt:t+2 + %Gt:t+4.
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A-return

For a given A € |0, 1], we define A-return as

Alternatively, the \-

return can be written
recursively as

Gi\ _ (1 B )\)Gt:t+1 Weighting 1-2 %

_'_ A(Rt—k]_ —"_ 7G?_+_1).

NPFL122, Lecture 9 ControlVariates

F\KL
00
Gi = (1-A) E AT G
1=1
weight given to
T the 3-step return total area = 1
\ is (1 —A)A?
% decay by A
\ weight given to
actual, final return
P is \I—t—1
Ao- 7077

Time —

Figure 12.2: Weighting given in the A-return to each of the n-step returns.

Figure 12.2 of "Reinforcement Learning: An Introduction, Second Edition".
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A-return

In an episodic task with time of termination 1", we can rewrite the A-return to

NPFL122, Lecture 9

T—t—1
Gr=1-2) > NGy + NGy

1

n-step TD methods

Off-line A-return algorithm (from Chapter 7)

RMS error
at the end
of the episode
over the first
10 episodes

Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the off-line A-return
algorithm alongside that of the n-step TD methods. In both case, intermediate values of the
bootstrapping parameter (A or n) performed best. The results with the off-line A-return algorithm

are slightly better at the best values of @ and A, and at high a.
Figure 12.3 of "Reinforcement Learning: An Introduction, Second Edition".
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We might also set a limit on the largest value of n, obtaining truncated A-return

n—1

Grrin = (L= X)) N "'Grapi + X 'Grpin.
1=1

The truncated A return can be again written recursively as

Similarly to before, we can express the truncated A return as a sum of TD errors

Grrin — V(S) = (1 = A)(Res1 + YV (Sts1)) + AMRes1 + G2 144n) — V(Sh)
= Ry 1 + ’YV(StH) - V(St) + Ay (Gt+1 t4n V(St+1))7

obtaining an analogous estimate G\ v = V(St) + Zz 0 ’yzz\i(StH.
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The (truncated) A-return can be generalized to utilize different A; at each step 2. Notably, we
can generalize the recursive definition

Gt t+n ( )‘)Gt t4+1 T )‘(Rt+1 -+ PYGH—l t+n)
to

Gt t+n (1 T AZH-].)Gt t+1 —"_ AIf—l-].(-RlH-l —|_ /YGIH—]. t—|—n)

and express this quantity again by a sum of TD errors:

n—1 (
Gt trn = V(St) + ZW’i (H )\t—l—j> Ot 44
i=0 j=1
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Finally, we can combine the eligibility traces with off-policy estimation using control variates:

n—1

A,CV de 1— n—
Gtt+ndf(1_)‘)z)‘ 1Gtt+z A 1Gtt+n

i=1
Recalling that

Gt ttn (Rt+1 - VGt+1 t+n) T (1 - pt)V(St)a

we can rewrite Gi‘:ﬁ\é recursively as
A,CV A,CV
Gt = (1= NG, + A (B +9GR) + (1= p)V(S)),
which we can simplify by expanding G, 1 = pt(Rev1 + YV (Sir1)) + (1 — p1)V(St) to

Giitn = V(S) = pt (Ris1 + 7V (Si41) = V(S)) + 720 (G5 1m — V(Si41))-
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Off-policy Traces with Control Variates

Consequently, analogously as before, we can write the off-policy traces estimate with control
variates as

n—1 . .
Grivin = V(S) + Zi:O VA pit+iOtri,

and by repeating the above derivation we can extend the result also for time-variable Az,
obtaining

1

A, CV n-l
Giiin = V(St) + Zizo Y H)\t—l—j Prit+iOt+i-

j=1
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Recursive definition Formulation with TD errors

Gt:t+n = Rii1 + ’YGt+1 t+n (St) + Z,& 0 ’YZ(StJrz'
Gist—kn = Pt (Rt+1 + ’YGt—i—l t—|—n)
Gi(fjt\jrn = Pt (Rt-i—l T 7Gt+1 t+n) + (1 _ pt)V(St) (St) + Zz 0 ’th t—i—z5t+i
Gét—l—n = (1 _ A)Gt!t+1 + A(RtJrl T ’YG?—I—lzt—l—n) (St) T Z@ 0 ’y,L)‘Zdt—l-i
Gt)\lit—l—n = (1 - )‘t+1)Gt-t+1 + )\t+1 (Rt+1 + W’Gi\j}lzwn) V(St) T Zz 0 ’7 ( J 1 )‘tﬂ') 5’5”
GroV E (1 - NG

o . A,CV V(S:) + ZZ 0 VN Prtsi Ot

+ )‘(pt (Rt+1 + 'YGtJ’rl:tJrn) + (1 - Pt)V(St))

Grirn = (1= M1)GE V(S

i1 (o0 (Resn + Gty ) + (1 —p)V(S)) |+ S (ITLy Mty ) Pretr Ot

ReturnSummary



TD()\) Ukt

We have defined the A-return in the so-called forward view.

Figure 12.4: The forward view. We decide how to update each state by looking forward to

future rewards and states. , _ N
Figure 12.4 of "Reinforcement Learning: An Introduction, Second Edition".
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TD()\) UL

However, to allow on-line updates, we might consider also the backward view

Figure 12.5: The backward or mechanistic view of TD(XA). Each update depends on the current
TD error combined with the current eligibility traces of past events.

Figure 12.5 of "Reinforcement Learning: An Introduction, Second Edition".
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TD(A) Uz

TD(A) is an algorithm implementing on-line policy evaluation utilizing the backward view.

Semi-gradient TD()\) for estimating v ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : §T x RY — R such that ©(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate A € [0, 1]

Initialize value-function weights w arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
z<+ 0 (a d-dimensional vector)
Loop for each step of episode:
|  Choose A ~ 7(:|S)
| Take action A, observe R, S’
|z <+ YAz + Vi(S,w)
| 0 R+~yo(S"\w) —0(S,w)
| W< wHadz
| S« Y

until S’ is terminal

Algorithm 12.2 of "Reinforcement Learning: An Introduction, Second Edition".
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V-trace is a modified version of n-step return with off-policy correction, defined in the Feb

2018 IMPALA paper as (using the notation from the paper):
1—1
Guiin® = V(S:) + Z’Y (H Ct+]) Pt+i0t1is

where p; and ¢; are the truncated importance sampling ratios for p > ¢:

_ def . (_ 7T(At|St)) _ def . ( WAt‘St))
Pt = min | P, , Cy=Iin | c, .

b(A:|St)

Note that if b = 7 and assuming ¢ > 1, v reduces to n-step Bellman target.

V-trace
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Note that the truncated IS weights p; and ¢; play different roles:

® The p; appears defines the fixed point of the update rule. For p = 00, the target is the
value function v, if p < 00, the fixed point is somewhere between v, and vp. Notice that
we do not compute a product of these p; coefficients.

Concretely, the fixed point of an operator defined by G};'"2° corresponds to a value

function of the policy
m5(als) o< min (pb(als), w(als)).

® The ¢; impacts the speed of convergence (the contraction rate of the Bellman operator),
not the sought policy. Because a product of the ¢; ratios is computed, it plays an important
role in variance reduction.

However, the paper utilizes ¢ = 1 and out of p € {1,10,100}, p = 1 works empirically the
best, so the distinction between ¢; and p; is not useful in practice.
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Let us define the (untruncated for simplicity; similar results can be proven for a truncated one)
V-trace operator R as:

de 1 i—1 — —
RV($) 2 V() + B | S (T e ) s

>0

where the expectation [E; is with respect to trajectories generated by behaviour policy b.
Assume there exists 8 € (0, 1] such that Eypy > 8.

It can be proven (see Theorem 1 in Appendix A.1 in the Impala paper if interested) that such
an operator is a contraction with a contraction constant

i—1
—1 ) — —
- (1—7) ;7 E, [(szocj) ,0@'] <1-(1-y)B <1,
therefore, R has a unique fixed point.
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We now prove that the fixed point of R is V™. We have:
Ky [ﬁt (Rer1 +7V™ (St1) — V™ (Sh)) )St]

. (_ m(alS o -
= Zb(a\St) min (p, b((a,‘|S:))) |:Rt—|—1 + ’YES’Np(St,a)V p(S ) -V p(St)}

= Zﬁﬁ(a‘st) [Rt+1 +YEy p(s,.0) V(") — V™ (St)] Zmin (pb(b|S;), m(b]St)),

\ 4

=0

where the tagged part is zero, since it is the Bellman equation for V™. This shows that
RV7™ = V7™ and therefore V7 is the unique fixed point of R.

A, CV ;
Consequently, in Gy, = V(S) + ZZ 0 (szl Atﬂ-) Pi:t+i0¢1i, only the last py; from

every pPrt+i is actually needed for off-policy correction; pr¢+;—1 can be considered as traces.

V-trace
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IMPALA

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper
and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicate gradients with respect to the parameters
of the policy, IMPALA actors communicate trajectories to the centralized learner.

Observations
Parameters

O
O

Observations

Environment steps . Forward pass .

. Actor 0
Worker 4 time steps Actor 1
Actor 2

Learner Actor 0
' s aas B
Actor 3 Actor 6
Actor 7
Gradients (a) Batched A2C (sync step.) ‘

4 time steps - . -
Actor 0 FEFEFECE  EEETECECEE
vt PRI R i |
T Actor 3 M- E-E EEERE (c) IMPALA
(b) Batched A2C (sync traj.)

W
=
e
a8

ard pass

...next unroll
|

EEn mEE E3
]

EEEEEEENR g
H gEE gh
EggEEgyn

Parameters

Observations

Figure 1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Figure 2 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted

Actor-Learner Architectures" by Lasse Espeholt et al.

Actor-Learner Architectures" by Lasse Espeholt et al.

If many actors are used, the policy used to generate a trajectory can lag behind the latest
policy. Therefore, the V-trace off-policy actor-critic algorithm is employed.
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Consider a parametrized functions computing v(s; @) and 7(a|s; w), we update the critic in

the direction of
(GYitmmee — v(S150)) Vav(S13 0),
and the actor in the direction of the policy gradient
PtV log m(Ar| St w) (Rep1 + vGLIT2S, — v(S4 9)),

where we estimate Q" (S;, A;) as Ry 1 + vG, e,

Finally, we again add the entropy regularization term ,BH(W("St; w)) to the loss function.
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Architecture CPUs GPUs' FPS?
Single-Machine Task 1 Task 2
A3C 32 workers 64 0 6.5K 9K
Batched A2C (sync step) 48 0 9K 5K
Batched A2C (sync step) 48 1 13K 5.5K
Batched A2C (sync traj.) 48 0 16K 17.5K
Batched A2C (dyn. batch) 48 1 16K 13K
IMPALA 48 actors 48 0 17K 20.5K
IMPALA (dyn. batch) 48 actors’ 48 1 21K 24K
Distributed

A3C 200 0 46K 50K
IMPALA 150 1 80K
IMPALA (optimised) 375 1 200K
IMPALA (optimised) batch 128 500 1 250K

1 Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3 Limited by

amount of rendering possible on a single machine.

IMPALA
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For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp € and the global gradient norm clipping

threshold.

(a) Sequential Optimisation

Performance
— — —
O Hyperparameters O—>O

e e S 1]
Training

Weights

........................

(b) Parallel Random/Grid Search

(c) Population Based Training

Performance
—

Hyperparameters O .

Weights D ..... RN .

[9)

IMPALA
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For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp € and the global gradient norm clipping

threshold.

In population based training, several agents are trained in parallel. When an agent is ready
(after 5000 episodes), then:

® it may be overwritten by parameters and hyperparameters of another randomly chosen
agent, if it is sufficiently better (5000 episode mean capped human normalized score returns

are 5% better);
® and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or

1/1.2 with 33% chance).
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IMPALA - Architecture U

| Embedding 20 |

: t
| blue ladder
| Residual Block |

| f
i Residual Block | ™.
Rotv | 2 | Embedding 20 | § | f Lo !
| Conv. 4 x 4, stride 2 | ¥ 16 3;22 b | Max 3 x 3, stride 2 | | Conv. 3 x 3,stride 1 |—>6
16 blue ladder  [10:32,32]ch |
HelU . | Conv. 3 x 3,stride 1 |
| Conv. 8 x 8, stride 4 | | T !

- : | | Conv. 3 x 3,stride 1 |

96 x 72

96 x 72
Figure 3 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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—— IMPALA - 1 GPU - 200 actors Batched A2C - Single Machine - 32 workers —— A3C - Single Machine - 32 workers —— A3C - Distributed - 200 workers

rooms_watermaze rooms_keys _doors_puzzle lasertag_three_opponents_small explore_goal_locations_small seekavoid_arena_01

0
B9 02 04 06 08 1o 90 0.2 0.4 0.6 0.8 To 00 0.2 0.4 0.6 0.8 1.0 ) 0.2 0.4 0.6 0.8 To 30 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9 Environment Frames  1e9 Environment Frames 1e9 Environment Frames 1e9 Environment Frames  1e9

rooms_watermaze rooms_keys_doors_puzzle lasertag_three_opponents_small explore_goal_locations_small seekavoid_arena_01

1 5 9 13 17 21 24 1 5 9 13 17 21 24 1 5 9 13 17 21 24 1 5 9 3 17 2t 24 %5 5 9 13 17 21 24
Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination

Figure 4 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA — Learning Curves Uz
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Figures 5, 6 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures” by Lasse Espeholt et al.
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Human Normalised Return Median

Mean

A3C, shallow, experts 54.9% 285.9%
A3C, deep, experts 117.9% 503.6%
Reactor, experts 187% N/A
IMPALA, shallow, experts 93.2% 466.4%
IMPALA, deep, experts 191.8% 957.6%
IMPALA, deep, multi-task 59.7% 176.9%
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IMPALA — Atari Hyperparameters UL

Parameter Value
Image Width 84
Image Height 84
Grayscaling Yes
Action Repetitions 4
Max-pool over last N action repeat frames 2
Frame Stacking 4

End of episode when life lost Yes
Reward Clipping [-1, 1]
Unroll Length (n) 20
Batch size 32
Discount (7y) 0.99
Baseline loss scaling 0.5
Entropy Regularizer 0.01
RMSProp momentum 0.0
RMSProp e 0.01
Learning rate 0.0006
Clip global gradient norm 40.0
Learning rate schedule Anneal linearly to 0

From beginning to end of training.
Population based training (only multi-task agent)

- Population size 24

- Start parameters Same as DMLab-30 sweep

- Fitness Mean capped human normalised scores
(3 min [1, (s — )/ (ke — 7)) /N

- Adapted parameters Gradient clipping threshold

Entropy regularisation
Learning rate
RMSProp ¢

Table G1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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No-correction: no off-policy
correction;
e-correction: add a small value

e = 1079 during gradient
calculation to prevent m to be

very small and lead to unstabilities
during log ™ computation;

1-step: no off-policy correction in
update of the value function, TD
errors are multiplied by the
corresponding p (but no cs).

Task 1 Task2 Task3 Task4 Task5

Without Replay

V-trace 46.8 329 31.3 229.2 43.8
1-Step 51.8 359 254 215.8 43.7
g-correction 442 273 43 107.7 41.5
No-correction 40.3 29.1 50 949 16.1
With Replay

V-trace 47.1 35.8 34.5 250.8 46.9
1-Step 547 344 264 204.8 41.6
g-correction 304 30.2 3.9 101.5 37.6
No-correction 350 21.1 2.8 850 11.2

Tasks: rooms_watermaze, rooms_keys_doors_puzzle,
lasertag_-three_opponents._small,
explore_goal_-locations_small, seekavoid_arena-01
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IMPALA - Ablations Ut
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Figure E.1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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