
NPFL122, Lecture 7

PAAC, Continuous Actions,

DDPG
Milan Straka

November 16, 2020

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Parallel Advantage Actor Critic

An alternative to independent workers is to train in a synchronous and centralized way by
having the workes to only generate episodes. Such approach was described in May 2017 by
Clemente et al., who named their agent parallel advantage actor-critic (PAAC).

Figure 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

2/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Parallel Advantage Actor Critic

Algorithm 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

3/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Parallel Advantage Actor Critic

Table 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

The authors use workers, parallel environments, -step returns, , ,

 and a learning rate of .

The is from A3C: 16 filters stride 4, 32 filters stride 2, a dense layer with

256 units. The is from DQN: 32 filters stride 4, 64 filters stride 2, 64

filters stride 1 and 512-unit fully connected layer. All nonlinearities are ReLU.

8 n =e 32 5 γ = 0.99 ε = 0.1
β = 0.01 α = 0.0007 ⋅ n =e 0.0224

arch nips 8 × 8 4 × 4
arch nature 8 × 8 4 × 4

3 × 3
4/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Parallel Advantage Actor Critic

Figure 3 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

5/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Parallel Advantage Actor Critic

Figure 4 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

6/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Parallel Advantage Actor Critic

Figure 2 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

7/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Continuous Action Space

Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range for , or more

generally from a Cartesian product of several such ranges:

A simple way how to parametrize the action distribution
is to choose them from the normal distribution.
Given mean and variance , probability density

function of is

[a, b] a, b ∈ R

 [a , b].
i

∏ i i

μ σ2

N (μ,σ)2

p(x) =def
 e .
 2πσ2

1 − 2σ2
(x−μ)2

8/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Continuous Action Space in Gradient Methods

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the

 distribution we suitably parametrize the action value, usually using the normal

distribution. Considering only one real-valued action, we therefore have

where and are function approximation of mean and standard deviation of the

action distribution.

The mean and standard deviation are usually computed from the shared representation, with

the mean being computed as a regular regression (i.e., one output neuron without
activation);
the standard deviation (which must be positive) being computed again as a single neuron,

but with either or , where .

softmax

π(a∣s; θ) =
def
P(a ∼ N(μ(s; θ),σ(s; θ))),2

μ(s; θ) σ(s; θ)

exp softplus softplus(x) =def log(1 + e)x

9/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Continuous Action Space in Gradient Methods

During training, we compute and and then sample the action value (clipping it

to if required). To compute the loss, we utilize the probability density function of the

normal distribution (and usually also add the entropy penalty).

 mus = tf.keras.layers.Dense(actions)(hidden_layer)

 sds = tf.keras.layers.Dense(actions)(hidden_layer)

 sds = tf.math.exp(sds) # or sds = tf.math.softplus(sds)

 action_dist = tfp.distributions.Normal(mus, sds)

 # Loss computed as - log π(a|s) * returns - entropy_regularization
 loss = - action_dist.log_prob(actions) * returns \

 - args.entropy_regularization * action_dist.entropy()

μ(s; θ) σ(s; θ)
[a, b]

10/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Continuous Action Space

When the action consists of several real values, i.e., action is a suitable subregion of for

, we can:

either use multivariate Gaussian distribution;
or factorize the probability into a product of univariate normal distributions.

Modeling the action distribution using a single normal distribution might be insufficient, in
which case a mixture of normal distributions is usually used.

Sometimes, the continuous action space is used even for discrete output -- when modeling pixels
intensities (256 values) or sound amplitude (2 values), instead of a softmax we use discretized

mixture of distributions, usually (a distribution with a sigmoid cdf). Then,

However, such mixtures are usually used in generative modeling, not in reinforcement learning.

Rn
n > 1

16

logistic

π(a) = p (σ((a +
i

∑ i 0.5 − μ)/σ)−i i σ((a − 0.5 − μ)/σ)).i i

11/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Deterministic Policy Gradient Theorem

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

Deterministic Policy Gradient Theorem
Assume that the policy is deterministic and computes an action . Further,

assume the reward is actually a deterministic function of the given state-action pair.

Then, under several assumptions about continuousness, the following holds:

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al in 2014.

∇ J(θ) ∝θ μ(s) q (s, a)∇ π(a∣s; θ).
s∈S

∑
a∈A

∑ π θ

π(s; θ) a ∈ R
r(s, a)

∇ J(θ) ∝θ E [∇ π(s; θ)∇ q (s, a)].s∼μ θ a π ∣∣
∣
a=π(s;θ)

12/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Deterministic Policy Gradient Theorem – Proof

The proof is very similar to the original (stochastic) policy gradient theorem.

However, we will be exchanging derivatives and integrals, for which we need several
assumptions:

we assume that are

continuous in all parameters and variables;
we further assume that are bounded.

Details about which assumptions are required when can be found in Appendix B of
Deterministic Policy Gradient Algorithms: Supplementary Material by David Silver et al.

h(s), p(s ∣s, a), ∇ p(s ∣s, a), r(s, a), ∇ r(s, a),π(s; θ), ∇ π(s; θ)′
a

′
a θ

h(s), p(s ∣s, a), ∇ p(s ∣s, a), r(s, a), ∇ r(s, a)′
a

′
a

13/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Deterministic Policy Gradient Theorem – Proof

We finish the proof as in the gradient theorem by continually expanding , getting

 and

then .

∇ v (s) =θ π ∇ q (s,π(s; θ))θ π

= ∇ (r(s,π(s; θ))+θ p(s ∣s,π(s; θ))γv (s) ds)∫
s′

′
π

′ ′

= ∇ π(s; θ)∇ r(s, a) +θ a ∣∣
∣
a=π(s;θ) ∇ γp(s ∣s,π(s; θ))v (s) dsθ ∫

s′

′
π

′ ′

= ∇ π(s; θ)∇ (r(s, a) +θ a γp(s ∣s, a)v (s) ds) ∫
s′

′
π

′ ′

∣
∣∣
∣
a=π(s;θ)

+ γp(s ∣s,π(s; θ))∇ v (s) ds∫
s′

′
θ π

′ ′

= ∇ π(s; θ)∇ q (s, a) +θ a π ∣∣
∣
a=π(s;θ) γp(s ∣s,π(s; θ))∇ v (s) ds∫

s′

′
θ π

′ ′

∇ v (s)θ π
′

∇ v (s) =θ π γ P (s →∫
s′ ∑k=0

∞ k s in k steps ∣π)[∇ π(s ; θ)∇ q (s , a)] ds′
θ

′
a π

′
∣∣
∣
a=π(s ;θ)′

′

∇ J(θ) =θ E ∇ v (s) ∝s∼h θ π E [∇ π(s; θ)∇ q (s, a)]s∼μ θ a π ∣∣
∣
a=π(s;θ)

14/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Deep Deterministic Policy Gradients

Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions (similarly to how expected
Sarsa is also an off-policy algorithm).

We therefore train function approximation for both and , training

using a deterministic variant of the Bellman equation:

and according to the deterministic policy gradient theorem.

The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with), batch normalization for CNNs, and perform exploration by adding a Ornstein-

Uhlenbeck noise to predicted actions. Training is performed by Adam with learning rates of 1e-4
and 1e-3 for the policy and critic network, respectively.

π(s; θ) q(s, a; θ) q(s, a; θ)

q(S ,A ; θ) =t t E [R +R ,S t+1 t+1 t+1 γq(S ,π(S ; θ))]t+1 t+1

π(s; θ)

τ = 0.001

15/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Deep Deterministic Policy Gradients

Algorithm 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

16/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Deep Deterministic Policy Gradients

Figure 3 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

17/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Deep Deterministic Policy Gradients

Results using low-dimensional (lowd) version of the environment, pixel representation (pix) and
DPG reference (cntrl).

Table 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

18/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

Ornstein-Uhlenbeck Exploration

While the exploration policy could just use Gaussian noise, the authors claim that temporarily-
correlated noise is more effective for physical control problems with inertia.

They therefore generate noise using Ornstein-Uhlenbeck process, by computing

utilizing hyperparameter values and .

n ←t n +t−1 θ ⋅ (μ − n) +t−1 ε ∼ N (0,σ),2

τ = 0.15 σ = 0.2

19/19NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck

