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MDPs and Partially Observable MDPs

Recall that a Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action  will lead from

state  to , producing a reward ,

 is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a
sextuple , where in addition to an MDP

 is a set of observations,

 is an observation model, which is used as agent input instead of .

Although planning in general POMDP is undecidable, several approaches are used to handle
POMDPs in robotics (to model uncertainty, imprecise mechanisms and inaccurate sensors, …).
In deep RL, partially observable MDPs are usually handled using recurrent networks, which
model the latent states .
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Refresh – Policies and Value Functions

A policy  computes a distribution of actions in a given state, i.e.,  corresponds to a

probability of performing an action  in state .

To evaluate a quality of a policy, we define value function , or state-value function, as

An action-value function for a policy  is defined analogously as

Optimal state-value function is defined as  analogously optimal action-

value function is defined as 

Any policy  with  is called an optimal policy.

π π(a∣s)
a s

v  (s)π

v  (s)π =
def E  G  S  = s =π [ t∣ t ] E   γ R   S  = s .π [∑

k=0

∞
k

t+k+1∣
∣∣
∣

t ]

π

q  (s, a)π =def E  G  S  = s,A  = a =π [ t∣ t t ] E   γ R   S  = s,A  = a .π [∑
k=0

∞
k

t+k+1∣
∣∣
∣

t t ]

v  (s)∗ =def max  v  (s),π π

q  (s, a)∗ =def max  q  (s, a).π π

π  ∗ v  =π  ∗ v  ∗
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Refresh – Value Iteration

Optimal value function can be computed by repetitive application of Bellman optimality
equation:

Converges for finite-horizon tasks or when discount factor .
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Refresh – Policy Iteration Algorithm

Policy iteration consists of repeatedly performing policy evaluation and policy improvement:

The result is a sequence of monotonically improving policies . Note that when , also 

, which means Bellman optimality equation is fulfilled and both  and  are optimal.

Considering that there is only a finite number of policies, the optimal policy and optimal value
function can be computed in finite time (contrary to value iteration, where the convergence is
only asymptotic).

Note that when evaluating policy , we usually start with , which is assumed to be a

good approximation to .
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Refresh – Generalized Policy Iteration

Generalized Policy Evaluation is a general idea of interleaving policy evaluation and policy
improvement at various granularity.

 

Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

 

Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

If both processes stabilize, we know we have obtained optimal policy.
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Refresh – Monte Carlo Methods

Monte Carlo methods are based on estimating returns from complete episodes. Furthermore, if
the model (of the environment) is not known, we need to estimate returns for the action-value
function  instead of .

We can formulate Monte Carlo methods in the generalized policy improvement framework.
Keeping estimated returns for the action-value function, we perform policy evaluation by
sampling one episode according to current policy. We then update the action-value function by
averaging over the observed returns, including the currently sampled episode.

We considered two variants of exploration:

exploring starts
-soft policies

q v

ε
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Refresh – Monte Carlo for -soft Policiesε

On-policy every-visit Monte Carlo for -soft Policies

Algorithm parameter: small 

Initialize  arbitrarily (usually to 0), for all  

Initialize  to 0, for all 

Repeat forever (for each episode):

Generate an episode , by generating actions as follows:

With probability , generate a random uniform action

Otherwise, set 

For each :

ε

ε > 0

Q(s, a) ∈ R s ∈ S, a ∈ A

C(s, a) ∈ Z s ∈ S, a ∈ A

S  ,A  ,R  , … ,S  ,A  ,R  0 0 1 T−1 T−1 T

ε

A  t =def arg max  Q(S  , a)a t

G ← 0
t = T − 1,T − 2, … , 0

G ← γG+ R  T+1

C(S ,A  ) ←t t C(S  ,A  ) +t t 1
Q(S  ,A  ) ←t t Q(S  ,A  ) +t t  (G−

C(S  ,A  )t t

1 Q(S  ,A  ))t t
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Action-values and Afterstates

 

Figure from section 6.8 of "Reinforcement Learning: An Introduction,
Second Edition".

The reason we estimate action-value function  is that the policy is defined as

and the latter form might be impossible to evaluate if we do not have the model of the
environment.

However, if the environment is known, it is often better
to estimate returns only for states, because there can be
substantially less states than state-action pairs.

q
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TD Methods

Temporal-difference methods estimate action-value returns using one iteration of Bellman
equation instead of complete episode return.

Compared to Monte Carlo method with constant learning rate , which performs

the simplest temporal-difference method computes the following:

α

v(S  ) ←t v(S  ) +t α G  − v(S  ) ,[ t t ]

v(S  ) ←t v(S  ) +t α[R  +t+1 γv(S  ) −t+1 v(S  )],t
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TD Methods

 

Example 6.1 of "Reinforcement Learning: An Introduction, Second Edition".

 

Figure 6.1 of "Reinforcement Learning: An Introduction, Second Edition".
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TD and MC Comparison

As with Monte Carlo methods, for a fixed policy , TD methods converge to .

On stochastic tasks, TD methods usually converge to  faster than constant-  MC methods.

 

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

 

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

π v  π

v  π α
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Optimality of MC and TD Methods

 

Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

 

Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

For state B, 6 out of 8 times return from B was 1 and 0 otherwise. Therefore, .

[TD] For state A, in all cases it transfered to B. Therefore,  could be .

[MC] For state A, in all cases it generated return 0. Therefore,  could be .

MC minimizes error on training data, TD minimizes MLE error for the Markov process.

v(B) = 3/4

v(A) 3/4
v(A) 0
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Sarsa

A straightforward application to the temporal-difference policy evaluation is Sarsa algorithm,
which after generating  computes

 

Modification of Algorithm 6.4 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

S  ,A  ,R  ,S  ,A  t t t+1 t+1 t+1

q(S  ,A  ) ←t t q(S  ,A  ) +t t α[R  +t+1 γq(S  ,A  ) −t+1 t+1 q(S  ,A  )].t t
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Sarsa

 

Example 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

MC methods cannot be easily used, because an episode might not terminate if current policy
caused the agent to stay in the same state.
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Q-learning

Q-learning was an important early breakthrough in reinforcement learning (Watkins, 1989).

 

Modification of Algorithm 6.5 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

q(S  ,A  ) ←t t q(S  ,A  ) +t t α R  + γ  q(S  , a) − q(S  ,A  ) .[ t+1
a

max t+1 t t ]
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Q-learning versus Sarsa

 

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

 

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".
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Q-learning and Maximization Bias

Because behaviour policy in Q-learning is -greedy variant of the target policy, the same

samples (up to -greedy) determine both the maximizing action and estimate its value.

 

Figure 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

ε

ε
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Double Q-learning

 

Modification of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).
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On-policy and Off-policy Methods

So far, all methods were on-policy. The same policy was used both for generating episodes and
as a target of value function.

However, while the policy for generating episodes needs to be more exploratory, the target
policy should capture optimal behaviour.

Generally, we can consider two policies:

behaviour policy, usually , is used to generate behaviour and can be more exploratory;

target policy, usually , is the policy being learned (ideally the optimal one).

When the behaviour and target policies differ, we talk about off-policy learning.

b

π
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On-policy and Off-policy Methods

The off-policy methods are usually more complicated and slower to converge, but are able to
process data generated by different policy than the target one.

The advantages are:

can compute optimal non-stochastic (non-exploratory) policies;

more exploratory behaviour;

ability to process expert trajectories.
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Off-policy Prediction

Consider prediction problem for off-policy case.

In order to use episodes from  to estimate values for , we require that every action taken by 

 is also taken by , i.e.,

Many off-policy methods utilize importance sampling, a general technique for estimating
expected values of one distribution given samples from another distribution.

b π

π b

π(a∣s) > 0 ⇒ b(a∣s) > 0.
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Importance Sampling

Assume that  and  are two distributions and let  be  samples of . We can then estimate

 as

In order to estimate  using the samples , we need to account for different

probabilities of  under the two distributions by

with  being a relative probability of  under the two distributions.

b π x  i N b

E  [f(x)]x∼b

E  [f(x)] ∼x∼b   f(x  ).
N

1

i

∑ i

E  [f(x)]x∼π x  i

x  i

E  [f(x)] ∼x∼π   f(x  )
N

1

i

∑
b(x  )i

π(x  )i
i

π(x)/b(x) x
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Off-policy Prediction

Given an initial state  and an episode , the probability of this episode

under a policy  is

Therefore, the relative probability of a trajectory under the target and behaviour policies is

Therefore, if  is a return of episode generated according to , we can estimate

S  t A  ,S  ,A  , … ,S  t t+1 t+1 T

π

 π(A  ∣S  )p(S  ∣S  ,A  ).
k=t

∏
T−1

k k k+1 k k

ρ  t =
def

 =
 b(A  ∣S  )p(S  ∣S  ,A  )∏k=t

T−1
k k k+1 k k

 π(A  ∣S  )p(S  ∣S  ,A  )∏k=t
T−1

k k k+1 k k
  .

k=t

∏
T−1

b(A  ∣S  )k k

π(A  ∣S  )k k

G  t b

v  (S  ) =π t E  [ρ  G  ].b t t
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Off-policy Monte Carlo Prediction

Let  be a set of times when we visited state . Given episodes sampled according to , we

can estimate

Such simple average is called ordinary importance sampling. It is unbiased, but can have very
high variance.

An alternative is weighted importance sampling, where we compute weighted average as

Weighted importance sampling is biased (with bias asymptotically converging to zero), but has
smaller variance.

T (s) s b

v  (s) =π  .
∣T (s)∣

 ρ  G  ∑t∈T (s) t t

v  (s) =π  .
 ρ  ∑t∈T (s) t

 ρ  G  ∑t∈T (s) t t
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Off-policy Multi-armed Bandits

 

Figure 2.1 of "Reinforcement Learning: An Introduction,
Second Edition".

As a simple example, consider the 10-armed bandits from the first
lecture, with single-step episodes.

Let the behaviour policy be a uniform policy, so the return is a
reward of a randomly selected arm.

Let the target policy be a greedy policy always using action 3.

Assume that the first sample from the behaviour policy produced
action 3 with reward R. Then

Ordinary importance sampling estimate the return for the target policy as

The factor  is present, because the behaviour policy returns action 3 in 10% cases.

Weighted importance sampling estimate the return for target policy as average of rewards
for action 3.

 R =
b(a)
π(a)

 R =
1/10

1
10 ⋅ R.

10

26/42NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa -step TBn



Off-policy Monte Carlo Policy Evaluation

 

Figure 5.3 of "Reinforcement Learning: An Introduction, Second Edition".

Comparison of ordinary and weighted importance sampling on Blackjack. Given a state with
sum of player's cards 13 and a usable ace, we estimate target policy of sticking only with a sum
of 20 and 21, using uniform behaviour policy.
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Off-policy Monte Carlo Policy Evaluation

We can compute weighted importance sampling similarly to the incremental implementation of
Monte Carlo averaging.

 

Algorithm 5.6 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Monte Carlo

 

Algorithm 5.7 of "Reinforcement Learning: An Introduction, Second Edition".
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Expected Sarsa

The action  is a source of variance, providing correct estimate only in expectation.

We could improve the algorithm by considering all actions proportionally to their policy
probability, obtaining Expected Sarsa algorithm:

Compared to Sarsa, the expectation removes a source of variance and therefore usually performs
better. However, the complexity of the algorithm increases and becomes dependent on number
of actions .

A  t+1

  

q(S  ,A  )t t ← q(S  ,A  ) + α R  + γE  q(S  , a) − q(S  ,A  )t t [ t+1 π t+1 t t ]

← q(S  ,A  ) + α R  + γ  π(a∣S  )q(S  , a) − q(S  ,A  ) .t t [ t+1 ∑
a

t+1 t+1 t t ]

∣A∣
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Expected Sarsa as an Off-policy Algorithm

Note that Expected Sarsa is also an off-policy algorithm, allowing the behaviour policy  and

target policy  to differ.

Especially, if  is a greedy policy with respect to current value function, Expected Sarsa

simplifies to Q-learning.

b

π

π
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Expected Sarsa Example

 

Example 6.6 of "Reinforcement Learning: An
Introduction, Second Edition".

 

Figure 6.3 of "Reinforcement Learning: An Introduction, Second Edition".

Asymptotic performance is averaged over 100k episodes, interim performance over the first 100.

32/42NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa -step TBn



-step Methodsn

 

Figure 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

Full return is

one-step return is

We can generalize both into -step returns:

with  if  (episode length).

G  =t  γ R  ,
k=t

∑
∞

k−t
k+1

G  =t:t+1 R  +t+1 γV (S  ).t+1

n

G  t:t+n =def
 γ R  +(

k=t

∑
t+n−1

k−t
k+1) γ V (S  ).n

t+n

G  t:t+n =def
G  t t+ n ≥ T
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-step Methodsn

A natural update rule is

 

Algorithm 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

V (S  ) ←t V (S  ) +t α[G  −t:t+n V (S  )].t
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-step Methods Examplen

Using the random walk example, but with 19 states instead of 5,

 

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

we obtain the following comparison of different values of :

 

Figure 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

n
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-step Sarsan

Defining the -step return to utilize action-value function as

with  if , we get the following straightforward algorithm:

 

Figure 7.4 of "Reinforcement Learning: An Introduction, Second Edition".

n

G  t:t+n =def
 γ R  +(

k=t

∑
t+n−1

k−t
k+1) γ Q(S  ,A  )n

t+n t+n

G  t:t+n =def
G  t t+ n ≥ T

Q(S  ,A  ) ←t t Q(S  ,A  ) +t t α[G  −t:t+n Q(S  ,A  )].t t
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-step Sarsa Algorithmn

 

Algorithm 7.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy -step Sarsan

Recall the relative probability of a trajectory under the target and behaviour policies, which we
now generalize as

Then a simple off-policy -step TD policy evaluation can be computed as

Similarly, -step Sarsa becomes

ρ  t:t+n =def
  .

k=t

∏
min(t+n,T−1)

b(A  ∣S  )k k

π(A  ∣S  )k k

n

V (S  ) ←t V (S  ) +t αρ  [G  −t:t+n−1 t:t+n V (S  )].t

n

Q(S  ,A  ) ←t t Q(S  ,A  ) +t t αρ  [G  −t+1:t+n t:t+n Q(S  ,A  )].t t
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Off-policy -step Sarsan

 

Modified from Algorithm 7.3 of "Reinforcement Learning: An Introduction, Second Edition" by changing ρ_{τ+1:τ+n-1} to ρ_{τ+1:τ+n}.

39/42NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa -step TBn



Off-policy -step Without Importance Samplingn

 

Figure 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

Q-learning and Expected Sarsa can learn off-policy without importance sampling.

To generalize to -step off-policy method, we must compute expectations over actions in each

step of -step update. However, we have not obtained a return for the non-sampled actions.

Luckily, we can estimate their values by using the current action-value function.

n

n
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Off-policy -step Without Importance Samplingn

 

Example in
Section 7.5 of

"Reinforcement
Learning: An
Introduction,

Second Edition".

We now derive the -step reward, starting from one-step:

For two-step, we get:

Therefore, we can generalize to:

The resulting algorithm is -step Tree backup and it is an off-policy -step temporal

difference method not requiring importance sampling.

n

G  t:t+1 =def
R  +t+1 γ  π(a∣S  )Q(S  , a).∑

a
t+1 t+1

G  t:t+2 =def
R  +t+1 γ  π(a∣S  )Q(S  , a) +∑

a=A   t+1
t+1 t+1 γπ(A  ∣S  )G  .t+1 t+1 t+1:t+2

G  t:t+n =def
R  +t+1 γ  π(a∣S  )Q(S  , a) +∑

a=A   t+1
t+1 t+1 γπ(A  ∣S  )G  .t+1 t+1 t+1:t+n

n n
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Off-policy -step Without Importance Samplingn

 

Algorithm 7.5 of "Reinforcement Learning: An Introduction, Second Edition".
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