NPFL122, Lecture 3 VR
Temporal Difference Methods,
Off-Policy Methods
Milan Straka
g October 19, 2020

=1 O B e
A LANGTECH E’pr:':tpms'tf'r"t%::glﬂmd%mhm Institute of Formal and Applied Linguistics unless otherwise stated

Recall that a Markov decision process (MDP) is a quadruple (S, .4, p,), where:

® S is a set of states,

e Ais a set of actions,

® p(Sii1 =58,Ri1 =7r|S; =s,A; = a) is a probability that action a € A will lead from
state s € S to 8’ € S, producing a reward r € R,

e v < [0,1] is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a
sextuple (S, A, p,~, O, 0), where in addition to an MDP

® (D is a set of observations,
® 0(O¢|St, At—1) is an observation model, which is used as agent input instead of S;.

Although planning in general POMDP is undecidable, several approaches are used to handle
POMDPs in robotics (to model uncertainty, imprecise mechanisms and inaccurate sensors, ...).
In deep RL, partially observable MDPs are usually handled using recurrent networks, which
model the latent states S;.

Refresh 2 / 42

A policy 7 computes a distribution of actions in a given state, i.e., w(a|s) corresponds to a
probability of performing an action a in state s.

To evaluate a quality of a policy, we define value function v, (s), or state-value function, as

’U7T(8) d:ef]Eﬂ- [Gt|St = 8] = Eﬂ [Zk() ’)/kRH_]{;_;_l St = S] .

An action-value function for a policy 7 is defined analogously as

C_Iw(S, Cl) = Er [Gt\St =s,4; = a] = E, [Zkzo ’Yth+k+1‘St =5, A; = a} .

. . . . def . .
Optimal state-value function is defined as v, (s) = max, v,(s), analogously optimal action-

value function is defined as g, (s, a) = max, g, (s, a).

Any policy 7, with v;, = v, is called an optimal policy.

Refresh 3 / 42

Refresh — Value lteration

Optimal value function can be computed by repetitive application of Bellman optimality
equation:

vo(s) < 0
Vp+1(8) < m(?XE (Riy1 + yvr(St+1)|S: = s, At = a] = Bug.

Converges for finite-horizon tasks or when discount factor v < 1.

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B

U=

4/42

Policy iteration consists of repeatedly performing policy evaluation and policy improvement:

E I E I E § I E
T — Ugy —> Tl — Uy —> T2 —> Uy — «o. — T — Uy,

The result is a sequence of monotonically improving policies 7;. Note that when 7’ = 7, also
V' = Uz, Which means Bellman optimality equation is fulfilled and both v; and 7 are optimal.
Considering that there is only a finite number of policies, the optimal policy and optimal value
function can be computed in finite time (contrary to value iteration, where the convergence is
only asymptotic).

Note that when evaluating policy 71, we usually start with v, , which is assumed to be a

good approximation to vy, ., .

Refresh 5 / 42

Refresh — Generalized Policy lteration

Generalized Policy Evaluation is a general idea of interleaving policy evaluation and policy
improvement at various granularity.

evaluation

m

s Vv

m ~ greedy (V)

improvement

T >V) . . .
.))) * - - *) o Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".
Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

If both processes stabilize, we know we have obtained optimal policy.

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 6/42

Monte Carlo methods are based on estimating returns from complete episodes. Furthermore, if
the model (of the environment) is not known, we need to estimate returns for the action-value

function q instead of v.

We can formulate Monte Carlo methods in the generalized policy improvement framework.
Keeping estimated returns for the action-value function, we perform policy evaluation by
sampling one episode according to current policy. We then update the action-value function by

averaging over the observed returns, including the currently sampled episode.
We considered two variants of exploration:

® exploring starts
® c-soft policies

Refresh

7/42

On-policy every-visit Monte Carlo for c-soft Policies
Algorithm parameter: small € > 0

Initialize Q(s,a) € R arbitrarily (usually to 0), for all s € S,a € A
Initialize C(s,a) € Z to 0, for all s € S,a € A

Repeat forever (for each episode):
® Generate an episode Sy, Ag, Ry,...,S7_1,A7r_1, Ry, by generating actions as follows:

O With probability €, generate a random uniform action
o Otherwise, set A; = argmax, Q(S;, a)

* G0
® Foreacht=T—-1,T—2,...,0:
°© G« G+ Rpq
o C(8;, A;) < C(S;, A;) + 1
o QS Ar) < Q(St, Ap) + m(G — Q(S:, 4))

Refresh 8 / 42

The reason we estimate action-value function q is that the policy is defined as

7(s) = arg max ¢, (s, a)
a

—argmax 3" p(s',rls,a) [r + 70 ()]

and the latter form might be impossible to evaluate if we do not have the model of the
environment.

However, if the environment is known, it is often better 5 + i olx +

to estimate returns only for states, because there can be

substantially less states than state-action pairs. \ /
X
X

Afterstates 9/42

Temporal-difference methods estimate action-value returns using one iteration of Bellman
equation instead of complete episode return.

Compared to Monte Carlo method with constant learning rate a, which performs
v(Sy) < v(St) + Gy —v(S)],

the simplest temporal-difference method computes the following:

v(St) < v(St) + a[Rt—l—l + v (St+1) — "U(St)}a

™ 10/42

TD Methods UL

Elapsed Time Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 39 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home

Example 6.1 of "Reinforcement Learning: An Introduction, Second Edition".

45 45 -
___actual outcome_____ actual
outcome
. N 40 H
Predicted
total
travel 55 35 -
time
30 30
T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home
Situation Situation

Figure 6.1 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 11/42

TD and MC Comparison

As with Monte Carlo methods, for a fixed policy 7w, TD methods converge to v;.
On stochastic tasks, TD methods usually converge to v, faster than constant-ao MC methods.

PRLIN ¢y SN 3 B I Sy LB = L

start

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

0.8 1 Estimated 0.25 - Empirical RMS error,
value 100 \ averaged over states
0.6 -
(1) _— \ 0.15 -
0.4 1
True 0.1- AT
values : HE =D 0=03
0.2 H
0.05 -
a=.05
0 T T T T 1 0 , , , ,
A B C D E 0 25 50 75 100
State Walks / Episodes

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B

Optimality of MC and TD Methods

0

A

100%

Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

Y

Y

B
B,
B
B

O = ==

Y

Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

For state B, 6 out of 8 times return from B was 1 and 0 otherwise. Therefore, v(B) = 3/4.

® [TD] For state A, in all cases it transfered to B. Therefore, v(A) could be 3/4.
® [MC] For state A, in all cases it generated return 0. Therefore, v(A) could be 0.

MC minimizes error on training data, TD minimizes MLE error for the Markov process.

NPFL122, Lecture 3 Refresh

Afterstates

TD

Q-learning

Double Q

Off-policy

Expected Sarsa

n-step

B

U=

13/42

L

Sarsa UL

A straightforward application to the temporal-difference policy evaluation is Sarsa algorithm,
which after generating S;, A, Rii1, Sti1, At 1 computes

Q(St, At) — Q(Sh At) + a[Rt—l—l + ’YQ(StH, At+1) — Q(Sta At)}-

Sarsa (on-policy TD control) for estimating @ ~ q.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € §,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) + Q(S, A) + a[R +7Q(S', A') — Q(S, A)]
S« S8 A+ A
until S is terminal

Modification of Algorithm 6.4 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step TB 14/42

Sarsa UL

170
150 A
i X Acti
T 100 - ctions
@)
R 0 0 O
o
LL]
50
O_

0 10|00 ZOIOO 30|00 4OIOO SOI()O 60|00 7OI()0 80|00

Time steps

Example 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

MC methods cannot be easily used, because an episode might not terminate if current policy
caused the agent to stay in the same state.

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step TB 15/42

Q-learning UrzL
Q-learning was an important early breakthrough in reinforcement learning (Watkins, 1989).

a(Si, A1) < a(Si, A4r) + & [Resr + ymaxg(Sii,0) — a(Si, A1)

Q-learning (off-policy TD control) for estimating 7 ~ .,

Algorithm parameters: step size « € (0, 1], small £ > 0
Initialize Q(s,a), for all s € §,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S, A) + a[R + ymax, Q(5',a) — Q(S, 4)]
S+ 5

until S is terminal

Moditfication of Algorithm 6.5 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 16/42

Q-learning versus Sarsa L
R=-1
Safer path
Optimal path

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

Sarsa
25
Sum of 5
rewards Q-learning
during
episode |
-100 T T T T .
0 100 200 300 400 500
Episodes

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 17/42

Q-learning and Maximization Bias Uz

Because behaviour policy in Q-learning is e-greedy variant of the target policy, the same
samples (up to e-greedy) determine both the maximizing action and estimate its value.

100%
N(-0.1,1)
(8) :

75%} left right
% left
actions 50%; ", Q-learning
from A \

\ Double
o5%t \Q-learning
13 . . .
1 100 200 300

Episodes

Figure 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 18/42

Double Q-learning Uz

Double Q-learning, for estimating ()1 ~ ()2 ~ .

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q1(s,a) and Q2(s,a), for all s € §,a € A(s), such that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q)2
Take action A, observe R, S’
With 0.5 probabilility:

Q1(S, 4) Qi1(S, 4) + o R +7Qs(S', argmax, Qu (8", @) — Q1(S, 4))
else:

Qa(S, 4) « Q(S, 4) + (R +7Q: (S, argmax, Qa(S', @) — Qa(S, 4))
S5

until S is terminal

Moditfication of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 19/42

So far, all methods were on-policy. The same policy was used both for generating episodes and
as a target of value function.

However, while the policy for generating episodes needs to be more exploratory, the target
policy should capture optimal behaviour.

Generally, we can consider two policies:

® behaviour policy, usually b, is used to generate behaviour and can be more exploratory;
® target policy, usually T, is the policy being learned (ideally the optimal one).

When the behaviour and target policies differ, we talk about off-policy learning.

Off-policy 20/42

On-policy and Off-policy Methods

The off-policy methods are usually more complicated and slower to converge, but are able to
process data generated by different policy than the target one.

The advantages are:
® can compute optimal non-stochastic (non-exploratory) policies;
® more exploratory behaviour;

® ability to process expert trajectories.

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B

U=

21/42

Consider prediction problem for off-policy case.

In order to use episodes from b to estimate values for 7, we require that every action taken by

7 is also taken by b, i.e.,
m(als) > 0 = b(als) > 0.

Many off-policy methods utilize importance sampling, a general technique for estimating
expected values of one distribution given samples from another distribution.

Off-policy 22/42

Assume that b and 7 are two distributions and let x; be IN samples of b. We can then estimate

Ewwb[f(m)] as
:cwb f(il?) Z f wz

In order to estimate [E . |f(x)] using the samples x;, we need to account for different
probabilities of x; under the two distributions by

Eﬂ?NW[f(w)] ~ N . b(CL’z)

with 7m(z) /b(x) being a relative probability of = under the two distributions.

Off-policy 23/42

Given an initial state .S; and an episode A, Sti1, A¢11,...,S7, the probability of this episode
under a policy 7 is

T-1

] [~(AkISk)p(Ski1]Sk, Ar)-
ket

Therefore, the relative probability of a trajectory under the target and behaviour policies is

5y Hk : " (Ak|Sk)p(Sk11]Sk, Ar) H Ak|Sk
,
" b(Ay | Sk)P(Ski1|Sk, Ar)

Therefore, if Gy is a return of episode generated according to b, we can estimate

v (5t) = Ep[p: G-

Off-policy 24/42

Let 7(s) be a set of times when we visited state s. Given episodes sampled according to b, we

can estimate

() - ZtET(s) pth
AT P TI

Such simple average is called ordinary importance sampling. It is unbiased, but can have very
high variance.

An alternative is weighted importance sampling, where we compute weighted average as

vo(s) = ZteT(s) PGy
i ZteT(s) Pt

Weighted importance sampling is biased (with bias asymptotically converging to zero), but has
smaller variance.

Off-policy 25/42

As a simple example, consider the 10-armed bandits from the first ;
lecture, with single-step episodes. [

Let the behaviour policy be a uniform policy, so the return is a goward -, SR - B-F-- -8 8- W R
reward of a randomly selected arm. ' |

Let the target policy be a greedy policy always using action 3. ’

Assume that the first sample from the behaviour policy produced Acton
action 3 with reward R. Then

® Ordinary importance sampling estimate the return for the target policy as

m(a) , 1 B
b(a)R_ mR-lO-R.

The factor 10 is present, because the behaviour policy returns action 3 in 10% cases.

® Weighted importance sampling estimate the return for target policy as average of rewards
for action 3.

Off-policy 26/42

Off-policy Monte Carlo Policy Evaluation UL

Ordinary
Mean importance
square - sampling
error
(average over [
100 runs)

Weighted importa sampling

0 10 100 1000 10,000
Episodes (log scale)
Figure 5.3 of "Reinforcement Learning: An Introduction, Second Edition".
Comparison of ordinary and weighted importance sampling on Blackjack. Given a state with
sum of player's cards 13 and a usable ace, we estimate target policy of sticking only with a sum
of 20 and 21, using uniform behaviour policy.

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step TB 27/42

Off-policy Monte Carlo Policy Evaluation ezt

We can compute weighted importance sampling similarly to the incremental implementation of
Monte Carlo averaging.

Off-policy MC prediction (policy evaluation) for estimating Q ~ ¢,

Input: an arbitrary target policy m

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) <0

Loop forever (for each episode):

b < any policy with coverage of 7

Generate an episode following b: Sy, Ag, R1,...,57—_1,Ar_1, Rt

G+ 0

W1

Loop for each step of episode, t =T —1,T—2,...,0, while W # 0:
G+ vG+ Ri1q
C'(St, Ay) < C(S, Ay) + W
Q(St, Ar) + Q(Ss, Ar) + graiary [G — Q(S:, Ay)]

7r(At|St)
W« WHzis)

Algorithm 5.6 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 28/42

UEL

Off-policy Monte Carlo

Off-policy MC control, for estimating 7 ~ 7,

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) + 0
7(s) < argmax, Q(s,a) (with ties broken consistently)

Loop forever (for each episode):
b < any soft policy
Generate an episode using b: Sy, Ag, R1,...,S7_1,Ar_1, Ry
G+ 0
W +1
Loop for each step of episode, t =1T—1,T—-2,...,0:
G+ YG+ Riyq
C'(St, Ap) < C(St, Ay) + W
Q(S1, Ar) + Q(St, Ar) + grayy |G — Q(Sk, Ar)]
w(St) argmax, Q(S¢,a) (with ties broken consistently)
If A; # w(S¢) then exit inner Loop (proceed to next episode)

1
W « W—b(Atlst)

Algorithm 5.7 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 29/42

The action A;1 is a source of variance, providing correct estimate only in expectation.

We could improve the algorithm by considering all actions proportionally to their policy
probability, obtaining Expected Sarsa algorithm:

q(St, Ar) < q(St, At) + a[Rir1 + YErq(Siv1,a) — q(St, Ar)]
— q(S A+ [y +7) 7(alSi1)a(Sii1,0) — a(Sk Ar) |

Compared to Sarsa, the expectation removes a source of variance and therefore usually performs
better. However, the complexity of the algorithm increases and becomes dependent on number
of actions |A.

Expected Sarsa 30/42

Expected Sarsa as an Off-policy Algorithm ezt
Note that Expected Sarsa is also an off-policy algorithm, allowing the behaviour policy b and

target policy 7 to differ.

Especially, if is a greedy policy with respect to current value function, Expected Sarsa

simplifies to Q-learning.

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 31/42

Expected Sarsa Example Uz

Expected Sarsa

40 b Asymptotic Performance §
Lo X XX @
F—=—+= D B———+H D';.(:—H — &—H B—8—-H]
Sum of rewards | Q-learning IS 1
R . X Sarsa
Safer path per ep'SOde X VVVVZZZZED Eﬁ
-80— ‘x" V DE} _ . _
Optimal path || | il V E]"“DI.ID Q |eamlng
s The Cliff e x Vo g
% - v & .
R=-100 x
o 2 Interim Perf
Example 6.6 of "Reinforcement Learning: An Vo nterim Feriormance
Introduction, Second Edition". -120 + E] i
¥ 1
m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.3 of "Reinforcement Learning: An Introduction, Second Edition".

Asymptotic performance is averaged over 100k episodes, interim performance over the first 100.

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 32/42

n-step Methods

Full return is
(0. @]
k—t
Gi=> 7R,
k=t

one-step return is
Giir1 = Rep1 + vV (St1).
We can generalize both into n-step returns:

t+n—1
Gtin = (Z 'thRkJrl) + 9"V (St1n)-

k=t

def

with Gt = Gy if t +n > T (episode length).

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q

U=
E«L
1-step TD oo-step TD
and TD(0) 2-stepTD 3-step TD n-step TD and Monte Carlo
R T T
9 T T
! : !
O : ?
I ®
O :
CJ
Figure 7.1 of "Reinforcement Learning: An Introduction, Second Edition".
Off-policy Expected Sarsa n-step TB 33/42

n-step Methods Uz
A natural update rule is

V(St) < V(St) —+ Oé[Gt:H-n — V(St)] .

n-step TD for estimating V ~ v,

Input: a policy 7

Algorithm parameters: step size « € (0, 1], a positive integer n

Initialize V'(s) arbitrarily, for all s € §

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T+ o0
Loop fort =0,1,2,...:
| Ift <T, then:

] Take an action according to 7(+|.S;)

| Observe and store the next reward as R;y; and the next state as Sy
] If Si41 is terminal, then T <t + 1

| 7+ t—n+1 (7isthe time whose state’s estimate is being updated)

|

|

|

|

If7>0:
G+ S v,
If 74+ n<T,then: G <+ G+ "V (Srin) (Grirgn)

V(S:) < V(S;)+a[G-V(S;)
Until7 =T -1

Algorithm 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step TB 34/42

n-step Methods Example

Using the random walk example, but with 19 states instead of 5,
. 0 (j 0 0 . 0 . 0 (j 1 .
start

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

we obtain the following comparison of different values of n:

NPFL122, Lecture 3

0.55
0.5

Average 045

RMS error
over 19 states 04
and first 10
episodes
03}
0.25

512

128 =64

n=32

1
0 0.2 04 0.6 0.8 1

Figure 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa

n-step

B

35/42

n-step Sarsa

Defining the n-step return to utilize action-value function as

t+n—1

Gt:t+n = Z 'Yk_tRkH—l + ')’nQ(St—l—na At—l—n)
k=t

with Griin = Gy if t +n > T, we get the following straightforward algorithm:

Q(St, Ar) +— Q(St, Ar) + a[Gt:t—l—n — Q(S, At)]-

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
> >y
v
T T >y
' G G G| |y
1 * $ < |«

Figure 7.4 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step B 36/42

n-step Sarsa Algorithm Uz

Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @), or to a fixed given policy

Algorithm parameters: step size « € (0, 1], small € > 0, a positive integer n

All store and access operations (for S;, A¢, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ag ~ 7(+|Sp)

T < o0
Loop fort =10,1,2,...:
| Ift<T, then:

| Take action Ay

| Observe and store the next reward as R;+; and the next state as Sy
| If S;11 is terminal, then:

| T t+1

| else:

| Select and store an action A¢1q ~ w(+[St41)

| 7<t—n+1 (7 is the time whose estimate is being updated)

| If7>0:

| Ge Xy,

| If T+ n<T, then G+ G+ ’YHQ(ST_H], A7+n) (GTZT+TL)
| Q(ST;AT) <~ Q(STvAT) +a[G_Q(ST7AT)]

| If 7 is being learned, then ensure that 7(-|.S;) is e-greedy wrt @

Until T =T -1

Algorithm 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step TB 37/42

Recall the relative probability of a trajectory under the target and behaviour policies, which we
now generalize as
min(t+n,T—1)
o def H W(Ak‘Sk)
t:t+n — .
b(Ax|Sk)

k=t

Then a simple off-policy n-step TD policy evaluation can be computed as
V(S:) < V(S) + apetin-1 [Gt:t+n — V(St)}'
Similarly, n-step Sarsa becomes

Q(Sta At) < Q(Sta At) + QApPt11:t4n [Gt:t—|—n — Q(St, At)]-

n-step 38/42

Off-policy n-step Sarsa

Off-policy n-step Sarsa for estimating) =~ g. or g-

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s € §,a € A
Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be greedy with respect to @, or as a fixed given policy

Algorithm parameters: step size a € (0, 1], a positive integer n

All store and access operations (for S, A¢, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ag ~ b(-|So)

T+ o0
Loop fort =0,1,2,...:
| Ift<T, then:

| Take action A

| Observe and store the next reward as R;4+1 and the next state as Siy1
| If Si41 is terminal, then:

| T+ t+1

| else:

| Select and store an action A1 ~ b(+|St+1)

| 7+ t—n+1 (7 is the time whose estimate is being updated)
| If7>0:

| p Hmin(T-Fn T—1) m(A;lS;)

|

|

|

|

i=r+1 b(A;15:) (prs1:tin

G — er;z:z'l—l-n,T) 'Yi_T_lRi

Ifr +n < T, then: G &= G + ’7”Q(S—,—+n, A7-+n) (GT:T+n)

Q(ST’AT) — Q(S‘HAT) +Otp[G— Q(ST7AT)]
If 7 is being learned, then ensure that 7(:|S-) is greedy wrt @
Until 7 =T —1

)

Modified from Algorithm 7.3 of "Reinforcement Learning: An Introduction, Second Edition" by changing p_ {t+1:1+n-1} top_ {t+1:t1+n}.

NPFL122, Lecture 3 Refresh

Afterstates TD Q-learning Double Q Off-policy Expected Sarsa

n-step

B

39/42

Off-policy n-step Without Importance Sampling U

4-step 4-step 4-step
Sarsa Tree backup Expected Sarsa

I I I

A
A
A
/N /N

o 0 o e o o
Figure 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

.%4—.%4—.%4—.%

Q-learning and Expected Sarsa can learn off-policy without importance sampling.

To generalize to n-step off-policy method, we must compute expectations over actions in each
step of n-step update. However, we have not obtained a return for the non-sampled actions.

Luckily, we can estimate their values by using the current action-value function.

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step TB 40/42

We now derive the n-step reward, starting from one-step:

G411 = R+ Z G\Stﬂ (St+1, CL)- /(f\sfrﬂ

For two-ste ; : IA# !
-step, we get: Riyo
def SH‘Q
Griro = Rep1 +7 Za#A 1 m(a]Sp+1)Q(St415 @) + Y7 (Ars1[St41) Gra 142 /Cf\
t+
¢ IA#Q
_ Riys
Therefore, we can generalize to: /?\S‘ .
t+
ef
Griin = Rep1 +7 Z 4 m(a|Si+1)Q(St+1,a) + YT (At11]St41)Girtitin. & o @
a7 At the 3-step

tree-backup
The resulting algorithm is n-step Tree backup and it is an off-policy n-step temporal update

difference method not requiring importance sampling.

TB 41/42

Off-policy n-step Without Importance Sampling Ut

Initialize Q(s, a) arbitrarily, for all s € 8§,a € A

Initialize 7 to be greedy with respect to @, or as a fixed given policy
Algorithm parameters: step size a € (0, 1], a positive integer n

All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Choose an action Ag arbitrarily as a function of Sp; Store Ay
T + o0
Loop fort=0,1,2,...:
| Ift<T:
] Take action A;; observe and store the next reward and state as Ryy1,S¢41
| If Sy41 is terminal:
| T+t+1
] else:
] Choose an action A4 arbitrarily as a function of S;11; Store A,y
| 7« t+1—n (7 is the time whose estimate is being updated)
| If7>0:
| ft+1>1T:
’ G+ RT
] else
| G < Rip1 + 7>, 7(alSe41)Q(St41,a)
] Loop for k = min(¢,7 — 1) down through 7 + 1:
| G R+ 424, ™(alSk)Q(Sk, a) + ym(Ak|Sk)G
| Q(S-, Ar) + Q(Sr, Ar) +a[G_Q(ST7AT)]
| If 7 is being learned, then ensure that 7 (-|S;) is greedy wrt @
Until =T -1

Algorithm 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Double Q Off-policy Expected Sarsa n-step TB 42/42

