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Organization

Course Website https://ufal.mff.cuni.cz/courses/npfl122

Course Repository https://github.com/ufal/npfl122

Zoom
The lectures and practicals are happening on Zoom.

The recordings will be available from the course website.

Piazza
Piazza will be used as a communication platform. It allows sending

either notes or questions (the latter require an answer)
to everybody (signed or anonymously), to all instructors, to a specific instructor
students can answer other students' questions too

Please use it whenever possible for communication with the instructors.
You will get the invite link after the first lecture.

2/29NPFL122, Lecture 1 Organization History Bandits -greedy MDP Monte Carlo Methods POMDPε

https://ufal.mff.cuni.cz/courses/npfl122
https://github.com/ufal/npfl122


ReCodEx

https://recodex.mff.cuni.cz

The assignments will be evaluated automatically in ReCodEx.
If you have a MFF SIS account, you will be able to create an account using your CAS
credentials and will be automatically assigned to the right group.
Otherwise follow the instructions on Piazza; generally you will need to send me a message
with several pieces of information and I will send it to ReCodEx administrators in batches.
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https://recodex.mff.cuni.cz/


Course Requirements

Practicals
There will be 1-2 assignments a week, each with 2-week deadline.

Deadlines can be extended, but you need to write before the deadline.

After solving the assignment, you get non-bonus points, and sometimes also bonus points.
To pass the practicals, you need to get 80 non-bonus points. There will be assignments for
at least 120 non-bonus points.
If you get more than 80 points (be it bonus or non-bonus), they will be transferred to the
exam (but at most 40 points are transfered).

Lecture
You need to pass a written exam.

All questions are publicly listed on the course website.
There are questions for 100 points in every exam, plus at most 40 surplus points from the
practicals and plus at most 10 surplus points for community work (e.g., improving slides).
You need 60/75/90 points to pass with grade 3/2/1.
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History of Reinforcement Learning

Develop goal-seeking agent trained using reward signal.

Optimal control in 1950s – Richard Bellman

Trial and error learning – since 1850s
Law and effect – Edward Thorndike, 1911

Responses that produce a satisfying effect in a particular situation become more
likely to occur again in that situation, and responses that produce a discomforting
effect become less likely to occur again in that situation

Shannon, Minsky, Clark&Farley, … – 1950s and 1960s
Tsetlin, Holland, Klopf – 1970s
Sutton, Barto – since 1980s

Arthur Samuel – first implementation of temporal difference methods for playing checkers

Notable successes
Gerry Tesauro – 1992, human-level Backgammon program trained solely by self-play

IBM Watson in Jeopardy – 2011
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History of Reinforcement Learning

Recent successes
Human-level video game playing (DQN) – 2013 (2015 Nature), Mnih. et al, Deepmind

29 games out of 49 comparable or better to professional game players
8 days on GPU
human-normalized mean: 121.9%, median: 47.5% on 57 games

A3C – 2016, Mnih. et al
4 days on 16-threaded CPU
human-normalized mean: 623.0%, median: 112.6% on 57 games

Rainbow – 2017
human-normalized median: 153%; ~39 days of game play experience

Impala – Feb 2018
one network and set of parameters to rule them all
human-normalized mean: 176.9%, median: 59.7% on 57 games

PopArt-Impala – Sep 2018
human-normalized median: 110.7% on 57 games; 57*38.6 days of experience
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History of Reinforcement Learning

 

Figure 2 of the paper "Recurrent
Experience Replay in Distributed

Reinforcement Learning" by Steven
Kapturowski et al.

Recent successes

R2D2 – Jan 2019
human-normalized mean: 4024.9%, median: 1920.6% on 57 games
processes ~5.7B frames during a day of training

Agent57 - Mar 2020
super-human performance on all 57 Atari games

Data-efficient Rainbow – Jun 2019
learning from ~2 hours of game experience

 

Figure 3 of the paper "When to use parametric models in reinforcement learning?" by Hado van Hasselt et al.
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History of Reinforcement Learning

Recent successes
AlphaGo

Mar 2016 – beat 9-dan professional player Lee Sedol

AlphaGo Master – Dec 2016
beat 60 professionals, beat Ke Jie in May 2017

AlphaGo Zero – 2017
trained only using self-play
surpassed all previous version after 40 days of training

AlphaZero – Dec 2017 (Dec 2018 in Nature)
self-play only, defeated AlphaGo Zero after 30 hours of training
impressive chess and shogi performance after 9h and 12h, respectively

 

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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History of Reinforcement Learning

Recent successes
Dota2 – Aug 2017

won 1v1 matches against a professional player

MERLIN – Mar 2018
unsupervised representation of states using external memory
beat human in unknown maze navigation

FTW – Jul 2018
beat professional players in two-player-team Capture the flag FPS
solely by self-play, trained on 450k games

OpenAI Five – Aug 2018
won 5v5 best-of-three match against professional team
256 GPUs, 128k CPUs, 180 years of experience per day

AlphaStar
Jan 2019: won 10 out of 11 StarCraft II games against two professional players
Oct 2019: ranked 99.8% on Battle.net, playing with full game rules
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AlphaStart

 

Figure 2 of the paper "Grandmaster level in StarCraft II using multi-agent reinforcement learning" by Oriol Vinyals et al.
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History of Reinforcement Learning

Recent successes
Optimize non-differentiable loss

improved translation quality in 2016
better summarization performance

Discovering discrete latent structures

Effectively search in space of natural language policies

TARDIS – Jan 2017
allow using discrete external memory

Neural architecture search (Nov 2016)
SoTA CNN architecture generated by another network
can search also for suitable RL architectures, new activation functions, optimizers…

Controlling cooling in Google datacenters directly by AI (2018)
reaching 30% cost reduction
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History of Reinforcement Learning

Note that the machines learn just to obtain a reward we have defined, they do not learn what
we want them to.

Hide and seek

 

https://twitter.com/mat_kelcey/status/886101319559335936

 

 

https://openai.com/content/images/2017/06/gifhandlerresized.gif
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https://openai.com/blog/emergent-tool-use/#surprisingbehaviors


Multi-armed Bandits

 

http://www.infoslotmachine.com/img/one-armed-bandit.jpg
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Multi-armed Bandits

 

Figure 2.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Multi-armed Bandits

We start by selecting action , which is the index of the arm to use, and we get a reward of 

. We then repeat the process by selecting actions , , …

Let  be the real value of an action :

Denoting  our estimated value of action  at time  (before taking trial ), we would like 

 to converge to . A natural way to estimate  is

Following the definition of , we could choose a greedy action  as

A  1

R  1 A  2 A  3

q  (a)∗ a

q  (a) =∗ E[R  ∣A  =t t a].

Q  (a)t a t t

Q  (a)t q  (a)∗ Q  (a)t

Q  (a)t =def
 .

number of times action a was taken
sum of rewards when action a is taken

Q  (a)t A  t

A  t =def
 Q  (a).

a
arg max t
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-greedy Methodε

Exploitation versus Exploration
Choosing a greedy action is exploitation of current estimates. We however also need to
explore the space of actions to improve our estimates.

An -greedy method follows the greedy action with probability , and chooses a uniformly

random action with probability .

ε 1 − ε

ε
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-greedy Methodε

 

Figure 2.2 of "Reinforcement Learning: An Introduction, Second Edition".
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-greedy Methodε

Incremental Implementation
Let  be an estimate using  rewards .Q  n+1 n R  , … ,R  1 n

  

Q  n+1 =   R  
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-greedy Method Algorithmε

 

Algorithm 2.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Fixed Learning Rate

Analogously to the solution obtained for a stationary problem, we consider

Converges to the true action values if

Biased method, because

The bias can be utilized to support exploration at the start of the episode by setting the initial
values to more than the expected value of the optimal solution.

Q  =n+1 Q  +n α(R  −n Q  ).n

 α  =
n=1

∑
∞

n ∞    and      α  <
n=1

∑
∞

n
2 ∞.

Q  =n+1 (1 − α) Q  +n
1  α(1 −

i=1

∑
n

α) R  .n−i
i
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Optimistic Initial Values and Fixed Learning Rate

 

Figure 2.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Method Comparison

 

Figure 2.6 of "Reinforcement Learning: An Introduction, Second Edition".
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Markov Decision Process

 

Figure 3.1 of "Reinforcement Learning: An Introduction, Second Edition".

A Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action  will lead from

state  to , producing a reward ,

 is a discount factor.

Let a return  be . The goal is to optimize .

(S, A, p, γ)

S

A

p(S  =t+1 s ,R  =′
t+1 r∣S  =t s,A  =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1]

G  t G  t =def
 γ R  ∑k=0

∞ k
t+1+k E[G  ]0
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Multi-armed Bandits as MDP

To formulate -armed bandits problem as MDP, we do not need states. Therefore, we could

formulate it as:

one-element set of states, ;

an action for every arm, ;

assuming every arm produces rewards with a distribution of , the MDP dynamics

function  is defined as

One possibility to introduce states in multi-armed bandits problem is to consider a separate
reward distribution for every state. Such generalization is called Contextualized Bandits

problem. Assuming state transitions are independent on rewards and given by a distribution 

, the MDP dynamics function for contextualized bandits problem is given by

n

S = {S}
A = {a  , a  , … , a }1 2 n

N (μ  ,σ  )i i
2

p

p(S, r∣S, a  ) =i N (r∣μ  ,σ  ).i i
2

next(s)

p(s , r∣s, a  ) =′
i N (r∣μ  ,σ  ) ⋅i,s i,s

2 next(s ∣s).′
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Monte Carlo Methods

We now present the first algorithm for computing optimal policies without assuming a
knowledge of the environment dynamics.

However, we still assume there are finitely many states  and we will store estimates for each of

them.

Monte Carlo methods are based on estimating returns from complete episodes. Specifically, they
try to estimate

With such estimates, a greedy action in state  can be computed as

To guarantee convergence, we need to visit each state-action pair infinitely many times. One of
the simplest way to achieve that is to assume exploring starts, where we randomly select the
first state and first action, and behave greedily afterwards.

S

Q(s, a) ≈ E[G  ∣S  =t t s,A  =t a].

S  t

A  =t  Q(S  , a).
a

arg max t
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Monte Carlo with Exploring Starts

 

Modification of algorithm 5.3 of "Reinforcement Learning: An Introduction, Second Edition" from first-visit to every-visit.
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Monte Carlo and -soft Policiesε

The problem with exploring starts is that in many situations, we either cannot start in an
arbitrary state, or it is impractical.

A policy is called -soft, if

and we call it -greedy, if one action has a maximum probability of .

For -soft policy, Monte Carlo policy evaluation also converges, without the need of exploring

starts.

ε

π(a∣s) ≥  .
∣A(s)∣
ε

ε 1 − ε+ ∣A(s)∣
ε

ε
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Monte Carlo for -soft Policiesε

On-policy every-visit Monte Carlo for -soft Policies

Algorithm parameter: small 

Initialize  arbitrarily (usually to 0), for all  

Initialize  to 0, for all 

Repeat forever (for each episode):

Generate an episode , by generating actions as follows:

With probability , generate a random uniform action

Otherwise, set 

For each :

ε

ε > 0

Q(s, a) ∈ R s ∈ S, a ∈ A

C(s, a) ∈ Z s ∈ S, a ∈ A

S  ,A  ,R  , … ,S  ,A  ,R  0 0 1 T−1 T−1 T

ε

A  t =def arg max  Q(S  , a)a t

G ← 0
t = T − 1,T − 2, … , 0

G ← γG+ R  t+1

C(S ,A  ) ←t t C(S  ,A  ) +t t 1
Q(S  ,A  ) ←t t Q(S  ,A  ) +t t  (G−

C(S  ,A  )t t

1 Q(S  ,A  ))t t
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Partially Observable MDPs

Recall that the Markov decision process is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action  will lead from

state  to , producing a reward ,

 is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a
sextuple , where in addition to an MDP

 is a set of observations,

 is an observation model, which is used as agent input instead of .

Although planning in general POMDP is undecidable, several approaches are used to handle
POMDPs in robotics (to model uncertainty, imprecise mechanisms and inaccurate sensors, …).
In deep RL, partially observable MDPs are usually handled using recurrent networks, which
model the latent states .

(S, A, p, γ)

S

A

p(S  =t+1 s ,R  =′
t+1 r∣S  =t s,A  =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1]

(S, A, p, γ, O, o)

O

o(O  ∣S  ,A  )t t t−1 S  t

S  t
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