PAAC, Continuous Actions, DDPG

Milan Straka

November 16, 2020
An alternative to independent workers is to train in a synchronous and centralized way by having the workers to only generate episodes. Such approach was described in May 2017 by Clemente et al., who named their agent *parallel advantage actor-critic* (PAAC).

Figure 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.
Algorithm 1 Parallel advantage actor-critic

1: Initialize timestep counter $N = 0$ and network weights θ, θ_v
2: Instantiate set e of n_e environments
3: repeat
4: for $t = 1$ to t_{max} do
5: Sample a_t from $\pi(a_t|s_t; \theta)$
6: Calculate v_t from $V(s_t; \theta_v)$
7: parallel for $i = 1$ to n_e do
8: Perform action $a_{t,i}$ in environment e_i
9: Observe new state $s_{t+1,i}$ and reward $r_{t+1,i}$
10: end parallel for
11: end for
12: \(R_{t_{max}+1} = \begin{cases}
0 & \text{for terminal } s_t \\
V(s_{t_{max}+1}; \theta) & \text{for non-terminal } s_t
\end{cases} \)
13: for $t = t_{max}$ down to 1 do
14: \(R_t = r_t + \gamma R_{t+1} \)
15: end for
16: \(d\theta = \frac{1}{n_e \cdot t_{max}} \sum_{i=1}^{n_e} \sum_{t=1}^{t_{max}} (R_{t,i} - v_{t,i}) \nabla_{\theta} \log \pi(a_{t,i}|s_{t,i}; \theta) + \beta \nabla_{\theta} H(\pi(s_{e,t}; \theta)) \)
17: \(d\theta_v = \frac{1}{n_e \cdot t_{max}} \sum_{i=1}^{n_e} \sum_{t=1}^{t_{max}} \nabla_{\theta_v} (R_{t,i} - V(s_{t,i}; \theta_v))^2 \)
18: Update θ using $d\theta$ and θ_v using $d\theta_v$.
19: $N \leftarrow N + n_e \cdot t_{max}$
20: until $N \geq N_{max}$

Algorithm 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.
The authors use \(8\) workers, \(n_e = 32\) parallel environments, \(5\)-step returns, \(\gamma = 0.99\), \(\varepsilon = 0.1\), \(\beta = 0.01\) and a learning rate of \(\alpha = 0.0007 \cdot n_e = 0.0224\).

The \(\text{arch}_{\text{nips}}\) is from A3C: 16 filters \(8 \times 8\) stride 4, 32 filters \(4 \times 4\) stride 2, a dense layer with 256 units. The \(\text{arch}_{\text{nature}}\) is from DQN: 32 filters \(8 \times 8\) stride 4, 64 filters \(4 \times 4\) stride 2, 64 filters \(3 \times 3\) stride 1 and 512-unit fully connected layer. All nonlinearities are ReLU.
Figure 3 of the paper “Efficient Parallel Methods for Deep Reinforcement Learning” by Alfredo V. Clemente et al.
Figure 4 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.
Parallel Advantage Actor Critic

Figure 2 of the paper “Efficient Parallel Methods for Deep Reinforcement Learning” by Alfredo V. Clemente et al.
Until now, the actions were discrete. However, many environments naturally accept actions from continuous space. We now consider actions which come from range \([a, b]\) for \(a, b \in \mathbb{R}\), or more generally from a Cartesian product of several such ranges:

\[
\prod_i [a_i, b_i].
\]

A simple way how to parametrize the action distribution is to choose them from the normal distribution. Given mean \(\mu\) and variance \(\sigma^2\), probability density function of \(\mathcal{N}(\mu, \sigma^2)\) is

\[
p(x) \overset{\text{def}}{=} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.
\]
Continuous Action Space in Gradient Methods

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the \texttt{softmax} distribution we suitably parametrize the action value, usually using the normal distribution. Considering only one real-valued action, we therefore have

\[
\pi(a|s; \theta) \overset{\text{def}}{=} P\left(a \sim \mathcal{N}\left(\mu(s; \theta), \sigma(s; \theta)^2\right)\right),
\]

where \(\mu(s; \theta)\) and \(\sigma(s; \theta)\) are function approximation of mean and standard deviation of the action distribution.

The mean and standard deviation are usually computed from the shared representation, with

- the mean being computed as a regular regression (i.e., one output neuron without activation);
- the standard deviation (which must be positive) being computed again as a single neuron, but with either \(\exp\) or \texttt{softplus}, where \(\text{softplus}(x) \overset{\text{def}}{=} \log(1 + e^x)\).
During training, we compute $\mu(s; \theta)$ and $\sigma(s; \theta)$ and then sample the action value (clipping it to $[a, b]$ if required). To compute the loss, we utilize the probability density function of the normal distribution (and usually also add the entropy penalty).

```python
mus = tf.keras.layers.Dense(actions)(hidden_layer)
sds = tf.keras.layers.Dense(actions)(hidden_layer)
sds = tf.math.exp(sds)  # or sds = tf.math.softplus(sds)

action_dist = tfp.distributions.Normal(mus, sds)

# Loss computed as - log π(a|s) * returns - entropy_regularization
loss = - action_dist.log_prob(actions) * returns \
       - args.entropy_regularization * action_dist.entropy()
```
Continuous Action Space

When the action consists of several real values, i.e., action is a suitable subregion of \mathbb{R}^n for $n > 1$, we can:

- either use multivariate Gaussian distribution;
- or factorize the probability into a product of univariate normal distributions.

Modeling the action distribution using a single normal distribution might be insufficient, in which case a mixture of normal distributions is usually used.

Sometimes, the continuous action space is used even for discrete output -- when modeling pixels intensities (256 values) or sound amplitude (2^{16} values), instead of a softmax we use discretized mixture of distributions, usually logistic (a distribution with a sigmoid cdf). Then,

$$
\pi(a) = \sum_i p_i \left(\sigma\left(\frac{(a + 0.5 - \mu_i)}{\sigma_i}\right) - \sigma\left(\frac{(a - 0.5 - \mu_i)}{\sigma_i}\right) \right).
$$

However, such mixtures are usually used in generative modeling, not in reinforcement learning.
Deterministic Policy Gradient Theorem

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so, we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

\[\nabla_{\theta} J(\theta) \propto \sum_{s \in S} \mu(s) \sum_{a \in A} q_\pi(s, a) \nabla_{\theta} \pi(a|s; \theta). \]

Deterministic Policy Gradient Theorem

Assume that the policy \(\pi(s; \theta) \) is deterministic and computes an action \(a \in \mathbb{R} \). Further, assume the reward \(r(s, a) \) is actually a deterministic function of the given state-action pair. Then, under several assumptions about continuousness, the following holds:

\[\nabla_{\theta} J(\theta) \propto \mathbb{E}_{s \sim \mu} \left[\nabla_{\theta} \pi(s; \theta) \nabla_{a} q_\pi(s, a) \big|_{a=\pi(s; \theta)} \right]. \]

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David Silver et al in 2014.
Deterministic Policy Gradient Theorem – Proof

The proof is very similar to the original (stochastic) policy gradient theorem. However, we will be exchanging derivatives and integrals, for which we need several assumptions:

- we assume that $h(s), p(s'|s,a), \nabla_a p(s'|s,a), r(s,a), \nabla_a r(s,a), \pi(s;\theta), \nabla_\theta \pi(s;\theta)$ are continuous in all parameters and variables;
- we further assume that $h(s), p(s'|s,a), \nabla_a p(s'|s,a), r(s,a), \nabla_a r(s,a)$ are bounded.

Details about which assumptions are required when can be found in Appendix B of *Deterministic Policy Gradient Algorithms: Supplementary Material* by David Silver et al.
\[\nabla_\theta v_\pi(s) = \nabla_\theta q_\pi(s, \pi(s; \theta)) \]

\[= \nabla_\theta \left(r(s, \pi(s; \theta)) + \int_{s'} p(s'|s, \pi(s; \theta)) \gamma v_\pi(s') \, ds' \right) \]

\[= \nabla_\theta \pi(s; \theta) \nabla_a r(s, a)|_{a=\pi(s; \theta)} + \nabla_\theta \int_{s'} \gamma p(s'|s, \pi(s; \theta)) v_\pi(s') \, ds' \]

\[= \nabla_\theta \pi(s; \theta) \nabla_a \left(r(s, a) + \int_{s'} \gamma p(s'|s, a) v_\pi(s') \, ds' \right)|_{a=\pi(s; \theta)} \]

\[+ \int_{s'} \gamma p(s'|s, \pi(s; \theta)) \nabla_\theta v_\pi(s') \, ds' \]

\[= \nabla_\theta \pi(s; \theta) \nabla_a q_\pi(s, a)|_{a=\pi(s; \theta)} + \int_{s'} \gamma p(s'|s, \pi(s; \theta)) \nabla_\theta v_\pi(s') \, ds' \]

We finish the proof as in the gradient theorem by continually expanding \(\nabla_\theta v_\pi(s') \), getting

\[\nabla_\theta v_\pi(s) = \int_{s'} \sum_{k=0}^\infty \gamma^k P(s \to s' \text{ in } k \text{ steps } | \pi) \left(\nabla_\theta \pi(s'; \theta) \nabla_a q_\pi(s', a)|_{a=\pi(s'; \theta)} \right) \, ds' \]

and then

\[\nabla_\theta J(\theta) = \mathbb{E}_{s \sim h} \nabla_\theta v_\pi(s) \propto \mathbb{E}_{s \sim \mu} \left(\nabla_\theta \pi(s; \theta) \nabla_a q_\pi(s, a)|_{a=\pi(s; \theta)} \right). \]
Deep Deterministic Policy Gradients

Note that the formulation of deterministic policy gradient theorem allows an off-policy algorithm, because the loss functions no longer depends on actions (similarly to how expected Sarsa is also an off-policy algorithm).

We therefore train function approximation for both $\pi(s; \theta)$ and $q(s, a; \theta)$, training $q(s, a; \theta)$ using a deterministic variant of the Bellman equation:

$$ q(S_t, A_t; \theta) = \mathbb{E}_{R_{t+1}, S_{t+1}} [R_{t+1} + \gamma q(S_{t+1}, \pi(S_{t+1}; \theta))] $$

and $\pi(s; \theta)$ according to the deterministic policy gradient theorem.

The algorithm was first described in the paper Continuous Control with Deep Reinforcement Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average with $\tau = 0.001$), batch normalization for CNNs, and perform exploration by adding a Ornstein-Uhlenbeck noise to predicted actions. Training is performed by Adam with learning rates of 1e-4 and 1e-3 for the policy and critic network, respectively.
Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network \(Q(s, a|\theta^Q) \) and actor \(\mu(s|\theta^\mu) \) with weights \(\theta^Q \) and \(\theta^\mu \).

Initialize target network \(Q' \) and \(\mu' \) with weights \(\theta^{Q'} = \theta^Q, \theta^{\mu'} = \theta^\mu \)

Initialize replay buffer \(R \)

for episode = 1, M do

 Initialize a random process \(N_t \) for action exploration
 Receive initial observation state \(s_1 \)

 for \(t = 1, T \) do

 Select action \(a_t = \mu(s_t|\theta^\mu) + N_t \) according to the current policy and exploration noise

 Execute action \(a_t \) and observe reward \(r_t \) and observe new state \(s_{t+1} \)

 Store transition \((s_t, a_t, r_t, s_{t+1}) \) in \(R \)

 Sample a random minibatch of \(N \) transitions \((s_i, a_i, r_i, s_{i+1}) \) from \(R \)

 Set \(y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'}) \)

 Update critic by minimizing the loss: \(L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2 \)

 Update the actor policy using the sampled policy gradient:

 \[
 \nabla_{\theta^\mu} J \approx \frac{1}{N} \sum_i \nabla_a Q(s, a|\theta^Q)|_{s=s_i, a=\mu(s_i)} \nabla_{\theta^\mu} \mu(s|\theta^\mu)|_{s_i}
 \]

 end for

end for

Algorithm 1 of the paper “Continuous Control with Deep Reinforcement Learning” by Timothy P. Lillicrap et al.
Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark grey), with target networks and batch normalization (green), with target networks from pixel-only inputs (blue). Target networks are crucial.

Figure 3 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.
Deep Deterministic Policy Gradients

Results using low-dimensional (*lowd*) version of the environment, pixel representation (*pix*) and DPG reference (*cntrl*).

<table>
<thead>
<tr>
<th>environment</th>
<th>$R_{av,lowd}$</th>
<th>$R_{best,lowd}$</th>
<th>$R_{av,pix}$</th>
<th>$R_{best,pix}$</th>
<th>$R_{av,cntrl}$</th>
<th>$R_{best,cntrl}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>blockworld1</td>
<td>1.156</td>
<td>1.511</td>
<td>0.466</td>
<td>1.299</td>
<td>-0.080</td>
<td>1.260</td>
</tr>
<tr>
<td>blockworld3da</td>
<td>0.340</td>
<td>0.705</td>
<td>0.889</td>
<td>2.225</td>
<td>-0.139</td>
<td>0.658</td>
</tr>
<tr>
<td>canada</td>
<td>0.303</td>
<td>1.735</td>
<td>0.176</td>
<td>0.688</td>
<td>0.125</td>
<td>1.157</td>
</tr>
<tr>
<td>canada2d</td>
<td>0.400</td>
<td>0.978</td>
<td>-0.285</td>
<td>0.119</td>
<td>-0.045</td>
<td>0.701</td>
</tr>
<tr>
<td>cart</td>
<td>0.938</td>
<td>1.336</td>
<td>1.096</td>
<td>1.258</td>
<td>0.343</td>
<td>1.216</td>
</tr>
<tr>
<td>cartpole</td>
<td>0.844</td>
<td>1.115</td>
<td>0.482</td>
<td>1.138</td>
<td>0.244</td>
<td>0.755</td>
</tr>
<tr>
<td>cartpoleBalance</td>
<td>0.951</td>
<td>1.000</td>
<td>0.335</td>
<td>0.996</td>
<td>-0.468</td>
<td>0.528</td>
</tr>
<tr>
<td>cartpoleParallelDouble</td>
<td>0.549</td>
<td>0.900</td>
<td>0.188</td>
<td>0.323</td>
<td>0.197</td>
<td>0.572</td>
</tr>
<tr>
<td>cartpoleSerialDouble</td>
<td>0.272</td>
<td>0.719</td>
<td>0.195</td>
<td>0.642</td>
<td>0.143</td>
<td>0.701</td>
</tr>
<tr>
<td>cartpoleSerialTriple</td>
<td>0.736</td>
<td>0.946</td>
<td>0.412</td>
<td>0.427</td>
<td>0.583</td>
<td>0.942</td>
</tr>
<tr>
<td>cheetah</td>
<td>0.903</td>
<td>1.206</td>
<td>0.457</td>
<td>0.792</td>
<td>-0.008</td>
<td>0.425</td>
</tr>
<tr>
<td>fixedReacher</td>
<td>0.849</td>
<td>1.021</td>
<td>0.693</td>
<td>0.981</td>
<td>0.259</td>
<td>0.927</td>
</tr>
<tr>
<td>fixedReacherDouble</td>
<td>0.924</td>
<td>0.996</td>
<td>0.872</td>
<td>0.943</td>
<td>0.290</td>
<td>0.995</td>
</tr>
<tr>
<td>fixedReacherSingle</td>
<td>0.954</td>
<td>1.000</td>
<td>0.827</td>
<td>0.995</td>
<td>0.620</td>
<td>0.999</td>
</tr>
<tr>
<td>gripper</td>
<td>0.655</td>
<td>0.972</td>
<td>0.406</td>
<td>0.790</td>
<td>0.461</td>
<td>0.816</td>
</tr>
<tr>
<td>gripperRandom</td>
<td>0.618</td>
<td>0.937</td>
<td>0.082</td>
<td>0.791</td>
<td>0.557</td>
<td>0.808</td>
</tr>
<tr>
<td>hardCheetah</td>
<td>1.311</td>
<td>1.990</td>
<td>1.204</td>
<td>1.431</td>
<td>-0.031</td>
<td>1.411</td>
</tr>
<tr>
<td>hopper</td>
<td>0.676</td>
<td>0.936</td>
<td>0.112</td>
<td>0.924</td>
<td>0.078</td>
<td>0.917</td>
</tr>
<tr>
<td>hyq</td>
<td>0.416</td>
<td>0.722</td>
<td>0.234</td>
<td>0.672</td>
<td>0.198</td>
<td>0.618</td>
</tr>
<tr>
<td>movingGripper</td>
<td>0.474</td>
<td>0.936</td>
<td>0.480</td>
<td>0.644</td>
<td>0.416</td>
<td>0.805</td>
</tr>
<tr>
<td>pendulum</td>
<td>0.946</td>
<td>1.021</td>
<td>0.663</td>
<td>1.055</td>
<td>0.099</td>
<td>0.951</td>
</tr>
<tr>
<td>reacher</td>
<td>0.720</td>
<td>0.987</td>
<td>0.194</td>
<td>0.878</td>
<td>0.231</td>
<td>0.953</td>
</tr>
<tr>
<td>reacher3daFixedTarget</td>
<td>0.585</td>
<td>0.943</td>
<td>0.453</td>
<td>0.922</td>
<td>0.204</td>
<td>0.631</td>
</tr>
<tr>
<td>reacher3daRandomTarget</td>
<td>0.467</td>
<td>0.739</td>
<td>0.374</td>
<td>0.735</td>
<td>-0.046</td>
<td>0.158</td>
</tr>
<tr>
<td>reacherSingle</td>
<td>0.981</td>
<td>1.102</td>
<td>1.000</td>
<td>1.083</td>
<td>1.010</td>
<td>1.083</td>
</tr>
<tr>
<td>walker2d</td>
<td>0.705</td>
<td>1.573</td>
<td>0.944</td>
<td>1.476</td>
<td>0.393</td>
<td>1.397</td>
</tr>
<tr>
<td>toecs</td>
<td>-393.385</td>
<td>1840.036</td>
<td>-401.911</td>
<td>1876.284</td>
<td>-911.034</td>
<td>1961.600</td>
</tr>
</tbody>
</table>

Table 1 of the paper “Continuous Control with Deep Reinforcement Learning” by Timothy P. Lillicrap et al.
Ornstein-Uhlenbeck Exploration

While the exploration policy could just use Gaussian noise, the authors claim that temporarily-correlated noise is more effective for physical control problems with inertia. They therefore generate noise using Ornstein-Uhlenbeck process, by computing

\[n_t \leftarrow n_{t-1} + \theta \cdot (\mu - n_{t-1}) + \varepsilon \sim \mathcal{N}(0, \sigma^2), \]

utilizing hyperparameter values \(\tau = 0.15 \) and \(\sigma = 0.2 \).