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IMPALA

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper
and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicates gradients with respect to the parameters
of the policy, IMPALA actors communicates trajectories to the centralized learner.

 





 












 












 

Figure 1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures" by Lasse Espeholt et al.

     

 
 

 
 

  

    

 
 

 
 

  

    





 
 

 
 

 
 
 
 

 

 

 

Figure 2 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures" by Lasse Espeholt et al.

If many actors are used, the policy used to generate a trajectory can lag behind the latest
policy. Therefore, a new V-trace off-policy actor-critic algorithm is proposed.
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IMPALA – V-trace

Consider a trajectory  generated by a behaviour policy .

A regular -step bootstrap target is estimated using

This quantity can be rewritten using a series of single-step TD errors as
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IMPALA – V-trace

In order to devise an off-policy estimate, we utilize the usual importance sampling ratio

We can consider the off-policy estimate to consist of two parts:

independently on the probability of the action , we can estimate the return by our current

estimate ;

depending on the IS ratio, we can correct the estimate by adding the value TD error of 

;

arriving at the following estimate

ρ  t =def
 .

b(A  ∣S  )t t
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V (S  )s
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v  =s V (S  ) +s ρ  (R  +s s+1 γV (S  ) −s+1 V (S  )).s
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IMPALA – V-trace

The -step V-trace target for  is defined as

where  is the temporal difference for V

and  and  are truncated importance sampling ratios with :

Note that if  and assuming ,  reduces to -step Bellman target.
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IMPALA – V-trace

Note that the truncated IS weights  and  play different roles:

The  appears in the definition of  and defines the fixed point of the update rule. For 

, the target is the value function , if , the fixed point is somewhere

between  and . Notice that we do not compute a product of these  coefficients.

Concretely, it can be proven that the fixed point of the value function  is the policy

The  impacts the speed of convergence (the contraction rate of the Bellman operator),

not the sought policy. Because a product of the  ratios is computed, it plays an important

role in variance reduction.

However, the paper utilizes  and out of ,  works empirically the

best, so the distinction between  and  is not useful in practise.
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IMPALA – V-trace

It is easy to see that the defined -step V-trace target

can be computed recursively as

which is the form usually used for implementation.
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IMPALA – V-trace

Consider a parametrized functions computing  and , we update the critic in

the direction of

and the actor in the direction of the policy gradient

where we estimate  as .

Finally, we again add the entropy regularization term  to the loss function.

v(s; θ) π(a∣s;ω)

(v  −s v(S  ; θ))∇  v(S  ; θ)s θ s
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IMPALA

   

    

      
       
       
       
       
      
        



    
   
    
      

                 

       

 

Table 1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp  and the global gradient norm clipping

threshold.





  

       















 

Figure 1 of paper "Population Based Training of Neural Networks" by Max Jaderberg et al.

ε
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IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp  and the global gradient norm clipping

threshold.

In population based training, several agents are trained in parallel. When an agent is ready
(after 5000 episodes), then:

it may be overwritten by parameters and hyperparameters of another agent, if it is
sufficiently better (5000 episode mean capped human normalized score returns are 5%
better);
and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or
1/1.2 with 33% chance).

ε
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IMPALA – Architecture



        



        



 





 







 

 

 

 

 

 



        



        



        

 



        

  

  





   

 



 

 

 

 





 

 

 

 

Figure 3 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

12/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW



IMPALA

                                                      

     

  
     

  



































     

  
     

  

















     

  
     

  





















     

  
     

  















     

  
     

  





















      

 
      

 





































      

 
      

 





















      

 
      

 























      

 
      

 

















      

 
      

 















 

Figure 4 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Learning Curves

 

Figures 5, 6 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Atari Games

 

Table 4 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Atari Hyperparameters

 

  

  

 

  

       

  

      

   

   

  

  

   

  

  

  

  

    

      

     

     

   

      

      





       

     

 

 

 

 

Table G1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Ablations

         

 

     
     
     
     

 

     
     
     
     

      

   

      

 

Table 2 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner
Architectures" by Lasse Espeholt et al.

No-correction: no off-policy
correction
-correction: add a small value 

 during gradient

calculation to prevent  to be

very small and lead to unstabilities
during  computation

1-step: use  instead of ,

but utilize  in the policy

gradient update

ε

ε = 10−6

π

log π

V (S  )s v  s

ρ  s
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IMPALA – Ablations

 

Figure E.1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

The effect of the
policy lag (the
number of updates
the actor is behind
the learned policy)
on the
performance.
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PopArt Normalization

An improvement of IMPALA from Sep 2018, which performs normalization of task rewards
instead of just reward clipping. PopArt stands for Preserving Outputs Precisely, while Adaptively
Rescaling Targets.

Assume the value estimate  is computed using a normalized value predictor 

and further assume that  is an output of a linear function

We can update the  and  using exponentially moving average with decay rate  (in the

paper, first moment  and second moment  is tracked, and standard deviation is computed as 

; decay rate  is employed).

v(s; θ,σ,μ) n(s; θ)

v(s; θ,σ,μ) =def
σn(s; θ) + μ

n(s; θ)

n(s; θ) =def
ω f(s; θ −T {ω, b}) + b.

σ μ β

μ υ

σ =  υ − μ2 β = 3 ⋅ 10−4
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PopArt Normalization

Utilizing the parameters  and , we can normalize the observed (unnormalized) returns as 

 and use an actor-critic algorithm with advantage .

However, in order to make sure the value function estimate does not change when the
normalization parameters change, the parameters  computing the unnormalized value

estimate are updated under any change  and  as:

In multi-task settings, we train a task-agnostic policy and task-specific value functions
(therefore, ,  and  are vectors).

μ σ

(G − μ)/σ (G − μ)/σ − n(S; θ)

ω, b
μ → μ′ σ → σ′

ω′ =def
 ω,     b

σ′

σ ′ =def
 .

σ′

σb + μ − μ′

μ σ n(s; θ)
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PopArt Results

   

      

      

      

 

Table 1 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

      

  

      

  































































 







 







      

  

      

  

































































 







 







 

Figures 1, 2 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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PopArt Results

   
























       

 

Figure 3 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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PopArt Results

     

  



  





























































































     

  



  









































































































 

Figures 4, 5 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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Recurrent Replay Distributed DQN (R2D2)

Proposed in 2019, to study the effects of recurrent state, experience replay and distributed
training.

R2D2 utilizes prioritized replay, -step double Q-learning with , convolutional layers

followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a
large number of actors (256; each performing approximately 260 steps per second) and learning
from batches by a single learner (achieving 5 updates per second using mini-batches of 64
sequences of length 80).

Instead of individual transitions, the replay buffer consists of fixed-length ( ) sequences

of , with adjacent sequences overlapping by 40 time steps.

n n = 5

m = 80
(s, a, r)
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Recurrent Replay Distributed DQN (R2D2)
   




  










 
   

  
   

  
   

  
   



   
 
 

 
   






  

  

 





 

   



  
  



  

  

 

               

              
                  
              
                
                

 

Figure 1 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 2 of the paper "Recurrent Experience Replay in Distributed
Reinforcement Learning" by Steven Kapturowski et al.

 
     

        
        
         

      
      
    
     

    

 

Table 1 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

   
      

            

        
  

   
  

       
     

        

     

     


       

              
   

 

Table 2 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

   




 




 

Figure 9 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)






  

            
            

 

Figure 4 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Utilization of LSTM Memory During Inference

 

Figure 5 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Partially Observable MDPs

Recall that a Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action  will lead from

state  to , producing a reward ,

 is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a sextuple 

, where in addition to an MDP

 is a set of observations,

 is an observation model.

In robotics (out of the domain of this course), several approaches are used to handle POMDPs,
to model uncertainty, imprecise mechanisms and inaccurate sensors.

(S,A, p, γ)

S
A
p(S  =t+1 s ,R  =′

t+1 r∣S  =t s,A  =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1]

(S,A, p, γ,O, o)

O
o(O  ∣S  ,A  )t t t−1
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Partially Observable MDPs

In Deep RL, partially observable MDPs are usually handled using recurrent networks. After
suitable encoding of input observation  and previous action , a RNN (usually LSTM)

unit is used to model the current  (or its suitable latent representation), which is in turn

utilized to produce .

 

Figure 1a of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

O  t A  t−1

S  t

A  t
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MERLIN

However, keeping all information in the RNN state is substantially limiting. Therefore, memory-
augmented networks can be used to store suitable information in external memory (in the lines
of NTM, DNC or MANN models).

We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

 

Figure 1b of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN – Memory Module

 

Figure 1b of paper "Unsupervised Predictive Memory in a
Goal-Directed Agent" by Greg Wayne et al.

Let  be a memory matrix of size .

Assume we have already encoded observations as  and previous

action . We concatenate them with  previously read vectors

and process by a deep LSTM (two layers are used in the paper) to
compute .

Then, we apply a linear layer to , computing  key vectors 

 of length  and  positive scalars .

Reading: For each , we compute cosine similarity of  and all memory rows , multiply the

similarities by  and pass them through a  to obtain weights . The read vector is

then computed as .

Writing: We find one-hot write index  to be the least used memory row (we keep usage

indicators and add read weights to them). We then compute , and

update the memory matrix using .

M N  ×mem 2∣z∣

e  t

a  t−1 K

h  t

h  t K

k  , …k  1 K 2∣z∣ K β  , … , β  1 K

i k  i M  j

β  i softmax ω  i

Mw  i

v  wr

v  ←ret γv  +ret (1 − γ)v  wr

M ← M + v  [e  , 0] +wr t v  [0, e  ]ret t
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MERLIN — Prior and Posterior

However, updating the encoder and memory content purely using RL is inefficient. Therfore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations  and storing them in

memory.

According to the paper, the idea of unsupervised and predictive modeling has been entertained
for decades, and recent discussions have proposed such modeling to be connected to
hippocampal memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a prior distribution over  predicts next state variable conditioned on history of

state variables and actions , and posterior corrects the prior using

the new observation , forming a better estimate .

z

z  t

p(z  ∣z  , a  , … , z  , a  )t t−1 t−1 1 1

o  t q(z  ∣o  , z  , a  , … , z  , a  )t t t−1 t−1 1 1
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MERLIN — Prior and Posterior

To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state
variable posterior, and add the difference of the reconstruction and ground truth to the loss.

We also add KL divergence of the prior and posterior to the loss, to ensure consistency
between the prior and posterior.

 

Figure 1c of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN — Algorithm
    

               

       
      

              
      


       

         

  



  
   


   

  
  

   

     


   


 

    
   


 

       
     
   

   
       

 

    

          
       

       

         
   

            

         
       

 



     

 

    

    
      

    

     

     
   



     

 

  

  
           

   

 

Algorithm 1 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

 

Figure 2 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

 

Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

 

Extended Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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For the Win agent for Capture The Flag

 

Figure 2 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

Extension of the MERLIN architecture.

Hierarchical RNN with two timescales.

Population based training controlling KL divergence penalty weights, slow ticking RNN
speed and gradient flow factor from fast to slow RNN.
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For the Win agent for Capture The Flag

 

Figure S10 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

     





 

  

  





  

   

  















 


























                     

   

  
   

    



                 

 





  

 

Figure 4 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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