NPFL122, Lecture 10 Uz

V-trace, PopArt Normalization,
Partially Observable MDPs

Milan Straka

m December 16, 2019

Charles University in Prague
Faculty of Mathematics and Physics

E EAN UNION
E ean Structural and Investment Fund I H = o a =
: nstitute of Formal and Applied Linguistics .
LANGTECH oo PP & unless otherwise stated

@ c C
$9238 X
D =

o288 9

IMPALA

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper
and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicates gradients with respect to the parameters
of the policy, IMPALA actors communicates trajectories to the centralized learner.

Observations
Parameters

@
© @

Figure 1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures" by Lasse Espeholt et al.

Observations

Worker

Learner Actor 0
Actor 1
Actor 2
Actor 3

Parameters

Actor 0

Actor 1
Master Actor 2

Learner Actor 3

Observations

. Forward pass . Backward pass

. Actor 0 'l 'l M M .. next unroll
4 time steps Actor 1]

FEnvironment steps

Gradients (a) Batched A2C (sync step.)

Actor 2 |

Actor 3
Actor 4
Actor 5
Actor 6

Actor 7

— -

(c) IMPALA

(b) Batched A2C (sync traj.)

Figure 2 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted

Actor-Learner Architectures" by Lasse Espeholt et al.

If many actors are used, the policy used to generate a trajectory can lag behind the latest
policy. Therefore, a new V-trace off-policy actor-critic algorithm is proposed.

NPFL122, Lecture 10 IMPALA

PopArt Normalization R2D2

POMDPs

MERLIN CTF-FTW 2/44

IMPALA - V-trace

Consider a trajectory (St, Az, Ryy1)i=5"" generated by a behaviour policy b.

A regular n-step bootstrap target is estimated using

s+n—1

vV, = Z YR + YN V(S)).
t=s

This quantity can be rewritten using a series of single-step TD errors as

s+n—1

v, = V(S)+ D 4 (Rt +9V(Se1) — V(S)).

NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

U‘:L

3/44

In order to devise an off-policy estimate, we utilize the usual importance sampling ratio

oy m(A¢|S;)
b(A:|S:)

We can consider the off-policy estimate to consist of two parts:

® independently on the probability of the action A, we can estimate the return by our current
estimate V'(.S;);
® depending on the IS ratio, we can correct the estimate by adding the value TD error of

(Rs1 + YV (Sst1) — V(Ss));

arriving at the following estimate

v, = V(8,) + ps (Ros1 +7V (Se11) = V(S))).

IMPALA 4/44

The n-step V-trace target for S is defined as

s+n—1
t—1
(OF = V(Ss) + Z ’Yt_s (st cz') 5tV7

t=s
where 0,V is the temporal difference for V

def

otV = p (Rt—|—1 + YV (st41) — V(st)

N
~

and p: and ¢; are truncated importance sampling ratios with p > ¢:

b(A¢|St)

def . (_ ﬂ-(At‘St)) def . — 7.‘-(14"1,‘*51'&))
p; = min | p, , ¢; = min | C, ~ |-

Note that if b = 7 and assuming ¢ > 1, v, reduces to n-step Bellman target.

IMPALA

5/44

Note that the truncated IS weights p; and ¢; play different roles:

® The p; appears in the definition of §;V and defines the fixed point of the update rule. For
p = 00, the target is the value function v, if p < 00, the fixed point is somewhere
between v; and vy. Notice that we do not compute a product of these p; coefficients.

Concretely, it can be proven that the fixed point of the value function v, is the policy
75(alz) o< min (pb(als), w(als)).

® The ¢; impacts the speed of convergence (the contraction rate of the Bellman operator),
not the sought policy. Because a product of the ¢; ratios is computed, it plays an important
role in variance reduction.

However, the paper utilizes ¢ = 1 and out of p € {1,10,100}, p = 1 works empirically the
best, so the distinction between ¢ and p is not useful in practise.

IMPALA 6/44

IMPALA — V-trace

It is easy to see that the defined n-step V-trace target

s+n—1

vs EV(S)+ Y A (H“ cz-) 5V
t=s

can be computed recursively as

Vg © V(Ss) + 53V + v, (Us+1 — V(Ss+1))7

which is the form usually used for implementation.

NPFL122, Lecture 10 IMPALA

PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

U=

7/44

Consider a parametrized functions computing v(s; @) and 7(a|s; w), we update the critic in

the direction of
(vs — v(Ss; 0))ng(55; 0)
and the actor in the direction of the policy gradient
psVe logm(As|Ss; w) (Rs+1 + Yvs1 — v(Ss; 9))7

where we estimate @ (S5, A;) as Ry 1 + YUsp1.

Finally, we again add the entropy regularization term H (7 (-|Ss;@)) to the loss function.

IMPALA 8/44

Architecture CPUs GPUs!

FPS?

Single-Machine

Task 1 Task 2

A3C 32 workers 64 0 6.5K 9K
Batched A2C (sync step) 48 0 9K 5K
Batched A2C (sync step) 48 1 13K 5.5K
Batched A2C (sync traj.) 48 0 16K 17.5K
Batched A2C (dyn. batch) 48 1 16K 13K
IMPALA 48 actors 48 0 17K 20.5K
IMPALA (dyn. batch) 48 actors’ 48 1 21K 24K
Distributed

A3C 200 0 46K 50K
IMPALA 150 1 80K
IMPALA (optimised) 375 1 200K
IMPALA (optimised) batch 128 500 1 250K

1 Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3 Limited by

amount of rendering possible on a single machine.

IMPALA

9/44

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp € and the global gradient norm clipping

(a) Sequential Optimisation

threshold.
Performance
— — —3
O Hyperparameters O—>O

T OO OU SO TUR TR N I I
Training

Weights

(b) Parallel Random/Grid Search

IMPALA

(c) Population Based Training

Performance
—

Hyperparameters O .

Weights D e, .

(=)
O-.

[9)

10/44

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp € and the global gradient norm clipping

threshold.

In population based training, several agents are trained in parallel. When an agent is ready
(after 5000 episodes), then:

® it may be overwritten by parameters and hyperparameters of another agent, if it is
sufficiently better (5000 episode mean capped human normalized score returns are 5%
better);

® and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or
1/1.2 with 33% chance).

IMPALA

11/44

IMPALA - Architecture

| Embedding 20 |

5 t
i blue ladder
| Residual Block |

f

32 | Residual Block
ReLU | Embedding 20 | f \
| Conv. 4 x 4,stride 2 | $ X3 3

I P FC 256

*
Max 3 x 3, stride 2 | | Conv. 3 x 3,stride 1 }—*6
16,32,32] ch. | | , \
blue ladder [16, 32, \

ReLU 16
| Conv. 8 x 8, stride4 |

| Conv. 3 x 3,stride1| |
A

| | Conv. 3 x 3,stride 1 |

96 x 72

Figure 3 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures” by Lasse Espeholt et al.

NPFL122, Lecture 10 IMPALA PopArt Normalization

96 x 72

R2D2 POMDPs MERLIN CTF-FTW 12/44

IMPALA Vgt

—— [IMPALA - 1 GPU - 200 actors Batched A2C - Single Machine - 32 workers —— A3C - Single Machine - 32 workers —— A3C - Distributed - 200 workers

rooms_watermaze rooms_keys_doors_puzzle lasertag_three_opponents_small explore_goal_locations_small seekavoid_arena_01

15 0-
8902 04 06 08 1o 200 0.2 0.4 0.6 0.8 T0 00 0.2 0.4 0.6 0.8 To 80 0.2 0.4 0.6 0.8 To 30 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9 Environment Frames 1e9 Environment Frames 1e9 Environment Frames 1e9 Environment Frames 1e9

rooms_watermaze rooms_keys_doors_puzzle lasertag_three_opponents_small explore_goal_locations_small seekavoid_arena 01

01 5 g 13 17 21 24 I 5 9 13 17 21 24 9 13 17 21 24 I 5 9 3 17 21 24 % 5 9 13 17 21 24
Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination

Figure 4 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures” by Lasse Espeholt et al.

NPFL1 Lecture 10 V¥ PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 13/44

IMPALA — Learning Curves

[<2]
o

N
)

N
o

Mean Capped Normalized Score
=
o

0
0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames lelo
—— IMPALA, deep, PBT - 8 GPUs —— [IMPALA, shallow
IMPALA, deep, PBT IMPALA-Experts, deep
- |MPALA, deep —— A3C, deep
B0 = mmm e e e

Mean Capped Normalized Score
N w
o o

0 20 40 60 80 100 120 140 160 180
Wall Clock Time (hours)

Figures 5, 6 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

14 /44

Human Normalised Return Median Mean
A3C, shallow, experts 54.9% 285.9%
A3C, deep, experts 117.9% 503.6%
Reactor, experts 187% N/A
IMPALA, shallow, experts 93.2% 466.4%
IMPALA, deep, experts 191.8% 957.6%
IMPALA, deep, multi-task 59.7% 176.9%

IMPALA

15/44

IMPALA — Atari Hyperparameters UL

Parameter Value
Image Width 84
Image Height 84
Grayscaling Yes
Action Repetitions 4
Max-pool over last N action repeat frames 2
Frame Stacking 4

End of episode when life lost Yes
Reward Clipping [-1, 1]
Unroll Length (n) 20
Batch size 32
Discount (7y) 0.99
Baseline loss scaling 0.5
Entropy Regularizer 0.01
RMSProp momentum 0.0
RMSProp 0.01
Learning rate 0.0006
Clip global gradient norm 40.0
Learning rate schedule Anneal linearly to 0

From beginning to end of training.
Population based training (only multi-task agent)

- Population size 24

- Start parameters Same as DMLab-30 sweep

- Fitness Mean capped human normalised scores
(> min[1, (s¢ = r¢)/(he — ¢)]) /N

- Adapted parameters Gradient clipping threshold

Entropy regularisation
Learning rate
RMSProp ¢

Table G1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 16/44

No-correction: no off-policy
correction
g-correction: add a small value

e = 1079 during gradient
calculation to prevent m to be

very small and lead to unstabilities
during log m computation

1-step: use V(S;) instead of vy,
but utilize pg in the policy
gradient update

IMPALA

Task 1 Task2 Task3 Task4 Task5

Without Replay

V-trace 46.8 329 31.3 229.2 43.8
1-Step 51.8 359 254 215.8 43.7
g-correction 442 273 43 107.7 41.5
No-correction 40.3 29.1 50 949 16.1
With Replay

V-trace 47.1 35.8 34.5 250.8 46.9
1-Step 54.7 344 264 204.8 41.6
g-correction 304 30.2 3.9 101.5 37.6
No-correction 350 21.1 2.8 850 11.2

Tasks: rooms_watermaze, rooms_keys_doors_puzzle,

lasertag_-three_opponents.small,

explore_goal_-locations_small, seekavoid-arena-01

17 /44

IMPALA - Ablations

The effect of the
policy lag (the
number of updates
the actor is behind
the learned policy)
on the
performance.

Figure E.1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

rooms_watermaze

60 e-correction No-correction V-trace

0
5 M 10
g - W
g "
« i ‘ull 500

¥
0.2 0.4 0.6 0.8
Environment Frames 1e9 Environment Frames 1e9 Environment Frames 1e9

rooms_keys_doors_puzzle

e-correction No-correction V-trace

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Environment Frames 1e9 Environment Frames 1e9 Environment Frames

lasertag_three_opponents_small

35 e-correction No-correction V-trace
30
25 0 0
c 20
215
]
< 10
Z A N ooy S . 1 e 10
. 500 500
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Environment Frames 1es Environment Frames 1e9 Environment Frames 1e
explore_goal_locations_small
e-correction No-correction V-trace
250 10
0 0
c
£ 500
g
-3
10
,,,W W. b : :: : 500
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Environment Frames le9 Environment Frames 1e9 Environment Frames ley
seekavoid_arena_01
45 e-correction No-correction V-trace
0
£
2
&
10
500
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Environment Frames 1ey Environment Frames ley Environment Frames ley

NPFL1 Lecture 1 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

18/44

An improvement of IMPALA from Sep 2018, which performs normalization of task rewards
instead of just reward clipping. PopArt stands for Preserving Outputs Precisely, while Adaptively
Rescaling Targets.

Assume the value estimate v(s; 80, 0, i) is computed using a normalized value predictor n(s; 6)
def
v(s;0,0,u) =on(s;0) + u
and further assume that n(s; @) is an output of a linear function
def T
n(s;0) = w" f(s;0 — {w,b}) +b.

We can update the o and p using exponentially moving average with decay rate 3 (in the
paper, first moment p and second moment v is tracked, and standard deviation is computed as

o = /v — p?; decay rate 8 = 3-107% is employed).

PopArt Normalization 19/44

Utilizing the parameters 1 and o, we can normalize the observed (unnormalized) returns as
(G — w)/o and use an actor-critic algorithm with advantage (G —) /o — n(S;0).

However, in order to make sure the value function estimate does not change when the
normalization parameters change, the parameters w, b computing the unnormalized value

estimate are updated under any change 4 — u' and 0 — o' as:

) def O b,d:efO'b‘i‘,U«_,Uf’

!

o

In multi-task settings, we train a task-agnostic policy and task-specific value functions
(therefore, p, o and n(s; @) are vectors).

PopArt Normalization

20/44

—
PopArt Results =
Atari-57 Atari-57 (unclipped) DmlLab-30
Agent Random Human Random Human Train Test
IMPALA 59.7% 28.5% 0.3% 1.0% 60.6% 58.4%
PopArt-IMPALA 110.7% 101.5% 107.0% 93.7% 73.5% 72.8%
Table 1 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
120 Atari-57 (clipped) 120 Atari-57 (unclipped)
= POpArt-IMPALA == PopArt-IMPALA
== MultiHead-IMPALA === MultiHead-IMPALA
100 =—— IMPALA 100 \vpaLa
o o
o o
£ E 60
o o
Z 60 - - =4
5 5 40
= 2
k5 & 20
3 3
= =
20 0
0 -20
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Environment Frames 1e9 Environment Frames 1e9
Figures 1, 2 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
NPFL122, Lecture 10 EEIVIZAWA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 21/44

PopArt Results

breakout crazy_climber gbert seaquest
25 VAT
4000
100
£00
20 3500
= 3000 L
It’ 400 !
5 2500 &0
s 10
o 2000 5
S 200
- 0
1000
0 or i
500
—— POpArt-IMPALA (Stats)
-5 0 -20
00 02 04 06 08 10 12 00 02 04 06 08 10 12 00 02 04 06 08 10 12 00 02 04 06 08 10 12
1e10 1e10 1le10 1e10
400 160000 5000 2500
c 350 140000
5 4000 2000
=300 120000
O]
e
- 50 100000 23000 1500
2
c 200 BO000
S
S 10 — 2000 1000
2
T w0 40000
1000 500
D
50 20000
—— PopArt-IMPALA (Return)
0 0 0 0
00 02 04 06 08 10 12 00 02 04 06 08 10 12 00 02 04 06 08 10 12 00 02 04 06 08 10 12
1e10 1e10 1e10 1e10

Fnvirnnment Frames

NPFL1 Lecture 10 IMPALA

Fnvironmaent Frames Fnvirnnment Frames Fnvirnonmeant Frames
Figure 3 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

22/44

PopArt Results

DmLab-30

Mean Capped Human Normalised Score
\%“0’
)
%
%

e PopArt-IMPALA
””””””””””””””””””””” @ |[MPALA
=== |MPALA-original

0 2 4 6 8 10

Environment Frames 1e9

NPFL122, Lecture 10 IMPALA

PopArt Normalization R2D2

80 DmLab-30
v 70 R = e
o
1)
V2]
T 60 g
o
©
€ 50
o
=
el 7
S 40 e ———_——————,,
€ z
5 :
T : :
B 30 : IMPALA@10B
a : :
o :
© 20 : s
< =
%, / éLA-origiQal@loB
g S s ——— POpArt-IMPALA
: = Pixel-PopArt-IMPALA
0 = = -
0 0.1 2 4 6 8 10
Environment Frames 1e9
Figures 4, 5 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
POMDPs MERLIN CTF-FTW 23/44

Proposed in 2019, to study the effects of recurrent state, experience replay and distributed
training.
R2D2 utilizes prioritized replay, n-step double Q-learning with n = 5, convolutional layers

followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a
large number of actors (256; each performing approximately 260 steps per second) and learning
from batches by a single learner (achieving 5 updates per second using mini-batches of 64

sequences of length 80).
Instead of individual transitions, the replay buffer consists of fixed-length (1 = 80) sequences

of (s, a,r), with adjacent sequences overlapping by 40 time steps.

R2D2 24/44

Recurrent Replay Distributed DQN (R2D2) Vet

(a) Computation of AQ In|t|al state * Final state
ath)t ba(he) q(hei)t ba(hisr) aheem)t Yalherm)
he | 0 : [4] :
[(ht 0t) (hit1,0t41) - ht—l—maot—{—m . i I
’ : uiln NI TR
. eogl eorm ltos eogl eorm ltos rw
explore obstructed explore object

(C) goals large rewards many lasertag_three opponents small rooms watermaze

c B

=]

g

o

() l

i®]

o]

8 4 Burn-in Zero-State Stored-State

L 0

c 20

o 40 I

=
| —

1 2 3 2 0 1 2 3 4 2
Updates 1e6 # Updates 1e6 # Updates 1e6 # Updates 1e6

Figure 1: Top row shows Q-value discrepancy AQ) as a measure for recurrent state staleness. (a)
Diagram of how A() is computed, with green box indicating a whole sequence sampled from replay.
For simplicity, [= 0 (no burn-in). (b) AQ measured at first state and last state of replay sequences,
for agents training on a selection of DMLab levels (indicated by initials) with different training
strategies. Bars are averages over seeds and through time indicated by bold line on x-axis in bottom

row. (¢) Learning curves on the same levels, varying the training strategy, and averaged over 3 seeds.
Figure 1 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 25/44

Recurrent Replay Distributed DQN (R2D2)

2000%
®R2D2(120h)
®R2D2(72h)
1500%
29
3 &
© O
O~
NS ®R2D2(48h)
€ & 1000%
>
o O
¢ c
%% ®R2D2(24h)
E o
S5 =
I ~—
(o)
500% .R2D2(12h).Ape—X(120h)
® Ape-X (70h)
Ape-X (20h)
IMPALA(deep) ® Rainbow
» ® Reactor ® Prio.DQN
® IMPALA(shallow) e DQN
0%
0 50 100 150 200 250 300

Training Time (Hours)

Figure 2 of the paper "Recurrent Experience Replay in Distributed
Reinforcement Learning"” by Steven Kapturowski et al.

NPFL122, Lecture 10 IMPALA

PopArt Normalization

F\RL
Atari-57 DMLab-30
Human-Normalized Score Median Mean | Median Mean-Capped
Ape-X (Horgan et al., 2018) 434.1% 1695.6% - -
Reactor (Gruslys et al., 2018) 187.0% - - -
IMPALA, deep (Espeholt et al., 2018) | 191.8% 957.6% 49.0% 45.8%
IMPALA, shallow (re-run) - - 89.7% 73.6%
IMPALA, deep (re-run) - - 107.5% 85.1%
R2D2+ - - 99.5% 85.7%
R2D2, feed-forward 589.2% 1974.4% - -
R2D2 1920.6% 4024.9% | 96.9% 78.3%
Table 1 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
R2D2 POMDPs MERLIN CTF-FTW 26/44

Number of actors 256
Actor parameter update interval 400 environment steps
Sequence length m 80 (+ prefix of [= 40 in burn-in experiments)
Replay buffer size 4 x 10 observations (10° part-overlapping sequences)
Priority exponent 0.9
Importance sampling exponent 0.6
Discount ~y 0.997
Minibatch size 64 (32 for R2D2+ on DMLab)
Optimizer Adam (Kingma & Ba, 2014)
Optimizer settings learning rate = 1074, ¢ = 1073
Target network update interval 2500 updates
Value function rescaling h(z) = sign(z)(y/|z| +1—1) +ex, e = 1077

Table 2: Hyper-parameters values used in R2D2. All missing parameters follow the ones in Ape-X
(Horgan et al., 2018).

R2D2 27/44

Recurrent Replay Distributed DQN (R2D2) UL

Atari-57 - Human-normalized Median

2000%
e R2D2
1600% | mwsmm R2D2, FF
I Ape_x
1200% || —— Rainbow
mmmmm Reactor
800%
400%

O%%\

10’ 108 10° 101°
Environment Frames (Log-Scale)

Figure 9 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 28/44

Recurrent Replay Distributed DQN (R2D2) Vet

Breakout Gravitar MsPacman QBert SeaQuest
| ! 1 |) ' 1 | ! | 1 1 1 1 ' a ! | | I | | | | |
12000 - B 700000 1000000 - -
< 800
5 10000 40000 600000 - L
2 800000 - L
(0] 500000 - -
o 600 - 8000 - L
= 30000 - = 400000 600000
©
o 6000 - |
v 400 20000 - - 300000 - i 400000
& R2D2 4000 200000 - L
< 200 mn Clipped
o i 2000 - 10000 - L 200000 - 5
] mmmm Discount 100000 - -
= mmmm Feed-Forward
0- L 0- L 0. | 0- L 0- L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T 1 1 I 1 1 1 1
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Updates le6 # Updates le6 # Updates le6 # Updates 1e6 # Updates 1e6

Figure 4: Ablations with reward clipping instead of value function rescaling (Clipped), smaller
discount factor of v = 0.99 (Discount), and feed-forward (Feed-Forward) variants of R2D2.

Figure 4 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 29/44

Utilization of LSTM Memory During Inference UriL

Mean Episode Reward % Greedy Action Match AQ
25000 100 20
-
G 20000 — 80 16
LE, 15000 60 12
©
= 10000 40 8
W 5000 Zero State 20 4
& = Stored State
0 0 — I
0 120 80 40 0 120 80 40 0 120 80 40 0
k k k
0]
N
© 40 100 0.8
& 35
S _—t—g %0 0.6
+ 25 L 60 —
g 20 I T/M 0.4
| 15 1 1 - 40 —
g 12 20 0.2
a9 0 0
GEJ o0 120 80 40 0 120 80 40 0 120 80 40 0
k k k

Figure 5 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 30/44

Recall that a Markov decision process (MDP) is a quadruple (S, A, p,~y), where:

® S is a set of states,

e Ais a set of actions,

* p(Sti1=6,Ri1 =7|S; =s,A; = a) is a probability that action a € A will lead from
state s € S to 8’ € S, producing a reward r € R,

v € [0,1] is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a sextuple
(S, A, p,v,0,0), where in addition to an MDP

® (D is a set of observations,
® 0(O4|S;, As_1) is an observation model.

In robotics (out of the domain of this course), several approaches are used to handle POMDPs,
to model uncertainty, imprecise mechanisms and inaccurate sensors.

POMDPs 31/44

In Deep RL, partially observable MDPs are usually handled using recurrent networks. After
suitable encoding of input observation O; and previous action A;_1, a RNN (usually LSTM)

unit is used to model the current Sy (or its suitable latent representation), which is in turn
utilized to produce A;.

a. RL-LSTM
hi
ENVIRONMENT POLICY
v
CEROT I o 1 Ny o —...
T ENCODER daciions
o (g1

POMDPs 32/44

However, keeping all information in the RNN state is substantially limiting. Therefore, memory-
augmented networks can be used to store suitable information in external memory (in the lines

of NTM, DNC or MANN models).
We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

b. RL-MEM
POLICY d
ee <& t
¢
j‘%l%u“ """"" ;tt
¢%
W
I
ENVIRONMENT

(It7 ?‘)t? Tt_]_j Tt) -+ Ot _’ et a)t — 08

ENCODER
T Policy Loss

MERLIN 33/44

ses—ip a,t__l

: : b. RL-MEM
Let M be a memory matrix of size Npyem X 2|2]. oucr SN
| . (7 NG
Assume we have already encoded observations as e; and previous M, - ky <= hy
action a;_1. We concatenate them with K previously read vectors 2

ENVIRONMENT

and process by a deep LSTM (two layers are used in the paper) to
h (Ley v, P 1, T3) —H 0= R B — ...
compute hy. 0 mwna)

ssssssssss

e A1

Then, we apply a linear layer to h;, computing K key vectors
ki,...kg of length 2|z| and K positive scalars 31, ..., Bk.

Reading: For each %, we compute cosine similarity of k; and all memory rows M, multiply the
similarities by 3; and pass them through a softmax to obtain weights w;. The read vector is
then computed as Mw;.

Writing: We find one-hot write index v, to be the least used memory row (we keep usage
indicators and add read weights to them). We then compute V. < YUt + (1 —)0y, and
update the memory matrix using M < M + v, |e;, 0] + v,4]0, e;].

MERLIN 34/44

However, updating the encoder and memory content purely using RL is inefficient. Therfore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations z and storing them in

memory.

According to the paper, the idea of unsupervised and predictive modeling has been entertained
for decades, and recent discussions have proposed such modeling to be connected to
hippocampal memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a prior distribution over z; predicts next state variable conditioned on history of
state variables and actions p(2¢|2t—1,0a¢-1,--.,21,a1), and posterior corrects the prior using
the new observation o, forming a better estimate q(2¢|ot, 2¢-1,at-1,...,21,0a1).

MERLIN 35/44

To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state

variable posterior, and add the difference of the reconstruction and ground truth to the loss.

between the prior and posterior.

We also add KL divergence of the prior and posterior to the loss, to ensure consistency

c. MERLIN READ-ONLY POLICY
MEMORY-BASED PREDICTOR L. ") L".)
by ; Mt <kt -« ht
Pl
PRIOR o4
¢ /‘ %
~ = Input
et — ’."Lt 4+ p <4 h’t = mt mt —J» Neural Network
ENVIRONMENT T T Qﬁ& === Memory read/write
ENCODER KL Loss \v:\ Sample
o Sum
(Ze, ve, g1, Te) —> Ot q % A B TUp = (G = |) P s s ot
POSTERIOR Policy Loss / Stopped gradient
l DECODER
T | Ao~ " i~
(ItaRta Uty At—1,Tt—1, T;E)
Reconstruction Loss
IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

36/44

MERLIN — Algorithm

NPFL122, Lec

rel

IMPALA

Algorithm 1 MERLIN Worker Pseudocode

/I Assume global shared parameter vectors ¢ for the policy network and y for the memory-
based predictor; global shared counter 7" := 0
/I Assume thread-specific parameter vectors 6, x’
/I Assume discount factor v € (0, 1] and bootstrapping parameter A € [0, 1]
Initialize thread step counter ¢ := 1
repeat
Synchronize thread-specific parameters ¢ := 0; ' := x
Zero model’s memory & recurrent state if new episode begins
toart == T
repeat
Prior N (1}, log £¥) = p(hy—1,m41)
e; = enc(o;)
Posterior N (1}, log 37) = q(es, he—1, ms—1, 1}, log 3F)
Sample z ~ N (pf, log £f) :
Policy network update /; = rec(h;_1, 77, StopGradient(z))
Policy distribution 7, = 7 (h¢, StopGradient(z;))
Sample a; ~ m;
hy = rec(hi—1, my, 2t)
Update memory with 2z, by Methods Eq. 2
Ry, o) = dec(z, 7y, ar)
Apply a, to environment and receive reward r, and observation 0,
t=t+1LT:=T+1
until environment termination or ¢ — tyax == Twindow
If not terminated, run additional step to compute V," (241, log 1)
and set Ry := V™ (2441, log m41) // (but don’t increment counters)
Reset performance accumulators A := 0; £ := 0;H :=0
for k from ¢ down to ¢, do
0, if k is environment termination

e v, otherwise
Ry := 1+ ni Ry
O = 1 + %V (2y1, 10g Tep1) — V7 (2, log)
Ap = 0+ (YA Ak
L:=L+ Ly (Eq.T7)
A= A+ A log mi[ay]
H = "H — Qenwropy 2; Tk[i] log mi[i] (Entropy loss)
end for
dy' :==VuL
Y ==V (A+H)
Asynchronously update via gradient ascent 6 using df’ and y using dx’
until 7 > T}

Algorithm 1 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

37/44

MERLIN Ut

da Memory Game b o 9 9
10+ .8 102
[U4HN Y4HRN Y4HH
7 XT4¢Yy XTeYy XTeY
o — % _ ¥ESY %2EF NYEeEY
3 —yean 0 d P25 ER 2alxle PP
) —RL-LSTM 4 9
'§ —F{LﬁEM : ? '-% o e e
= -3 :
g L2 YBINKN Y4NN YEHN
| XTelYy ATy XTéY
) B SN WETY NS
—r 7 1 FTET FRAE FTHA
Number of Environment Steps 108
C Large Environment d 300 Large Environment —
250 | [5—14000
o) - Rl STM 0
5 200 -| = RLMEM ~13000 o
8 150 - ~12000 2
% 100 — o P E41000 S
w z
50 N = B E—woooo
0 g T T 1 E-9000
0.0 0.5 1.0 1.5 2.0
Number of Environment Steps 10°

Figure 2 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

NPFL122, Lecture 10 EEIVIZW: PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 38/44

MERLIN Uz

< -
a b g MERLNMEP «@e RL-LSTM > ELYEY) C MERLIN Return Prediction
W0 10~ «@= MERLINConvnet «gge RL-LSTM Convnet =@ RL-MEM Convnet
22 15.0
130 w58 | —==—0-—8—3¢—35 ¢ 135
RL-LSTM ¥~ 1
5 120 Sy §g h % 12
S 1108 og B 105
] = <
5 10023 S8 s
g 9 E] 2
OE o
T % L2 44 a
5 7 B €
o} 2
E 60 o= 2 &
2L
50 £ -
&
40]
7 g¥ 0 T : : : |
12 3 4 5 6 7 8 % 0 2 4 6 8 10

Sub-Episodes Sub-Episodes

d os
(7}
3.0 g 250 1.0
E .
§ 25 £ -
& > 200 8 08
§ 20 '-;-') &
& o 150 2 06
'g 15 k] w
= (o]
2 10 g 100 g 04
£ MERLIN ‘;,% .%
a—RLLSTM
5 05 ‘e RL-MEM o 50 >° 0.2
o< g 9
0o : ‘ , 2 ol : : : : 00§ : : : ‘
-30 20 -10 o [T 10° 10’ 10 10° 10" 10° 10’ 10° 10°
Agent Steps to Goal Return Cost Coefficient Return Cost Coefficient

«Q

c
]
2
©
>
c
[
n
Q
(]
= Read Head 2 Read Head 3
o
wi
=
o
c] 800 = Agent
5 Z 00 == Read Head 1
s N =3 ‘wmm Read Head 2
S o w® 600 wm Read Head 3
g hoy & 500
S -
€5 £
28 9 %
O ® 200 -
(<] 2 100
4 S
—. —. - @ 0 . . . T)
t=-20 t=-10 t=-5 8 s -40 -30 20 -10 0
Agent Steps to Goal Agent Steps to Goal

Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

NPFL122, Lecture 1 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 39/44

MERLIN URRL

alpha=0.1 alpha- aipm~5 ajpha_w alpha—‘iOCl aipl‘ﬂ-mﬂﬂ alpha=0.1 alpha=1 alpha=5 alpha=10 alpha=100 alpha=1000

alpha=0.1 alpha=1 alpha=5 alpha=10 alpha=100 alpha=1000 alpha=0.1 aliha=1 alpha=5 ajiha=1ﬂ alpha=100 alpha=1000

Extended Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

NPFL122, Lecture 10 EEIVIZW: PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 40/44

Prior
Prior

Observation
Observation

Posterior
Posterior

Prior
Prior

Observation

Posterior

Posterior

Observation
. . . |

For the Win agent for Capture The Flag ezt

(a) FTW Agent Architecture (b) Progression During Training

oK 150K 300K 450K
Winning @M=l
signal @ ™ 1600 —I I | |

1500 -/ Agent Elo FTW

W Internal 1400
reward 1300 = = = = = = = = = /= & — - - m - —- - - - - - Strong Human

; Action 1200 Self-play + RS
Game points Q¢ E 1100))
i 1000 verage Human
i 900 -
600 E
Slow RNN Sampled
latent Learning Rate
variable 4e-4 7 _g\
4e-5 — —_——

1e.3 — KL Weighting

Fast RNN \
5e-4 —
Internal Timescale
Observation x; 15 4+
5
| | | |
0K 150K 300K 450K

Games played
Figure 2 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW 41/44

For the Win agent for Capture The Flag

® Extension of the MERLIN architecture.
® Hierarchical RNN with two timescales.

® Population based training controlling KL divergence penalty weights, slow ticking RNN
speed and gradient flow factor from fast to slow RNN.

NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

U=

42/44

For the Win agent for Capture The Flag

Figure S10 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

NPFL , Lecture 10 IMPALA

(a) Agent (b) Policy (e) Recurrent processing with LSTM

-6
m @
Recurrent Baseline
processing : >-.->56 -»
H Pixal . -Ee-E-e :
i (f) Recurrent processing with

Reward
prediction

(d) Visual embedding

,EE

Visual
*| embedding

(c) Baseline temporal hierarchy

e T l

(h) Reward prediction

Q-6 ~

(i) Pixel control

32
=T

Legend

Convolution X Deconvolution) DNC memory Diagonal

11 with X 11 with X @ LSrTel\l/I”\:)vrl:: X @ (LRU) with N @ dAN'quta}l
x | KxKfiters KxK filters slots of size K istribution

Linear layer Linear layer with RelLU Softmax Softplus
with X X-Y-Z neurons . non-linearity . non-linearity . non-linearity
neurons reshaped to 3D
tensor
Pointwise Module

Input/Output i i

@ addition ® Outer product ! E ! _-E L Samplmg> } Concatenation

PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

43/44

For the Win agent for Capture The Flag

Phase 1 Learning the basics of the game : Phase 2 Increasing navigation, tagging, and coordination skills ' Phase 3 Perfecting strategy and memory

“I have the flag”

Single Neuron
Response

“My flag is taken”

“l am respawning” “Teammate has the flag”

____ ¢ .

100%=
75% =
50% =

Knowledge

i /
0% =

Relative
Internal Reward
Magnitude

Agent
Strength

Behaviour
Probability

-

Agent Tagged Opponent

Agent Picked up Flag
Opponent Captured Flag

EEEUC) Beating '

el Average Beating Strang Humans

Bots Human

Home Base Defence

= © ol Opponent Base Camping

Games Played
0K

Visitation Map

Memory
Usage

Figure 4 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

NPFL , Lecture 10 IMPALA

O)
200K Teammate Following

10K 30K 350K 350K 450K]

. {

Top Memory Read Locations Visitation Map Top Memory Read Locations Visitation Map Top Memory Read Locations

PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

44/44

