
NPFL122, Lecture 10

V-trace, PopArt Normalization,
Partially Observable MDPs
Milan Straka

December 16, 2019

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

IMPALA

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper
and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicates gradients with respect to the parameters
of the policy, IMPALA actors communicates trajectories to the centralized learner.

Figure 1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures" by Lasse Espeholt et al.

Figure 2 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures" by Lasse Espeholt et al.

If many actors are used, the policy used to generate a trajectory can lag behind the latest
policy. Therefore, a new V-trace off-policy actor-critic algorithm is proposed.

2/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – V-trace

Consider a trajectory generated by a behaviour policy .

A regular -step bootstrap target is estimated using

This quantity can be rewritten using a series of single-step TD errors as

(S ,A ,R) t t t+1 t=s
t=s+n b

n

v =s γ R +
t=s

∑
s+n−1

t−s
t+1 γ V (S).N

t

v =s V (S) +s γ (R +
t=s

∑
s+n−1

t−s
t+1 γV (S) −t+1 V (S)).t

3/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – V-trace

In order to devise an off-policy estimate, we utilize the usual importance sampling ratio

We can consider the off-policy estimate to consist of two parts:

independently on the probability of the action , we can estimate the return by our current

estimate ;

depending on the IS ratio, we can correct the estimate by adding the value TD error of

;

arriving at the following estimate

ρ t =def
 .

b(A ∣S)t t

π(A ∣S)t t

A s

V (S)s

(R +s+1 γV (S) −s+1 V (S))s

v =s V (S) +s ρ (R +s s+1 γV (S) −s+1 V (S)).s

4/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – V-trace

The -step V-trace target for is defined as

where is the temporal difference for V

and and are truncated importance sampling ratios with :

Note that if and assuming , reduces to -step Bellman target.

n S s

v s =def
V (S) +s γ c δ V ,

t=s

∑
s+n−1

t−s (∏
i=s

t−1
i) t

δ Vt

δ Vt =def
ρ (R +t t+1 γV (s) −t+1 V (s)),t

ρ t c i ≥ρ̄ c̄

ρ t =def min , , c (ρ̄
b(A ∣S)t t

π(A ∣S)t t) i =def min , .(c̄
b(A ∣S)i i

π(A ∣S)i i)

b = π ≥c̄ 1 v s n

5/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – V-trace

Note that the truncated IS weights and play different roles:

The appears in the definition of and defines the fixed point of the update rule. For

, the target is the value function , if , the fixed point is somewhere

between and . Notice that we do not compute a product of these coefficients.

Concretely, it can be proven that the fixed point of the value function is the policy

The impacts the speed of convergence (the contraction rate of the Bellman operator),

not the sought policy. Because a product of the ratios is computed, it plays an important

role in variance reduction.

However, the paper utilizes and out of , works empirically the

best, so the distinction between and is not useful in practise.

ρ t c i

ρ t δ Vt
 =ρ̄ ∞ v π <ρ̄ ∞

v π v b ρ t

v s

π (a∣x) ∝
 ρ̄ min (b(a∣s),π(a∣s)).ρ̄

c i

c i

=c̄ 1 ∈ρ̄ {1, 10, 100} =ρ̄ 1
c ρ

6/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – V-trace

It is easy to see that the defined -step V-trace target

can be computed recursively as

which is the form usually used for implementation.

n

v s =def
V (S) +s γ c δ V

t=s

∑
s+n−1

t−s (∏
i=s

t−1
i) t

v s =def
V (S) +s δ V +s γc (v −s s+1 V (S)),s+1

7/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – V-trace

Consider a parametrized functions computing and , we update the critic in

the direction of

and the actor in the direction of the policy gradient

where we estimate as .

Finally, we again add the entropy regularization term to the loss function.

v(s; θ) π(a∣s;ω)

(v −s v(S ; θ))∇ v(S ; θ)s θ s

ρ ∇ log π(A ∣S ;ω)(R +s ω s s s+1 γv −s+1 v(S ; θ)),s

Q (S ,A)π s s R +s+1 γv s+1

H(π(⋅∣S ; θ))s

8/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA

Table 1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

9/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp and the global gradient norm clipping

threshold.

Figure 1 of paper "Population Based Training of Neural Networks" by Max Jaderberg et al.

ε

10/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp and the global gradient norm clipping

threshold.

In population based training, several agents are trained in parallel. When an agent is ready
(after 5000 episodes), then:

it may be overwritten by parameters and hyperparameters of another agent, if it is
sufficiently better (5000 episode mean capped human normalized score returns are 5%
better);
and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or
1/1.2 with 33% chance).

ε

11/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – Architecture

Figure 3 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

12/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA

Figure 4 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

13/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – Learning Curves

Figures 5, 6 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

14/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – Atari Games

Table 4 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

15/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – Atari Hyperparameters

Table G1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

16/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – Ablations

Table 2 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner
Architectures" by Lasse Espeholt et al.

No-correction: no off-policy
correction
-correction: add a small value

 during gradient

calculation to prevent to be

very small and lead to unstabilities
during computation

1-step: use instead of ,

but utilize in the policy

gradient update

ε

ε = 10−6

π

log π

V (S)s v s

ρ s

17/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

IMPALA – Ablations

Figure E.1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

The effect of the
policy lag (the
number of updates
the actor is behind
the learned policy)
on the
performance.

18/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

PopArt Normalization

An improvement of IMPALA from Sep 2018, which performs normalization of task rewards
instead of just reward clipping. PopArt stands for Preserving Outputs Precisely, while Adaptively
Rescaling Targets.

Assume the value estimate is computed using a normalized value predictor

and further assume that is an output of a linear function

We can update the and using exponentially moving average with decay rate (in the

paper, first moment and second moment is tracked, and standard deviation is computed as

; decay rate is employed).

v(s; θ,σ,μ) n(s; θ)

v(s; θ,σ,μ) =def
σn(s; θ) + μ

n(s; θ)

n(s; θ) =def
ω f(s; θ −T {ω, b}) + b.

σ μ β

μ υ

σ = υ − μ2 β = 3 ⋅ 10−4

19/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

PopArt Normalization

Utilizing the parameters and , we can normalize the observed (unnormalized) returns as

 and use an actor-critic algorithm with advantage .

However, in order to make sure the value function estimate does not change when the
normalization parameters change, the parameters computing the unnormalized value

estimate are updated under any change and as:

In multi-task settings, we train a task-agnostic policy and task-specific value functions
(therefore, , and are vectors).

μ σ

(G − μ)/σ (G − μ)/σ − n(S; θ)

ω, b
μ → μ′ σ → σ′

ω′ =def
 ω, b

σ′

σ ′ =def
 .

σ′

σb + μ − μ′

μ σ n(s; θ)

20/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

PopArt Results

Table 1 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

Figures 1, 2 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

21/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

PopArt Results

Figure 3 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

22/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

PopArt Results

Figures 4, 5 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

23/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

Recurrent Replay Distributed DQN (R2D2)

Proposed in 2019, to study the effects of recurrent state, experience replay and distributed
training.

R2D2 utilizes prioritized replay, -step double Q-learning with , convolutional layers

followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a
large number of actors (256; each performing approximately 260 steps per second) and learning
from batches by a single learner (achieving 5 updates per second using mini-batches of 64
sequences of length 80).

Instead of individual transitions, the replay buffer consists of fixed-length () sequences

of , with adjacent sequences overlapping by 40 time steps.

n n = 5

m = 80
(s, a, r)

24/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

Recurrent Replay Distributed DQN (R2D2)

Figure 1 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

25/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

Recurrent Replay Distributed DQN (R2D2)

Figure 2 of the paper "Recurrent Experience Replay in Distributed
Reinforcement Learning" by Steven Kapturowski et al.

Table 1 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

26/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

Recurrent Replay Distributed DQN (R2D2)

Table 2 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

27/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

Recurrent Replay Distributed DQN (R2D2)

Figure 9 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

28/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

Recurrent Replay Distributed DQN (R2D2)

Figure 4 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

29/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

Utilization of LSTM Memory During Inference

Figure 5 of the paper "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

30/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

Partially Observable MDPs

Recall that a Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action will lead from

state to , producing a reward ,

 is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a sextuple

, where in addition to an MDP

 is a set of observations,

 is an observation model.

In robotics (out of the domain of this course), several approaches are used to handle POMDPs,
to model uncertainty, imprecise mechanisms and inaccurate sensors.

(S,A, p, γ)

S
A
p(S =t+1 s ,R =′

t+1 r∣S =t s,A =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1]

(S,A, p, γ,O, o)

O
o(O ∣S ,A)t t t−1

31/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

Partially Observable MDPs

In Deep RL, partially observable MDPs are usually handled using recurrent networks. After
suitable encoding of input observation and previous action , a RNN (usually LSTM)

unit is used to model the current (or its suitable latent representation), which is in turn

utilized to produce .

Figure 1a of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

O t A t−1

S t

A t

32/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

MERLIN

However, keeping all information in the RNN state is substantially limiting. Therefore, memory-
augmented networks can be used to store suitable information in external memory (in the lines
of NTM, DNC or MANN models).

We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

Figure 1b of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

33/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

MERLIN – Memory Module

Figure 1b of paper "Unsupervised Predictive Memory in a
Goal-Directed Agent" by Greg Wayne et al.

Let be a memory matrix of size .

Assume we have already encoded observations as and previous

action . We concatenate them with previously read vectors

and process by a deep LSTM (two layers are used in the paper) to
compute .

Then, we apply a linear layer to , computing key vectors

 of length and positive scalars .

Reading: For each , we compute cosine similarity of and all memory rows , multiply the

similarities by and pass them through a to obtain weights . The read vector is

then computed as .

Writing: We find one-hot write index to be the least used memory row (we keep usage

indicators and add read weights to them). We then compute , and

update the memory matrix using .

M N ×mem 2∣z∣

e t

a t−1 K

h t

h t K

k , …k 1 K 2∣z∣ K β , … , β 1 K

i k i M j

β i softmax ω i

Mw i

v wr

v ←ret γv +ret (1 − γ)v wr

M ← M + v [e , 0] +wr t v [0, e]ret t

34/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

MERLIN — Prior and Posterior

However, updating the encoder and memory content purely using RL is inefficient. Therfore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations and storing them in

memory.

According to the paper, the idea of unsupervised and predictive modeling has been entertained
for decades, and recent discussions have proposed such modeling to be connected to
hippocampal memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a prior distribution over predicts next state variable conditioned on history of

state variables and actions , and posterior corrects the prior using

the new observation , forming a better estimate .

z

z t

p(z ∣z , a , … , z , a)t t−1 t−1 1 1

o t q(z ∣o , z , a , … , z , a)t t t−1 t−1 1 1

35/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

MERLIN — Prior and Posterior

To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state
variable posterior, and add the difference of the reconstruction and ground truth to the loss.

We also add KL divergence of the prior and posterior to the loss, to ensure consistency
between the prior and posterior.

Figure 1c of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

36/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

MERLIN — Algorithm

Algorithm 1 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

37/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

MERLIN

Figure 2 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

38/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

MERLIN

Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

39/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

MERLIN

Extended Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

40/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

For the Win agent for Capture The Flag

Figure 2 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

41/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

For the Win agent for Capture The Flag

Extension of the MERLIN architecture.

Hierarchical RNN with two timescales.

Population based training controlling KL divergence penalty weights, slow ticking RNN
speed and gradient flow factor from fast to slow RNN.

42/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

For the Win agent for Capture The Flag

Figure S10 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

43/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

For the Win agent for Capture The Flag

Figure 4 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.

44/44NPFL122, Lecture 10 IMPALA PopArt Normalization R2D2 POMDPs MERLIN CTF-FTW

