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Continuous Action Space
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Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range  for , or more

generally from a Cartesian product of several such ranges:

A simple way how to parametrize the action distribution
is to choose them from the normal distribution.
Given mean  and variance , probability density

function of  is

[a, b] a, b ∈ R

 [a  , b  ].
i

∏ i i

μ σ2

N (μ,σ )2

p(x) =def
 e .
 2πσ2

1 −  2σ2
(x−μ)2
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Continuous Action Space in Gradient Methods

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the 

 distribution we suitably parametrize the action value, usually using the normal

distribution. Considering only one real-valued action, we therefore have

where  and  are function approximation of mean and standard deviation of the

action distribution.

The mean and standard deviation are usually computed from the shared representation, with

the mean being computed as a regular regression (i.e., one output neuron without
activation);
the standard variance (which must be positive) being computed again as a regression,

followed most commonly by either  or , where .

softmax

π(a∣s; θ) =
def

P(a ∼ N(μ(s; θ),σ(s; θ) )),2

μ(s; θ) σ(s; θ)

exp softplus softplus(x) =def log(1 + e )x
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Deterministic Policy Gradient Theorem

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

Deterministic Policy Gradient Theorem
Assume that the policy  is deterministic and computes an action . Then under

several assumptions about continuousness, the following holds:

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al.

∇  J(θ) ∝θ  μ(s)  q  (s, a)∇  π(a∣s; θ).
s∈S

∑
a∈A

∑ π θ

π(s; θ) a ∈ R

∇  J(θ) ∝θ E  [∇  π(s; θ)∇  q  (s, a)   ].s∼μ(s) θ a π ∣∣
∣
a=π(s;θ)
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Deep Deterministic Policy Gradients

Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions (similarly to how expected
Sarsa is also an off-policy algorithm).

We therefore train function approximation for both  and , training 

using a deterministic variant of the Bellman equation:

and  according to the deterministic policy gradient theorem.

The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with ), batch normalization for CNNs, and perform exploration by adding a normal-

distributed noise to predicted actions. Training is performed by Adam with learning rates of 1e-4
and 1e-3 for the policy and critic network, respectively.

π(s; θ) q(s, a; θ) q(s, a; θ)

q(S  ,A  ; θ) =t t E  [R  +R  ,S  t+1 t+1 t+1 γq(S  ,π(S  ; θ))]t+1 t+1

π(s; θ)

τ = 0.001
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Deep Deterministic Policy Gradients
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Algorithm 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.
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Twin Delayed Deep Deterministic Policy Gradient

The paper Addressing Function Approximation Error in Actor-Critic Methods by Scott Fujimoto
et al. from February 2018 proposes improvements to DDPG which

decrease maximization bias by training two critics and choosing minimum of their
predictions;

introduce several variance-lowering optimizations:
delayed policy updates;
target policy smoothing.
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TD3 – Maximization Bias

Similarly to Q-learning, the DDPG algorithm suffers from maximization bias. In Q-learning, the
maximization bias was caused by the explicit  operator. For DDPG methods, it can be

caused by the gradient descent itself. Let  be the parameters maximizing the  and let 

 be the hypothetical parameters which maximise true , and let  and  denote

the corresponding policies.

Because the gradient direction is a local maximizer, for sufficiently small  we have

However, for real  and for sufficiently small  it holds that

Therefore, if , for 

max
θ  approx q  θ

θ  true q  π π  approx π  true

α < ε  1

E[q  (s,π  )] ≥θ approx E[q  (s,π  )].θ true

q  π α < ε  2

E[q  (s,π  )] ≥π true E[q  (s,π  )].π approx

E[q  (s,π  )] ≥θ true E[q  (s,π  )]π true α < min(ε  , ε  )1 2

E[q  (s,π  )] ≥θ approx E[q  (s,π  )].π approx
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TD3 – Maximization Bias
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Figure 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by
Scott Fujimoto et al.
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Figure 2 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by
Scott Fujimoto et al.

Analogously to Double DQN we could compute the learning targets using the current policy and
the target critic, i.e.,  (instead of using target policy and target critic as in

DDPG), obtaining DDQN-AC algorithm. However, the authors found out that the policy
changes too slowly and the target and current networks are too similar.

Using the original Double Q-learning, two pairs of actors and critics could be used, with the
learning targets computed by the opposite critic, i.e.,  for updating .

The resulting DQ-AC algorithm is slightly better, but still suffering from oversetimation.

r + γq  (s ,π  (s ))θ′ ′
φ

′

r + γq  (s ,π  (s))θ  2
′

φ  1
q  θ  1
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TD3 – Algorithm

The authors instead suggest to employ two critics and one actor. The actor is trained using one
of the critics, and both critics are trained using the same target computed using the minimum

value of both critics as

Furthermore, the authors suggest two additional improvements for variance reduction.

For obtaining higher quality target values, the authors propose to train the critics more
often. Therefore, critics are updated each step, but the actor and the target networks are
updated only every -th step (  is used in the paper).

To explictly model that similar actions should lead to similar results, a small random noise is
added to performed actions when computing the target value:

r + γ  q  (s ,π  (s )).
i=1,2
min θ  i

′
′

φ′
′

d d = 2

r + γ  q  (s ,π  (s ) +
i=1,2
min θ  i

′
′

φ′
′ ε)   for   ε ∼ clip(N (0,σ), −c, c).
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TD3 – Algorithm
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Algorithm 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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TD3 – Algorithm

  

    

     

    

   
  

        

   
     
   
   
   
   
              

 

Table 3 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

12/35NPFL122, Lecture 9 Refresh TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation



TD3 – Results

 

Figure 5 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

 

Table 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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TD3 – Ablations
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Figure 7 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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Figure 8 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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TD3 – Ablations

    

    
    

    

      

      

      

      

      
      

    

    

 

Table 2 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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Deep Reinforcement Learning Overview

We can classify the approaches visited so far into several categories:

deep Q networks: Applicable only for not many discrete actions, a network is used to
estimate the action-value function . Can be trained using an effective off-policy

algorithm without explicit importance sampling corrections (but requires replay buffer).

policy gradient: REINFORCE and Actor-Critic algorithms training a policy over the
actions. The policy can be generally any distribution, so apart from categorical distribution
for discrete actions any continuous distribution can be used. The algorithms are inherently
on-policy, so importance sampling factors must be used for off-policy training. Is often
combined with a value network working as a baseline and/or TD bootstrap.

deterministic policy gradient: For deterministic continuous policies only, paired with a
state-action value network critic. Offers off-policy training algorithm.

q  (s, a)π
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AlphaZero

On 7 December 2018, the AlphaZero paper came out in Science journal. It demonstrates
learning chess, shogi and go, tabula rasa – without any domain-specific human knowledge or
data, only using self-play. The evaluation is performed against strongest programs available.

 

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Overview

AlphaZero uses a neural network which using the current state  predicts ,

where:

 is a vector of move probabilities, and

 is expected outcome of the game in range .

Instead of usual alpha-beta search used by classical game playing programs, AlphaZero uses
Monte Carlo Tree Search (MCTS). By a sequence of simulated self-play games, the search can
improve the estimate of  and , and can be considered a powerful policy evaluation operator –

given a network  predicting policy  and value estimate , MCTS produces a more accurate

policy  and better value estimate  for a given state :

s (p, v) = f(s; θ)

p

v [−1, 1]

p v

f p v

π w s

(π,w) ← MCTS(p, v, f)  for  (p, v) = f(s; θ).
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AlphaZero – Overview

The network is trained from self-play games. The game is played by repeatedly running MCTS
from the state  and choosing a move , until a terminal position  is encountered,

which is scored according to game rules as . Finally, the network parameters are

trained to minimize the error between the predicted outcome  and simulated outcome , and

maximize the similarity of the policy vector  and the search probabilities :

The loss is a combination of:

a mean squared error for the value functions;
a crossentropy/KL divergence for the action distribution;
L2 regularization

s  t a  ∼t π  t s  T

z ∈ {−1, 0, 1}
v z

p  t π  t

L =def (z − v) +2 π logp +T c∣∣θ∣∣ .2
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AlphaZero – Monte Carlo Tree Search

MCTS keeps a tree of currently explored states from a fixed root state. Each node corresponds
to a game state. Each state-action pair  stores the following set of statistics:

visit count ,

total action-value ,

mean action value ,

prior probability  of selecting action  in state .

Each simulation starts in the root node and finishes in a leaf node . In a state , an action

is selected using a variant of PUCT algorithm as , where

with  being slightly time-increasing exploration

rate. Additionally, exploration in  is supported by ,

with  and  for chess, shogi and go, respectively.

(s, a)

N(s, a)
W(s, a)
Q(s, a) =def

W(s, a)/N(s, a)
P (s, a) a s

s  L s  t

a  =t arg max  (Q(s  , a) +a t U(s  , a))t

U(s, a) =def
C(s)P (s, a)  ,

1 + N(s, a)
 N(s)

C(s) = log((1 + N(s) + c  )/c  ) +base base c  init

s  root P (s  , a) =root (1 − ε)p  +a εDir(α)
ε = 0.25 α = 0.3, 0.15, 0.03
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AlphaZero – Monte Carlo Tree Search

When reaching a leaf node, it is evaluated by the network producing  and all its children

are initialized to , , and in the backward pass for all  the

statistics are updates using  and .

 

Figure 2 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.

(p, v)
N = W = Q = 0 P = p t ≤ L

N(s  , a  ) ←t t N(s  , a  ) +t t 1 W(s  , a  ) ←t t W(s  , a  ) +t t v
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AlphaZero – Monte Carlo Tree Search

The Monte Carlo Tree Search runs usually several hundreds simulations in a single tree. The
result is the vector of search probabilities recommending moves to play. This final policy is
either

proportional to visit counts :

or a deterministic policy choosing the most visited action

When simulating a full game, the stochastic policy is used for the first 30 moves of the game,
while the deterministic is used for the rest of the moves. (This does not affect the internal
MCTS search, there we always sample according to PUCT rule.)

N(s  , ⋅)root

π  (a) ∝root (N(s  , a)root

π  =root  (N(s  , a).
a

arg max root
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AlphaZero – Monte Carlo Tree Search Example

 

Figure 4 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

Visualization of the
10 most visited
states in a MCTS
with a given number
of simulations. The
displayed numbers
are predicted value
functions from the
white's perspective,
scaled to 

range. The border
thickness is
proportional to a
node visit count.

[0, 100]
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AlphaZero – Network Architecture

The network processes game-specific input, which consists of a history of 8 board positions
encoded by several  planes, and some number of constant-valued inputs.

Output is considered to be a categorical distribution of possible moves. For chess and shogi, for
each piece we consider all possible moves (56 queen moves, 8 knight moves and 9
underpromotions for chess).

The input is processed by:

initial convolution block with CNN with 256  kernels with stride 1, batch

normalization and ReLU activation,
19 residual blocks, each consisting of two CNN with 256  kernels with stride 1, batch

normalization and ReLU activation, and a residual connection around them,
policy head, which applies another CNN with batch normalization, followed by a convolution
with 73/139 filters for chess/shogi, or a linear layer of size 362 for go,
value head, which applies another CNN with 1  kernel with stride 1, followed by a

ReLU layer of size 256 and final  layer of size 1.

N × N

3 × 3

3 × 3

1 × 1
tanh
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AlphaZero – Network Inputs

  

     

        

        

   

   

   

     

       

  

  

  

     

 

Table S1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Network Outputs

 

   

     

     

     

   

 

   

 

Table S2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Training

Training is performed by running self-play games of the network with itself. Each MCTS uses
800 simulations. A replay buffer of one million most recent games is kept.

During training, 5000 first-generation TPUs are used to generate self-play games.
Simultaneously, network is trained using SGD with momentum of 0.9 on batches of size 4096,
utilizing 16 second-generation TPUs. Training takes approximately 9 hours for chess, 12 hours
for shogi and 13 days for go.
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AlphaZero – Training

 

Figure 1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

  

   

    

       

       

        

 

Table S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Training

According to the authors, training is highly repeatable.

        

  














  

Figure S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

29/35NPFL122, Lecture 9 Refresh TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation



AlphaZero – Symmetries

In the original AlphaGo Zero, symmetries were explicitly utilized, by

randomly sampling a symmetry during training,
randomly sampling a symmetry during evaluation.

However, AlphaZero does not utilize symmetries in any way (because chess and shogi do not
have them).

       

  
















      



 



 

 

Figure S1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Inference

During inference, AlphaZero utilizes much less evaluations than classical game playing programs.

   

      

  

  

      

 

Table S4 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations

 

          

           

            

            

            

            

            

            

            

            

 

Table S8 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

 

          

          

           

           

           

           

          

            

           

 

Table S9 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations

 

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations


































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Figure 4 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.
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AlphaZero – Preferred Chess Openings

 

Figure S2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

35/35NPFL122, Lecture 9 Refresh TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation


