NPFL122, Lecture 9 Uz

TD3, Monte Carlo Tree Search

Milan Straka

m December 09, 2019

a N Charles University in Prague @ 3) (0
L EUROPEAN UNION Faculty of Mathematics and Physics ——
European Structural and Investment Fund

ol Proorartms Recears Institute of Formal and Applied Linguistics .
LAN GTECH 82vel$pmeln}t;angd Educatir\:an " pp g UnleSS Othel’Wlse Stated

Continuous Action Space

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range |a, b| for a,b € R, or more

generally from a Cartesian product of several such ranges:

H[az,bz]

1

A simple way how to parametrize the action distribution

is to choose them from the normal distribution.
Given mean p and variance o2, probability density

function of N (u,d?) is

NPFL122, Lecture 9 Refresh TD3 TL:DR AlphaZero AO-MCTS

0.8

0.6

0.4

0.2

0.0

3

| N
i / \ e vros —|]
mEANTI :
BV /NaNSSE

4

5

Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".

AO-Network

AO-Training

AO0-Evaluation

2/35

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the
softmax distribution we suitably parametrize the action value, usually using the normal
distribution. Considering only one real-valued action, we therefore have

(als; 8) & P(a ~ N (u(s; 8), o(s; 9)2)),

where p1(s; @) and o(s;0) are function approximation of mean and standard deviation of the
action distribution.

The mean and standard deviation are usually computed from the shared representation, with

® the mean being computed as a regular regression (i.e., one output neuron without
activation);

® the standard variance (which must be positive) being computed again as a regression,
followed most commonly by either exp or softplus, where softplus(z) = log(1 + e*).

Refresh

3/35

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

VeJ(0) x Z,u(s) qu(s, a)Vgm(als;8).

s€S acA

Deterministic Policy Gradient Theorem

Assume that the policy 7(s; @) is deterministic and computes an action a € R. Then under
several assumptions about continuousness, the following holds:

VoJ(0) x Espys) [er(s; 0)V.q- (s, a)‘a:ﬂ'(s;e)]'

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al.

Refresh

4/35

Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions (similarly to how expected
Sarsa is also an off-policy algorithm).

We therefore train function approximation for both 7 (s; @) and q(s, a; 8), training q(s, a; 0)
using a deterministic variant of the Bellman equation:

q(St7 Ay 9) — ERt+1,St+1 [Rt+1 -+ 79(5t+17 7T(5t+15 9))}

and 7(s; @) according to the deterministic policy gradient theorem.
The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with 7 = 0.001), batch normalization for CNNs, and perform exploration by adding a normal-

distributed noise to predicted actions. Training is performed by Adam with learning rates of le-4
and 1le-3 for the policy and critic network, respectively.

Refresh 5 / 35

Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#?) and actor p(s|6*) with weights 6% and 6.
Initialize target network Q' and z/ with weights §9" «+ 69, 9" +— g~
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s;
fort=1,Tdo
Select action a; = pu(s¢|0*) + Ny according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s
Store transition (s¢, at, ¢, S¢41) in R
Sample a random minibatch of N transitions (s;, a;, 7, S;4+1) from R
Sety; =i + Q' (si+1, M'(Sz‘+1|9“/)|9Q,)
Update critic by minimizing the loss: L = % > iy — Qsi, ai|9Q))2
Update the actor policy using the sampled policy gradient:

1
VouJ ~ ~ Z VaQ(8,al09) | s=s, ampu(s) Vor 11(30")] s,

Update the target networks:
09 «— 709 + (1 —71)0°
0" 10" + (1 —7)0"

end for
end for

Algorithm 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

NPFL122, Lecture 9 EERES TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation 6/35

Twin Delayed Deep Deterministic Policy Gradient UrzL

The paper Addressing Function Approximation Error in Actor-Critic Methods by Scott Fujimoto
et al. from February 2018 proposes improvements to DDPG which

® decrease maximization bias by training two critics and choosing minimum of their
predictions;

® introduce several variance-lowering optimizations:
O delayed policy updates;
O target policy smoothing.

NPFL122, Lecture 9 RERND TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation 7/35

Similarly to Q-learning, the DDPG algorithm suffers from maximization bias. In Q-learning, the
maximization bias was caused by the explicit max operator. For DDPG methods, it can be

caused by the gradient descent itself. Let @ 4ppr0; be the parameters maximizing the gg and let

0. be the hypothetical parameters which maximise true g, and let Tapproz aNd Ty denote
the corresponding policies.

Because the gradient direction is a local maximizer, for sufficiently small ¢ < €1 we have

E [C.Ie (37 7Tonpprom)} > E [%(87 the)] .

However, for real g, and for sufficiently small a < €9 it holds that
E |:Q7T(87 the)} Z E [QW('S) 7"-approac)] .
Therefore, if E[qg(s, wtme)} > E[qﬂ(s, ﬂ'tme)], for a < min(eq, €2)

E [Q@ (37 7"'a,pp'roaz)] > K [Qﬁ (37 7"'ozpprox)} .

TD3

8/35

TD3 — Maximization Bias UL

400 400

500 400
300 400 300
3 E 300
= 200 300 = 200]
= > p 200
- 200 o o)
< 100 mCDQ -»True CDQ 109 <1000 £/ mpbpQ-AC - True DQ-AC 100
0 Wi DDPG -e- True DDPG 0 == DDQN-AC --True DDQN-AC |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6) Time steps (1e6) Time steps (1e6) Time steps (1€6)
(a) Hopper-v1 (b) Walker2d-v1 (a) Hopper-v1 (b) Walker2d-v1
Figure 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Figure 2 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by
Scott Fujimoto et al. Scott Fujimoto et al.

Analogously to Double DQN we could compute the learning targets using the current policy and
the target critic, i.e., 7 + vqg (8', ™, (8")) (instead of using target policy and target critic as in

DDPG), obtaining DDQN-AC algorithm. However, the authors found out that the policy
changes too slowly and the target and current networks are too similar.

Using the original Double Q-learning, two pairs of actors and critics could be used, with the
learning targets computed by the opposite critic, i.e., 7 + Ygg, (s', T, (8)) for updating gg, .
The resulting DQ-AC algorithm is slightly better, but still suffering from oversetimation.

NPFL122, Lecture 9 RERND TD3 TL;DR AlphaZero AO0-MCTS AO0-Network AO-Training A0-Evaluation 9/35

The authors instead suggest to employ two critics and one actor. The actor is trained using one
of the critics, and both critics are trained using the same target computed using the minimum

value of both critics as

'r—|—’yzm%nq9/(s T (8')).

Furthermore, the authors suggest two additional improvements for variance reduction.

® For obtaining higher quality target values, the authors propose to train the critics more
often. Therefore, critics are updated each step, but the actor and the target networks are
updated only every d-th step (d = 2 is used in the paper).

® To explictly model that similar actions should lead to similar results, a small random noise is

added to performed actions when computing the target value:

r 4y min qo (8", (s') +€) for e~ clip(N(0,0),—c¢,c).

TD3

10/35

TD3 - Algorithm et

Algorithm 1 TD3

Initialize critic networks Qg, , Qs,, and actor network 7
with random parameters 61, 02, ¢
Initialize target networks 6] <— 01, 0 < 05, ¢' < ¢
Initialize replay buffer B
fort =1to T do
Select action with exploration noise a ~ 74 (s) + €,
e ~ N (0, o) and observe reward r and new state s’
Store transition tuple (s, a,r, s’) in B

Sample mini-batch of IV transitions (s, a,r, s") from B

a< my(s')+e, €~ clipN(0,5),—c,c)

Y < 7+ ymin=1,2 Qo (s, @)

Update critics 0; < argming N~ >~ (y—Qo, (s, a))?

if £ mod d then
Update ¢ by the deterministic policy gradient:
V¢J(¢) =N"! Z VaQo, <S7 a)la:ﬁ¢(s)v¢7r¢(8)
Update target networks:
0; < 16; + (1 —1)0;
¢ 1o+ (1—7)¢

end if

end for
Algorithm 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

NPFL122, Lecture 9 RERND TD3 TL;DR AlphaZero AO0-MCTS AO0-Network AO-Training A0-Evaluation 11/35

Hyper-parameter Ours DDPG
Critic Learning Rate 107° 1077
Critic Regularization None 102 - ||6]]°
Actor Learning Rate 1075 10~*
Actor Regularization None None
Optimizer Adam Adam
Target Update Rate (7) 5.107° 10~
Batch Size 100 64
Iterations per time step 1 1
Discount Factor 0.99 0.99
Reward Scaling 1.0 1.0
Normalized Observations False True
Gradient Clipping False False
Exploration Policy N(0,0.1) OU,0=0.15,u=0,0 =0.2

TD3

12/35

TD3 — Results

mm TD3 == DDPG = our DDPG m PPO m TRPO m ACKTR == SAC
10000 3500 5000
< 8000 3000 4000 4000
E] 2500 3000
& 6000 3000
% 4000 ?ggg 2000 2000
2 2000 = 1000 1000 1000
0 Z 500 0
0 0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 60 02z 04 06 08 10
Time steps (1e6) Time steps (1e6) Time steps (1e6) Time steps (1e6)
(a) HalfCheetah-v1 (b) Hopper-v1 (c) Walker2d-v1 (d) Ant-v1
1000 10000
c 900 8000
3 800 6000|
© 700 ¢
§ 600 4000
< 500 2000
400 0
~1250 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Time steps (1€6) Time steps (1e6) Time steps (1e6)
(e) Reacher-v1 (f) InvertedPendulum-vl (g) InvertedDoublePendulum-v1
Figure 5 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
Environment TD3 DDPG Our DDPG PPO TRPO ACKTR SAC
HalfCheetah 9636.95 4+ 859.065 3305.60 8577.29 179543 -15.57 1450.46 2347.19
Hopper 3564.07 - 114.74 2020.46 1860.02 2164.70 247130 2428.39 2996.66
Walker2d 4682.82 + 539.64 1843.85 3098.11 3317.69 232147 1216.70 1283.67
Ant 4372.44 +1000.33 1005.30 888.77 1083.20 -75.85 1821.94 655.35
Reacher -3.60 £ 0.56 -6.51 -4.01 -6.18 -111.43 -4.26 -4.44
InvPendulum 1000.00 + 0.00 1000.00 1000.00 1000.00 985.40 1000.00 1000.00
InvDoublePendulum 9337.47 + 14.96 9355.52 8369.95 8977.94 205.85 9081.92 8487.15

Table 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

NPFL122, Lecture 9 Refresh TD3

TL;DR

AlphaZero

A0-MCTS

AO-Network

AO-Training

AO0-Evaluation

13/35

[] ’ —
I'D3 — Ablations UrL
== TD3 == DDPG == AHE == TD3 - TPS == TD3 - DP == TD3 - CDQ
10000 3500 T 5000 4000
3000
£ 8000 4000
% 2500 3000
@ 6000 3000
> 2000 2000
£ 4000 1500 2000 1000
z 1000
2000 1000
500 0
0 0 0 1000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6) Time steps (1e6) Time steps (1€6) Time steps (1€6)
(a) HalfCheetah-v1 (b) Hopper-vl (c) Walker2d-vl1 (d) Ant-v1
Figure 7 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
= TD3 m AHE = TD3 - CDQ = DQ-AC == DDQN-AC
5000
10000
£ 5000 4000 4000
% 3000 3000
o
> 6000 2000
® 2000
§ 4000 1000
< 2000 1000 0
0 0 1000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6) Time steps (1e6) Time steps (1e6) Time steps (1e6)
(a) HalfCheetah-v1 (b) Hopper-vl (c) Walker2d-v1 (d) Ant-v1

NPFL122, Lecture 9 Refresh

TD3

Figure 8 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

TL;DR AlphaZero AO-MCTS AO-Network AO-Training AO0-Evaluation

14/35

Method HCheetah Hopper Walker2d Ant

TD3 9532.99 3304.75 4565.24 4185.06
DDPG 3162.50 1731.94 1520.90 816.35
AHE 8401.02 1061.77 2362.13 564.07
AHE + DP 7588.64 1465.11 2459.53 896.13
AHE + TPS 9023.40 907.56 2961.36 872.17
AHE + CDQ 6470.20 1134.14 3979.21 3818.71
TD3 - DP 9590.65 2407.42 4695.50 3754.26
TD3 - TPS 8987.69 2392.59 4033.67 4155.24
TD3 - CDQ 9792.80 1837.32 2579.39 849.75
DQ-AC 9433.87 1773.71 3100.45 2445.97
DDQN-AC 1030690 2155.75 3116.81 1092.18

TD3

15/35

We can classify the approaches visited so far into several categories:

® deep Q networks: Applicable only for not many discrete actions, a network is used to
estimate the action-value function ¢, (s, a). Can be trained using an effective off-policy

algorithm without explicit importance sampling corrections (but requires replay buffer).

® policy gradient: REINFORCE and Actor-Critic algorithms training a policy over the
actions. The policy can be generally any distribution, so apart from categorical distribution
for discrete actions any continuous distribution can be used. The algorithms are inherently
on-policy, so importance sampling factors must be used for off-policy training. Is often
combined with a value network working as a baseline and/or TD bootstrap.

® deterministic policy gradient: For deterministic continuous policies only, paired with a
state-action value network critic. Offers off-policy training algorithm.

TL;DR 16/35

AlphaZero Vet

On 7 December 2018, the AlphaZero paper came out in Science journal. It demonstrates
learning chess, shogi and go, tabula rasa — without any domain-specific human knowledge or
data, only using self-play. The evaluation is performed against strongest programs available.

A
Chess Shogi Go

AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO
2\ H|E S ETEBHS
B
| %|% | %%

RE

£4)

\:ﬁ_

555555555

| B S
2 S

iR|2 |k |2 |R|EF

&

W:29.0% D:70.6% L:0.4% W:842% D:22% L:13.6% W: 68.9% L:31.1%
o 7 I

W: 2.0% D:97.2% L:0.8% W:98.2% D:0.0% L: 1.8% W: 53.7% L: 46.3%
Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

NPFL122, Lecture 9 Refresh TD3 TL;DR AlphaZero AO-MCTS AO-Network AO-Training A0-Evaluation 17/35

AlphaZero uses a neural network which using the current state s predicts (p,v) = f(s;0),
where:

® p is a vector of move probabilities, and
® v is expected outcome of the game in range [—1,1].

Instead of usual alpha-beta search used by classical game playing programs, AlphaZero uses
Monte Carlo Tree Search (MCTS). By a sequence of simulated self-play games, the search can
improve the estimate of p and v, and can be considered a powerful policy evaluation operator —

given a network f predicting policy p and value estimate v, MCTS produces a more accurate
policy 7t and better value estimate w for a given state s:

(7, w) < MCTS(p, v, f) for (p,v) = f(s;0).

AlphaZero 18/35

The network is trained from self-play games. The game is played by repeatedly running MCTS
from the state s; and choosing a move a; ~ 7, until a terminal position s7 is encountered,

which is scored according to game rules as z € {—1,0, 1}. Finally, the network parameters are
trained to minimize the error between the predicted outcome v and simulated outcome 2z, and
maximize the similarity of the policy vector p, and the search probabilities 7v:

def

L= (z—v)*+ 7w logp + /|0

The loss is a combination of:

® a3 mean squared error for the value functions;
® a crossentropy/KL divergence for the action distribution;
® |2 regularization

AlphaZero

19/35

MCTS keeps a tree of currently explored states from a fixed root state. Each node corresponds
to a game state. Each state-action pair (s, a) stores the following set of statistics:

® visit count N(s,a),

® total action-value W (s, a),

® mean action value Q(s,a) = W(s,a)/N(s,a),

® prior probability P(s,a) of selecting action a in state s.

Each simulation starts in the root node and finishes in a leaf node s7,. In a state S, an action
is selected using a variant of PUCT algorithm as a; = arg max, (Q(st,a) + U(st,a)), where

N(s)

Ul(s,a) e C(s)P(s,a) T+ N(s,a)’

with C(8) = log((1 + N(8) =+ Cbase)/Chase) + Cinit being slightly time-increasing exploration
rate. Additionally, exploration in Syoot is supported by P(Syoot, @) = (1 — €)p, + € Dir(a),

with € = 0.25 and a = 0.3, 0.15, 0.03 for chess, shogi and go, respectively.
AO0-MCTS 20/35

AlphaZero — Monte Carlo Tree Search

U=

When reaching a leaf node, it is evaluated by the network producing (p,v) and all its children
are initialized to N = W = () = 0, P = p, and in the backward pass for all t < L the

statistics are updates using N (s, at) < N(st,a¢) + 1 and W (s, ar) < W (st,at) + v.

a Select

b Expand and evaluate

NPFL122, Lecture 9 Refresh

Repeat

€ Backup E d Play

TD3 TL;DR AlphaZero

Figure 2 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.

AO-MCTS AO0-Network AO-Training 21/35

AO0-Evaluation

The Monte Carlo Tree Search runs usually several hundreds simulations in a single tree. The
result is the vector of search probabilities recommending moves to play. This final policy is
either

® proportional to visit counts N (Sreot, *):

Troot (CL) X (N(Sroota CL)
® or a deterministic policy choosing the most visited action

Troot — AIE maX(N(Sroot7 CL).
a

When simulating a full game, the stochastic policy is used for the first 30 moves of the game,
while the deterministic is used for the rest of the moves. (This does not affect the internal
MCTS search, there we always sample according to PUCT rule.)

AO-MCTS 22/35

AlphaZero — Monte Carlo Tree Search Example et

102 Simulations 102 Simulations 104 Simulations 10° Simulations 10 Simulations

Visualization of the

10 most visited m A 6
states in a MCTS CICICICIOICICICIO O @ GP
with a given number S . }
of simulations. The ? d3 d3 da
displayed numbers (=) %1)
are predicted value x 6 N
functions from the 3 3 3
white's perspective, (=) %}
scaled to |0, 100] 7

(=) ()
range. The border ,
thickness is

proportional to a
node visit count.

Q@

::@

Figure 4 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

NPFL122, Lecture 9 RERND TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation 23/35

The network processes game-specific input, which consists of a history of 8 board positions
encoded by several N X N planes, and some number of constant-valued inputs.

Output is considered to be a categorical distribution of possible moves. For chess and shogi, for
each piece we consider all possible moves (56 queen moves, 8 knight moves and 9
underpromotions for chess).

The input is processed by:

® initial convolution block with CNN with 256 3 X 3 kernels with stride 1, batch

normalization and RelLU activation,

® 19 residual blocks, each consisting of two CNN with 256 3 X 3 kernels with stride 1, batch
normalization and RelLU activation, and a residual connection around them,

® policy head, which applies another CNN with batch normalization, followed by a convolution
with 73/139 filters for chess/shogi, or a linear layer of size 362 for go,

® value head, which applies another CNN with 1 1 X 1 kernel with stride 1, followed by a

RelLU layer of size 256 and final tanh layer of size 1.

AO-Network 24/35

Go Chess Shogi

Feature Planes | Feature Planes | Feature Planes
P1 stone 1 | PI piece 6 | P1 piece 14
P2 stone 1 | P2 piece 6 | P2 piece 14
Repetitions 2 | Repetitions 3
P1 prisoner count 7
P2 prisoner count 7
Colour 1 | Colour I | Colour 1
Total move count 1 | Total move count 1

P1 castling 2

P2 castling 2

No-progress count |
Total 17 | Total 119 | Total 362

AO-Network

25/35

AlphaZero — Network Outputs Uz

Chess Shogi

Feature Planes | Feature Planes
Queen moves 56 | Queen moves 64
Knight moves 8 | Knight moves 2
Underpromotions 9 | Promoting queen moves 64

Promoting knight moves 2

Drop 7
Total 73 | Total 139

Table S2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

NPFL122, Lecture 9 RERND TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation 26/35

Training is performed by running self-play games of the network with itself. Each MCTS uses
800 simulations. A replay buffer of one million most recent games is kept.

During training, 5000 first-generation TPUs are used to generate self-play games.
Simultaneously, network is trained using SGD with momentum of 0.9 on batches of size 4096,

utilizing 16 second-generation TPUs. Training takes approximately 9 hours for chess, 12 hours
for shogi and 13 days for go.

AO-Training 27/35

AlphaZero — Training e

A B C
Chess Shogi Go
5000 ¢ + + -
W //J.f/\/"
4000+ T T
o 3000 ¢
* 20001 1 il —— AlphaZero
—— AlphaZero —— AlphaZero —— AlphaGo Zero
1000+ —— Stockfish 1 —— Elmo 1 —— AlphaGo Lee

0 t t t t t t 1 t t + t t t 1 t t t t t + |
0 100 200 300 400 500 600 700 0O 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Thousands of Steps Thousands of Steps Thousands of Steps

Figure 1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

Chess Shogi Go
Mini-batches 700k 700k 700k
Training Time %h 12h 13d
Training Games 44 million 24 million 140 million
Thinking Time 800 sims 800 sims 800 sims

~ 40 ms ~ 80 ms ~ 200 ms

Table S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

NPFL122, Lecture 9 RERSD TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation 28/35

AlphaZero — Training e

According to the authors, training is highly repeatable.

3500 - Chess

3000 |
@)
22500

2000 ¢

1500

0 50 100 150 200 250 300 350 400
Thousands of Steps

Figure S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

NPFL122, Lecture 9 RERSD TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation 29/35

AlphaZero — Symmetries Uz

In the original AlphaGo Zero, symmetries were explicitly utilized, by

® randomly sampling a symmetry during training,
® randomly sampling a symmetry during evaluation.

However, AlphaZero does not utilize symmetries in any way (because chess and shogi do not
have them).
5000 +

4000 ¢

3000
o

L
2000

—— AlphaZero Symmetries

—— AlphaZero
—— AlphaGo Zero

1000 +

0

0 100 200 300 400 500 600 700 O 50 100 150 200 250 300
Thousands of Steps Hours

Figure S1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

NPFL122, Lecture 9 RERSD TD3 TL;DR AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation 30/35

During inference, AlphaZero utilizes much less evaluations than classical game playing programs.

Program Chess Shogi Go
AlphaZero 63k (13k) 58k (12k) 16k (0.6k)
Stockfish 58,100k (24,000k)

Elmo 25,100k (4,600k)

AlphaZero 1.5 GFlop 1.9 GFlop 8.5 GFlop

AO-Evaluation

31/35

AlphaZero Opponent
Fig. Match Start Position|Book Main Inc|Book Main Inc Program
2A Main Initial Board |No 3h 15s|No 3h 15s Stockfish 8
2B 1/100 time Initial Board |No 108s 0.15s|No 3h 15s Stockfish 8
2B 1/30 time Initial Board |No 6min 0.5s|No 3h 15s Stockfish 8
2B 1/10 time Initial Board [No 18min 1.5s|No 3h 15s Stockfish 8
2B 1/3 time Initial Board |No Ih 5s|No 3h 15s Stockfish 8
2C latest Stockfish Initial Board |No 3h 15s|No 3h 15s Stockfish 2018.01.13
2C Opening Book Initial Board |No 3h 15s|Yes 3h 15s Stockfish 8
2D Human Openings Figure 3A° |No 3h 15s|No 3h 15s Stockfish 8
2D TCEC Openings Figure S4 No 3h 15s|No 3h 15s Stockfish 8
AlphaZero Opponent
Fig. Match Start Position | Book Main Inc|Book Main Inc Program
2A Main Initial Board |No 3h 15s|Yes 3h 15s Elmo
2B 1/100 time Initial Board |No 108s 0.15s| Yes 3h 15s Elmo
2B 1/30 time Initial Board |No 6min 0.5s| Yes 3h 15s Elmo
2B 1/10 time Initial Board (No 18min 1.5s]| Yes 3h 15s Elmo
2B 1/3 time Initial Board |No 1h 5s|Yes 3h 15s Elmo
2C Aperyghapaq Initial Board |No 3h 15s|No 3h 15s Aperyghapaq
2C CSA time control Initial Board |[No 10min 10s|Yes 10min 10s Elmo
2D Human Openings Figure 3B No 3h 15s|Yes 3h 15s Elmo
Refresh TD3 TL:DR AlphaZero AO-MCTS AO-Network AO0-Training AO0-Evaluation

32/35

AlphaZero — Ablations e

5 Chess Shogi
o OM I N
1/100time o [
.o O IS N S
1/30time o B N
ioiimo g | —
Sy | N S
13tme o g [
C Latest Stockfish Aperyphapaq
dq | I S
om R 1
Opening Book CSA time control
oy - I
o T I
Y 0 | N
D' Human openings o 71
- I
TCEC openings 2 —] -I
. AlphaZero wins AlphaZero draws . AlphaZero loses O AlphaZero white ‘ AlphaZero black

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

NPFL122, Lecture 9 Refresh TD3 TL:DR AlphaZero A0-MCTS AO0-Network AO-Training A0-Evaluation 33/35

AlphaZero — Ablations

a
4,500 -

4,000

3,500 -

Elo rating

3,000 -

2,500 -

NPFL122, Lecture 9 Refresh

TD3

Prediction accuracy
on professional moves (%)

TL;DR

i A O
A > > > o o
o N o©® © o =
1 1 1 1 1 1

0.45 -

AlphaZero

AO-MCTS

AO-Network

0.207

0.197

0.18-

0.17 1

MSE of professional
game outcomes

0.16 1

0.15-

AO-Training

AO-Evaluation

\/
s
Figure 4 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.

34/35

AlphaZero — Preferred Chess Openings

NPFL122, Lecture 9 Refresh

50k

143k

\\§\

> e
>

N

ey

]
¢

233k

329k

422k

515k

608k

700k

Figure S2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

TD3

TL;DR

AlphaZero

A0-MCTS

AO-Network AO-Training

AO0-Evaluation

35/35

