
NPFL122, Lecture 8

Continuous Actions

Milan Straka

December 02, 2019

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Policy Gradient Methods

Instead of predicting expected returns, we could train the method to directly predict the policy

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution instead of just -greedy sampling.

However, to train the network, we maximize the expected return and to that account we

need to compute its gradient .

π(a∣s; θ).

π ε

v (s)π

∇ v (s)θ π

2/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Policy Gradient Theorem

Let be a parametrized policy. We denote the initial state distribution as and the

on-policy distribution under as . Let also .

Then

and

where is probability of transitioning from state to using 0, 1, … steps.

π(a∣s; θ) h(s)
π μ(s) J(θ) =def E v (s)h,π π

∇ v (s) ∝θ π P (s →
s ∈S′

∑ … → s ∣π) q (s , a)∇ π(a∣s ; θ)′

a∈A

∑ π
′

θ
′

∇ J(θ) ∝θ μ(s) q (s, a)∇ π(a∣s; θ),
s∈S

∑
a∈A

∑ π θ

P (s → … → s ∣π)′ s s′

3/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

REINFORCE Algorithm

The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

maximizing . The loss is defined as

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

where we used the fact that

J(θ) =def E v (s)h,π π

∇ −θ J(θ) ∝ − μ(s) q (s, a)∇ π(a∣s; θ) =
s∈S

∑
a∈A

∑ π θ −E q (s, a)∇ π(a∣s; θ).s∼μ

a∈A

∑ π θ

∇ −θ J(θ) ∝ E E q (s, a)∇ −s∼μ a∼π π θ ln π(a∣s; θ),

∇ ln π(a∣s; θ) =θ ∇ π(a∣s; θ).
π(a∣s; θ)

1
θ

4/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

REINFORCE Algorithm

REINFORCE therefore minimizes the loss

estimating the by a single sample.

Note that the loss is just a weighted variant of negative log likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition" by removing γ^t from the update of θ.

E E q (s, a)∇ −s∼μ a∼π π θ ln π(a∣s; θ),

q (s, a)π

5/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

REINFORCE with Baseline

The returns can be arbitrary – better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline to

The baseline can be a function or even a random variable, as long as it does not depend

on , because

b(s)

∇ J(θ) ∝θ μ(s) (q (s, a) −
s∈S

∑
a∈A

∑ π b(s))∇ π(a∣s; θ).θ

b(s)
a

 b(s)∇ π(a∣s; θ) =
a

∑ θ b(s) ∇ π(a∣s; θ) =
a

∑ θ b(s)∇1 = 0.

6/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

REINFORCE with Baseline

A good choice for is , which can be shown to minimize variance of the estimator.

Such baseline reminds centering of returns, given that

Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting function is also called an advantage function

Of course, the baseline can be only approximated. If neural networks are used to estimate

, then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.

b(s) v (s)π

v (s) =π E q (s, a).a∼π π

q (s, a) −π v (s)π

a (s, a)π =def
q (s, a) −π v (s).π

v (s)π

π(a∣s; θ)

7/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

REINFORCE with Baseline

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition" by removing γ^t from the update of θ.

8/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Actor-Critic

It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called actor-critic methods.

The idea is straightforward – instead of estimating the episode return using the whole episode
rewards, we can use -step temporal difference estimation.n

9/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Actor-Critic

Modified from Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition" by removing I.

10/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Asynchronous Methods for Deep RL

A 2015 paper from Volodymyr Mnih et al., the same group as DQN.

The authors propose an asynchronous framework, where multiple workers share one neural
network, each training using either an off-line or on-line RL algorithm.

They compare 1-step Q-learning, 1-step Sarsa, -step Q-learning and A3C (an asynchronous

advantage actor-critic method). For A3C, they compare a version with and without LSTM.

The authors also introduce entropy regularization term to the loss to support

exploration and discourage premature convergence.

n

βH(π(s; θ))

11/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Parallel Advantage Actor Critic

An alternative to independent workers is to train in a synchronous and centralized way by
having the workes to only generate episodes. Such approach was described in May 2017 by
Clemente et al., who named their agent parallel advantage actor-critic (PAAC).



      

   







  











Figure 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

12/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Parallel Advantage Actor Critic

    

           
      
 
       
     
      
        
      
       
   
  

  



   
     

        
     

  
   









        

   









     


         
       
    

Algorithm 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

13/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Parallel Advantage Actor Critic

        

     

     

      

     

     

      

       

     

     

     

      

       

           

Table 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

The authors use workers, parallel environments, -step returns, , ,

 and a learning rate of .

The is from A3C: 16 filters stride 4, 32 filters stride 2, a dense layer with

256 units. The is from DQN: 32 filters stride 4, 64 filters stride 2, 64

filters stride 1 and 512-unit fully connected layer. All nonlinearities are ReLU.

8 n =e 32 5 γ = 0.99 ε = 0.1
β = 0.01 α = 0.0007 ⋅ n =e 0.0224

arch nips 8 × 8 4 × 4
arch nature 8 × 8 4 × 4

3 × 3
14/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Parallel Advantage Actor Critic

Figure 3 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

15/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Parallel Advantage Actor Critic

Figure 4 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

16/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Parallel Advantage Actor Critic

Figure 2 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

17/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Continuous Action Space







 















    





   










 


 


 


 

Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range for , or more

generally from a Cartesian product of several such ranges:

A simple way how to parametrize the action distribution
is to choose them from the normal distribution.
Given mean and variance , probability density

function of is

[a, b] a, b ∈ R

 [a , b].
i

∏ i i

μ σ2

N (μ,σ)2

p(x) =def
 e .
 2πσ2

1 − 2σ2
(x−μ)2

18/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Continuous Action Space in Gradient Methods

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the

 distribution we suitably parametrize the action value, usually using the normal

distribution. Considering only one real-valued action, we therefore have

where and are function approximation of mean and standard deviation of the

action distribution.

The mean and standard deviation are usually computed from the shared representation, with

the mean being computed as a regular regression (i.e., one output neuron without
activation);
the standard variance (which must be positive) being computed again as a regression,

followed most commonly by either or , where .

softmax

π(a∣s; θ) =
def

P(a ∼ N(μ(s; θ),σ(s; θ))),2

μ(s; θ) σ(s; θ)

exp softplus softplus(x) =def log(1 + e)x

19/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Continuous Action Space in Gradient Methods

During training, we compute and and then sample the action value (clipping it

to if required). To compute the loss, we utilize the probability density function of the

normal distribution (and usually also add the entropy penalty).

 mus = tf.keras.layers.Dense(actions)(hidden_layer)

 sds = tf.keras.layers.Dense(actions)(hidden_layer)

 sds = tf.math.exp(sds) # or sds = tf.math.softplus(sds)

 action_dist = tfp.distributions.Normal(mus, sds)

 # Loss computed as - log π(a|s) - entropy_regularization
 loss = - action_dict.log_prob(actions) * returns \

 - args.entropy_regularization * action_dist.entropy()

μ(s; θ) σ(s; θ)
[a, b]

20/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Continuous Action Space

When the action consists of several real values, i.e., action is a suitable subregion of for

, we can:

either use multivariate Gaussian distribution;
or factorize the probability into a product of univariate normal distributions.

Modeling the action distribution using a single normal distribution might be insufficient, in
which case a mixture of normal distributions is usually used.

Sometimes, the continuous action space is used even for discrete output -- when modeling pixels
intensities (256 values) or sound amplitude (2 values), instead of a softmax we use discretized

mixture of distributions, usually (a distribution with a sigmoid cdf). Then,

However, such mixtures are usually used in generative modeling, not in reinforcement learning.

Rn

n > 1

16

logistic

π(a) = p (σ((a +
i

∑ i 0.5 − μ)/σ)−i i σ((a − 0.5 − μ)/σ)).i i

21/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Deterministic Policy Gradient Theorem

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

Deterministic Policy Gradient Theorem
Assume that the policy is deterministic and computes an action . Then under

several assumptions about continuousness, the following holds:

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al.

∇ J(θ) ∝θ μ(s) q (s, a)∇ π(a∣s; θ).
s∈S

∑
a∈A

∑ π θ

π(s; θ) a ∈ R

∇ J(θ) ∝θ E [∇ π(s; θ)∇ q (s, a)].s∼μ(s) θ a π ∣∣
∣
a=π(s;θ)

22/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Deterministic Policy Gradient Theorem – Proof

The proof is very similar to the original (stochastic) policy gradient theorem. We assume that

 are continuous in all params.

We finish the proof analogously to the gradient theorem by continually expanding .

p(s ∣s, a), ∇ p(s ∣s, a), r(s, a), ∇ r(s, a),π(s; θ), ∇ π(s; θ)′
a

′
a θ

∇ v (s) =θ π ∇ q (s,π(s; θ))θ π

= ∇ (r(s,π(s; θ))+θ p(s ∣s,π(s; θ))v (s) ds)∫
s′

′
π

′ ′

= ∇ π(s; θ)∇ r(s, a) +θ a ∣∣
∣
a=π(s;θ)

∇ p(s ∣s,π(s; θ))v (s) dsθ ∫
s′

′
π

′ ′

= ∇ π(s; θ)∇ (r(s, a) +θ a p(s ∣s, a)v (s) ds) ∫
s′

′
π

′ ′

∣
∣∣
∣
a=π(s;θ)

+ p(s ∣s,π(s; θ))∇ v (s) ds∫
s′

′
θ π

′ ′

= ∇ π(s; θ)∇ q (s, a) +θ a π ∣∣
∣
a=π(s;θ) p(s ∣s,π(s; θ))∇ v (s) ds∫

s′

′
θ π

′ ′

∇ v (s)θ π
′

23/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Deep Deterministic Policy Gradients

Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions (similarly to how expected
Sarsa is also an off-policy algorithm).

We therefore train function approximation for both and , training

using a deterministic variant of the Bellman equation:

and according to the deterministic policy gradient theorem.

The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with), batch normalization for CNNs, and perform exploration by adding a normal-

distributed noise to predicted actions. Training is performed by Adam with learning rates of 1e-4
and 1e-3 for the policy and critic network, respectively.

π(s; θ) q(s, a; θ) q(s, a; θ)

q(S ,A ; θ) =t t E [R +R ,S t+1 t+1 t+1 γq(S ,π(S ; θ))]t+1 t+1

π(s; θ)

τ = 0.001

24/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Deep Deterministic Policy Gradients

   

             

        


  


 

   
     
       
    
     
    

         
           
       
            

      








        




  



        

 








 




   




    





    


 
 

Algorithm 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

25/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Deep Deterministic Policy Gradients
    

 

  

 

 

 



 



















































       

    
 

  

 

 

 



 



















































       

              
           
            
     

Figure 3 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

26/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

Deep Deterministic Policy Gradients

Results using low-dimensional (lowd) version of the environment, pixel representation (pix) and
DPG reference (cntrl).

      

      
      

      
      
      

      
      

      
      
      

      
      

      
      

      
      
      
      
      

      
      
      

      
      

      
      

      

Table 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

27/27NPFL122, Lecture 8 Refresh PAAC Continuous Action Space DPG DDPG

