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Instead of predicting expected returns, we could train the method to directly predict the policy
m(als; 0).

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution 7 instead of just e-greedy sampling.

However, to train the network, we maximize the expected return v, () and to that account we
need to compute its gradient Vgu,(s).
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Let m(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the
def

on-policy distribution under 7 as u(s). Let also J(0) = Ej rv:(s).
Then

Vovr(s) x ZP(S —...— 8| Zqﬂ(S,,CI,)VgTF(CL’S,; 0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vegm(als;0),

s€S acA

where P(s — ... — §'|m) is probability of transitioning from state s to s’ using 0, 1, ... steps.
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The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

def

maximizing J(0) = Ep rv:(s). The loss is defined as

Vo — J(0) x — Z,u(s) Zqﬁ(s,a)ng(ab; 0) = —E;., Zqﬂ(s,a)er(a\s; 0).

s€S acA acA

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

Vo — J(0) x Es ) Eorngr(s,a)Ve — Inm(als; 6),

where we used the fact that

1
m(als; 0)

Volnm(als;0) = Vom(als; 8).
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REINFORCE Algorithm UL
REINFORCE therefore minimizes the loss
EsyEoorgr(s,a)Ve —Inm(als; 0),

estimating the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .,

Input: a differentiable policy parameterization m(al|s, @)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € R (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7(:|-, )
Loop for each step of the episode t =0,1,...,7T — 1:
G« Zfzm YRy, (Gt)
0+ 0+ OéGVlHW(At|St,0)

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition" by removingy”t from the update of .
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The returns can be arbitrary — better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

VeJ(0) x Z,u Z (g-(s,a) — b(s)) Vem(als; 6).

s€S acA

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because

Zb (s)Ver(a|s; 8) = b(s va (als; 0) = b(s)V1 = 0.
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A good choice for b(s) is v (s), which can be shown to minimize variance of the estimator.
Such baseline reminds centering of returns, given that

Vr(8) = Equrgr (s, a).
Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting ¢, (s, a) — v;(s) function is also called an advantage function

def
ar(s,a) = q:(s,a) — v(s).
Of course, the v, (s) baseline can be only approximated. If neural networks are used to estimate
m(als; @), then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.
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REINFORCE with Baseline UL

REINFORCE with Baseline (episodic), for estimating 79 ~ T,

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a? > 0, a% > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7-1, Ar_1, Rr, following 7(-|-, )
Loop for each step of the episode t =0,1,...,1T — 1:
XD IINEE L (Gy)
0 < G — 0(S,w)
W < W+ aV Vo (S,w)
00+ a% Vinm(AS:,0)

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition" by removing y t from the update of 6.
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It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called actor-critic methods.

The idea is straightforward — instead of estimating the episode return using the whole episode
rewards, we can use m-step temporal difference estimation.
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Actor-Critic UL

One-step Actor—Critic (episodic), for estimating w9 ~ m,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a%¥ > 0
Initialize policy parameter 8 € RY and state-value weights w € RY (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

Loop while S is not terminal (for each time step):

A~ 7(]S,0)
Take action A, observe S/, R
d  R+~vy0(S",w) — 0(S,w) (if S” is terminal, then 0(S’,w) = 0)

W w4+ aVoVo(S,w)
0+ 60+ a5Vinn(4]S,0)
S5

Modified from Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition" by removing I.
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A 2015 paper from Volodymyr Mnih et al., the same group as DQN.

The authors propose an asynchronous framework, where multiple workers share one neural
network, each training using either an off-line or on-line RL algorithm.

They compare 1-step Q-learning, 1-step Sarsa, n-step Q-learning and A3C (an asynchronous
advantage actor-critic method). For A3C, they compare a version with and without LSTM.

The authors also introduce entropy regularization term BH (7 (s;0)) to the loss to support
exploration and discourage premature convergence.
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An alternative to independent workers is to train in a synchronous and centralized way by
having the workes to only generate episodes. Such approach was described in May 2017 by
Clemente et al., who named their agent parallel advantage actor-critic (PAAC).

Worker 0

vV VvV VY

Actions

Environments

Worker nw

A

Master

States

\ 4

Targets

PAAC

12/27



Algorithm 1 Parallel advantage actor-critic

1: Initialize timestep counter N = 0 and network weights 8, 8,
2: Instantiate set e of n. environments
3: repeat

4. fort = 1to ¢,z do
5: Sample a; from 7(a¢|s:;0)
6: Calculate v; from V' (s¢; 6,)
7 parallel for : = 1 to n. do
8: Perform action a; ; in environment e;
9: Observe new state s¢1,; and reward 7441 ;
10: end parallel for
11: end for
12- R _ 0 for terminal s;
' tmaxt1 V (Stax+1;0) for non-terminal s¢
13: for t = tmax down to 1 do
14: Ri=7ri:+vRi+1
15: end for
16:  df = — tmaw Sorey 2o (Rei — vi,i) Ve log m(ag,ilse,i;0) + BVoH (m(se,i50))
17 dO, = 75— Z  Stmar 7 (R — V(88,15 600))°

18: Update 9 using df and 6, using d,,.
19: N < N + ne - tmax
20: until N > Noaq
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Game Gorila A3C FF GA3C PAAC archyps PAAC archpare

Amidar 1189.70 263.9 218 701.8 1348.3
Centipede 8432.30 3755.8 7386 5747.32 7368.1
Beam Rider 3302.9 22707.9 N/A 4062.0 6844.0
Boxing 94.9 59.8 92 99.6 99.8
Breakout 402.2 681.9 N/A 470.1 565.3
Ms. Pacman 3233.50 653.7 1978 2194.7 1976.0
Name This Game 6182.16 10476.1 5643 9743.7 14068.0
Pong 18.3 5.6 18 20.6 20.9
Qbert 10815.6 15148.8  14966.0 16561.7 17249.2
Seaquest 13169.06 2355.4 1706 1754.0 1755.3
Space Invaders 1883.4 15730.5 N/A 1077.3 1427.8
Up n Down 12561.58 74705.7 8623 88105.3 100523.3
Training 4d CPU cluster  4d CPU 1d GPU 12h GPU 15h GPU

The authors use 8 workers, ne = 32 parallel environments, 5-step returns, v = 0.99, € = 0.1,
B = 0.01 and a learning rate of & = 0.0007 - n, = 0.0224.

The archy;,s is from A3C: 16 filters 8 X 8 stride 4, 32 filters 4 X 4 stride 2, a dense layer with
256 units. The archp,iure is from DQN: 32 filters 8 X 8 stride 4, 64 filters 4 X 4 stride 2, 64
filters 3 X 3 stride 1 and 512-unit fully connected layer. All nonlinearities are RelU.
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Parallel Advantage Actor Critic
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Figure 3 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.
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Parallel Advantage Actor Critic
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Continuous Action Space

UF\RL

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range |a, b| for a,b € R, or more

generally from a Cartesian product of several such ranges:

H[az,bz]

1

A simple way how to parametrize the action distribution

is to choose them from the normal distribution.
Given mean p and variance o2, probability density

function of N (u,d?) is
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Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the
softmax distribution we suitably parametrize the action value, usually using the normal
distribution. Considering only one real-valued action, we therefore have

(als; 8) & P(a ~ N (u(s; 8), o(s; 9)2)),

where p1(s; @) and o(s;0) are function approximation of mean and standard deviation of the
action distribution.

The mean and standard deviation are usually computed from the shared representation, with

® the mean being computed as a regular regression (i.e., one output neuron without
activation);

® the standard variance (which must be positive) being computed again as a regression,
followed most commonly by either exp or softplus, where softplus(z) = log(1 + e*).

Continuous Action Space
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Continuous Action Space in Gradient Methods UrzL

During training, we compute u(s; @) and o(s; @) and then sample the action value (clipping it
to |a, b| if required). To compute the loss, we utilize the probability density function of the
normal distribution (and usually also add the entropy penalty).

mus = tf.keras.layers.Dense(actions) (hidden_layer)
sds = tf.keras.layers.Dense(actions) (hidden_layer)
sds = tf.math.exp(sds) # or sds = tf.math.softplus(sds)

action_dist = tfp.distributions.Normal (mus, sds)
# Loss computed as - log m(als) - entropy_regularization

loss = - action_dict.log_prob(actions) * returns \
- args.entropy_regularization * action_dist.entropy()
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When the action consists of several real values, i.e., action is a suitable subregion of R for
n > 1, we can:

® either use multivariate Gaussian distribution;
® or factorize the probability into a product of univariate normal distributions.

Modeling the action distribution using a single normal distribution might be insufficient, in
which case a mixture of normal distributions is usually used.

Sometimes, the continuous action space is used even for discrete output -- when modeling pixels
intensities (256 values) or sound amplitude (2'° values), instead of a softmax we use discretized

mixture of distributions, usually logistic (a distribution with a sigmoid cdf). Then,
m(a) = sz- (a((a +0.5—p;)/0i) —o((a—0.5— ,uz-)/az-)).
i
However, such mixtures are usually used in generative modeling, not in reinforcement learning.
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Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

VeJ(0) x Z,u(s) qu(s, a)Vgm(als;8).

s€S acA

Deterministic Policy Gradient Theorem

Assume that the policy 7(s; @) is deterministic and computes an action a € R. Then under
several assumptions about continuousness, the following holds:

VoJ(0) x Espys) [er(s; 0)V.q- (s, a)‘a:ﬂ'(s;e)]'

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al.
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The proof is very similar to the original (stochastic) policy gradient theorem. We assume that
p(s'|s,a), Vep(s'|s,a),7(s,a),V,r(s,a),n(s;0), Vem(s; @) are continuous in all params.

Vov.(s) = Vgq.(s,m(s;0))

=V, (r(s,ﬁ(s; 0)) + /

8/

p(s'|s,m(s;0))v.(s") ds')
= Vor(s;0)V,7(s, a)’a:ﬂ(s;e) + Vo [p(s’|s,w(8; 6))v.(s")ds
= Vg (s;0)V, (r(s, a) + //p(5'|3, a)vﬂ(s’) ds/)

+ / p(s' |s, 7(s; 0)) Veovr(s')ds'

a=m(s;0)

= Vo (s; H)Vaqﬂ(s,a)’azﬂ(s;e) + / p(s'\s,w(s;e))Vquw(S’)ds/

We finish the proof analogously to the gradient theorem by continually expanding Vv, (s').
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Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions (similarly to how expected
Sarsa is also an off-policy algorithm).

We therefore train function approximation for both 7 (s; @) and q(s, a; 8), training q(s, a; 0)
using a deterministic variant of the Bellman equation:

q(St7 Ay 9) — ERt+1,St+1 [Rt+1 -+ 79(5t+17 7T(5t+15 9))}

and 7(s; @) according to the deterministic policy gradient theorem.
The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with 7 = 0.001), batch normalization for CNNs, and perform exploration by adding a normal-

distributed noise to predicted actions. Training is performed by Adam with learning rates of le-4
and 1le-3 for the policy and critic network, respectively.
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Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#?) and actor p(s|6*) with weights 6% and 6.
Initialize target network Q' and z/ with weights §9" «+ 69, 9" +— g~
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s;
fort=1,Tdo
Select action a; = pu(s¢|0*) + Ny according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s
Store transition (s¢, at, ¢, S¢41) in R
Sample a random minibatch of N transitions (s;, a;, 7, S;4+1) from R
Sety; =i + Q' (si+1, M'(Si+1|9“/)|9Q,)
Update critic by minimizing the loss: L = % > iy — Qsi, ai|9Q))2
Update the actor policy using the sampled policy gradient:

1
VouJ ~ ~ Z VaQ(8,al09) | s=s, ampu(s) Vor 11(30")] s,

Update the target networks:
09 «— 709 + (1 —71)0°
0" 10" + (1 —7)0"

end for
end for

Algorithm 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.
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Deep Deterministic Policy Gradients ezt
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Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG
algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark
grey), with target networks and batch normalization (green), with target networks from pixel-only
inputs (blue). Target networks are crucial.

Figure 3 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.
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Results using low-dimensional (/lowd) version of the environment, pixel representation (pix) and
DPG reference (cntrl).

environment Rav,lowd Rbest,lowd Rav,pix Rbest,pi:p Rav,cntrl Rbest,cntrl
blockworld1 1.156 1.511 0.466 1.299 -0.080 1.260
blockworld3da 0.340 0.705 0.889 2.225 -0.139 0.658
canada 0.303 1.735 0.176 0.688 0.125 1.157
canada2d 0.400 0.978 -0.285 0.119 -0.045 0.701
cart 0.938 1.336 1.096 1.258 0.343 1.216
cartpole 0.844 1.115 0.482 1.138 0.244 0.755
cartpoleBalance 0.951 1.000 0.335 0.996 -0.468 0.528
cartpoleParallelDouble 0.549 0.900 0.188 0.323 0.197 0.572
cartpoleSerialDouble 0.272 0.719 0.195 0.642 0.143 0.701
cartpoleSerial Triple 0.736 0.946 0.412 0.427 0.583 0.942
cheetah 0.903 1.206 0.457 0.792 -0.008 0.425
fixedReacher 0.849 1.021 0.693 0.981 0.259 0.927
fixedReacherDouble 0.924 0.996 0.872 0.943 0.290 0.995
fixedReacherSingle 0.954 1.000 0.827 0.995 0.620 0.999
gripper 0.655 0.972 0.406 0.790 0.461 0.816
gripperRandom 0.618 0.937 0.082 0.791 0.557 0.808
hardCheetah 1.311 1.990 1.204 1.431 -0.031 1.411
hopper 0.676 0.936 0.112 0.924 0.078 0.917
hyq 0.416 0.722 0.234 0.672 0.198 0.618
movingGripper 0.474 0.936 0.480 0.644 0.416 0.805
pendulum 0.946 1.021 0.663 1.055 0.099 0.951
reacher 0.720 0.987 0.194 0.878 0.231 0.953
reacher3daFixedTarget 0.585 0.943 0.453 0.922 0.204 0.631
reacher3daRandomTarget 0.467 0.739 0.374 0.735 -0.046 0.158
reacherSingle 0.981 1.102 1.000 1.083 1.010 1.083
walker2d 0.705 1.573 0.944 1.476 0.393 1.397

torcs -393.385 | 1840.036 | -401.911 | 1876.284 | -911.034 | 1961.600
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