NPFL122, Lecture 7 U

Policy Gradient Methods

Milan Straka

m November 25, 2019

a N Charles University in Prague @ (7) (0
L EUROPEAN UNION Faculty of Mathematics and Physics ——
European Structural and Investment Fund

ol Proorartms Recears Institute of Formal and Applied Linguistics .
LAN GTECH gzveI;pmeln}tDangd Educatir\:an " pp g UnleSS Othel’Wlse Stated

Instead of predicting expected returns, we could train the method to directly predict the policy
m(als; 0).

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution 7 instead of just e-greedy sampling.

However, to train the network, we maximize the expected return v, () and to that account we
need to compute its gradient Vgu,(s).

Policy Gradient Methods 2/23

In addition to discarding e-greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might
be of some use though).

1.6 -

20k optir'nal
stochastic

policy

-40 F
£-greedy right
J(0) = v (S)
-60 -
S=—|G
0 £-greedy left
-100 _l 1 1 1 1 |

0 0.1 0.2 013 OT4 0i5 056 0i7 0.8 0.9 1
probability of right action

Policy Gradient Methods

3/23

Let m(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the
def

on-policy distribution under 7 as u(s). Let also J(0) = Ej rv:(s).
Then

Vovr(s) x ZP(S —...— 8| Zqﬂ(S,,CI,)VgTF(CL’S,; 0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vegm(als;0),

s€S acA

where P(s — ... — §'|m) is probability of transitioning from state s to s’ using 0, 1, ... steps.

Policy Gradient Methods 4/23

Vo (s) = V[Za m(als; 8)gx (s, a)}
— :Vﬂ'(a $;0)q:(s,a) + m(a|s;0)Va, (s, a)}
_ :vﬂ(a 5104 (s,a) +(als;0)V (Y p(s'|s,a)(r + vw(S')))}
— :Vw(a $;0)g-(s,a) + w(als; 9)(23/ p(s'|s, a,)VvW(s'))]
We now expand v, (s').
=" | Vn(als; 0)a.(s,a) + m(als;8) (Y p(s']s, 0)
3 [VW(a’ 5';0)g:(s',d') + 7(d']s'; 6) (>, ps"ls, a')V’Uw(s")))}

a/

Continuing to expand all v;(s"), we obtain the following:

0. @)
Vur(s) = Z ZP(S — &' in k steps |m) Zqﬂ(s', a)Vem(als';).
s'eS k=0 acA
Policy Gradient Methods 5/23

To finish the proof of the first part, it is enough to realize that

ZP(S — s in k steps |7) < P(s — ... — §'|m).
k=0

For the second part, we know that

VoJ(0) = EsrVour(s) x Egon Y P(s— ... = 8'|m) > g:(s',a)Vor(als';),
s'eS acA

therefore using the fact that pu(s') = Egop D o P(s — ... — §'|T) we get

VoJ(0) < Y u(s) > ax(s,a)Ver(als;0).

scS acA

Policy Gradient Methods 6/23

The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

minimizing —J(0) = —Ej, rvx(s). The loss gradient is then

Vo — J(0) x — Z,u(s) Zqﬁ(s,a)ng(ab; 0) = —E;., Zqﬂ(s,a)er(a\s; 0).

s€S acA acA

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

Vo — J(0) x Es) Eorngr(s,a)Ve — Inm(als; 6),

where we used the fact that

1
m(als; 0)

Volnm(als;0) = Vom(als; 8).

REINFORCE 7/23

REINFORCE Algorithm UL
REINFORCE therefore minimizes the loss
EsyEoorgr(s,a)Ve —Inm(als; 0),

estimating the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .,

Input: a differentiable policy parameterization m(al|s, @)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € R (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7(:|-,)
Loop for each step of the episode t =0,1,...,7T — 1:
G Zfzm YRy, (Gt)
0+ 0+ OéGVlHW(At|St,0)

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition" by removingy”t from the update of .

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C 8/23

The returns can be arbitrary — better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

VeJ(0) x Z,u Z (g-(s,a) — b(s)) Vem(als; 6).

s€S acA

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because

Zb (s)Ver(a|s; 8) = b(s va (als; 0) = b(s)V1 = 0.

Baseline

9/23

A good choice for b(s) is v (s), which can be shown to minimize variance of the estimator.
Such baseline reminds centering of returns, given that

Vr(8) = Equrgr (s, a).
Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting ¢, (s, a) — v;(s) function is also called an advantage function

def
ar(s,a) = q:(s,a) — v(s).
Of course, the v, (s) baseline can be only approximated. If neural networks are used to estimate
m(als; @), then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.

Baseline 10/23

REINFORCE with Baseline Uz

REINFORCE with Baseline (episodic), for estimating 79 ~ T,

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a? > 0, a% > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7-1, Ar_1, R7, following 7(:|-,)
Loop for each step of the episode t =0,1,...,1T — 1:
XD DINTE L (Gy)
6 < G — 0(S,w)
W < W+ aV Vo (S,w)
00+ a% Vinm(AS:,0)

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition" by removing y t from the update of 6.

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C 11/23

REINFORCE with Baseline Ut

10 REINFORCE with baseline o® =279 % =276

B L wmﬁﬁwwle‘r%l\"v\vi'*vw"ﬁ AN D Ay ~— U (s0)
=20
REINFORCE
_ 913
Go 40| “
Total reward
on episode
averaged over 100 runs
_60 L
_80 L
_90 B | | | | | |
1 200 400 600 800 1000
Episode

Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C 12/23

It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called actor-critic methods.

The idea is straightforward — instead of estimating the episode return using the whole episode
rewards, we can use m-step temporal difference estimation.

13/23

Actor-Critic

Actor-Critic UL

One-step Actor—Critic (episodic), for estimating w9 ~ m,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0
Initialize policy parameter 8 € RY and state-value weights w € RY (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

Loop while S is not terminal (for each time step):

A~ 7(]S,0)
Take action A, observe S/, R
d « R+ ~y0(S",w) — 0(S,w) (if S’ is terminal, then 0(S’,w) = 0)

W w4+ aVoVo(S,w)
0+ 60+ a5Vinn(4]S,0)
S5

Modified from Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition" by removing I.

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Ciritic A3C 14/23

A 2015 paper from Volodymyr Mnih et al., the same group as DQN.

The authors propose an asynchronous framework, where multiple workers share one neural
network, each training using either an off-line or on-line RL algorithm.

They compare 1-step Q-learning, 1-step Sarsa, n-step Q-learning and A3C (an asynchronous
advantage actor-critic method). For A3C, they compare a version with and without LSTM.

The authors also introduce entropy regularization term BH (7 (s;0)) to the loss to support
exploration and discourage premature convergence.

A3C 15/23

Asynchronous Methods for Deep RL

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 0, 0, and counter T' = 0.

Initialize thread step counter ¢ <— 0

Initialize target network weights 6~ < 6

Initialize network gradients df < 0

Get initial state s

repeat
Take action a with e-greedy policy based on Q(s, a; 0)
Receive new state s’ and reward r

[for terminal s’
Y71 r+ymax, Q(s',a’;07) for non-terminal s’
. 2
Accumulate gradients wrt 0: df < db + 8(y—Qé§;,a,9))
/
s=3s

T+ T+ 1landt <+ t+1

if T" mod Iiqrget == 0 then
Update the target network 6~ < 6

end if

ift mod Iasyncupdate == 0 or s is terminal then
Perform asynchronous update of 8 using d6.
Clear gradients df < 0.

end if

until 7’ > T}, 02

Algorithm 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C

16/23

Asynchronous Methods for Deep RL

Algorithm S2 Asynchronous n-step Q-learning - pseudocode for each actor-learner thread.

// Assume global shared parameter vector 6.
// Assume global shared target parameter vector 0~ .
// Assume global shared counter T' = 0.
Initialize thread step counter ¢ <— 1
Initialize target network parameters 8~ <— 6
Initialize thread-specific parameters 6’ = 6
Initialize network gradients df <— 0
repeat

Clear gradients df <— 0

Synchronize thread-specific parameters 6’ = 0

tsta'rt =t
Get state s¢
repeat

Take action a; according to the e-greedy policy based on Q(s:, a; 6")
Receive reward r; and new state S¢1

t+—t+1
T+ T+1
until terminal s; or t — tsiart == tmax
R = 0 for terminal s
| maxe Q(st,a;07) for non-terminal s,
fori e {t —1,...,tstart} do
R+ ri+~vR

8(R—Q(s1,ai30"))*
o6’

Accumulate gradients wrt 0": df < df +
end for
Perform asynchronous update of 6 using df.
if ' mod Ita'r'get == (0 then
0~ 0
end if
until 7 > Taz

Algorithm S2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C

17/23

Asynchronous Methods for Deep RL Uz

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 6 and 0, and global shared counter T' = 0
// Assume thread-specific parameter vectors 0" and 0,
Initialize thread step counter ¢ <— 1
repeat
Reset gradients: df <— 0 and df, < 0.
Synchronize thread-specific parameters 8’ = 6 and 0, = 0,

tsta'rt =t
Get state s¢
repeat

Perform a; according to policy m(az|s¢;0")
Receive reward 7; and new state s;41

t—t+1
T+ T+1
until terminal s; or t — tstart == tmaz
R = { 0 for terminal s;
1 Vs, 0,) for non-terminal s;// Bootstrap from last state
forie {t —1,... tstare} do
R+ ri+~vR

Accumulate gradients wrt 0": d < dO + Vo log w(ai|si; 0') (R — V (si;0,,))
Accumulate gradients wrt 8., d6, < d6, + 8 (R — V (si;05))* /06,
end for
Perform asynchronous update of 6 using df and of 6,, using d@.,,.
until 7' > Th0q0

Algorithm S3 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

(NI 2 VYR NI {TTT Al Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C 18/23

All methods performed updates every 5 actions (fmax = IAsyncUpdate = D), updating the target
network each 40 000 frames.
The Atari inputs were processed as in DQN, using also action repeat 4.

The network architecture is: 16 filters 8 X 8 stride 4, 32 filters 4 X 4 stride 2, followed by a

fully connected layer with 256 units. All hidden layers apply a ReLU non-linearity. Values and/or
action values were then generated from the (same) last hidden layer.

The LSTM methods utilized a 256-unit LSTM cell after the dense hidden layer.

All experiments used a discount factor of v = 0.99 and used RMSProp with momentum decay
factor of 0.99.

A3C 19/23

Asynchronous Methods for Deep RL

16000 Beamrider 600 Breakout 30
— DQN — DOQN
14 —t= — il
o0 i :EZP SARSA >00 i izp SARSA 20
12000 2 I 2
—— n-step Q —— n-step Q
10000 A3C 400 A3C 10
g Q g
S 8000 9 300 0
0))
6000 /4 500 10
4000 /
2000 100 —20!
0 0- -30
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0

Training time (hours)

Training time (hours)

2 4
Training time (hours)

Figure 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

Pong

— DQN
— 1-step Q
—— 1-step SARSA
—— n-step Q

A3C

6 8 10 12 14

12000

Q*bert

— DQN

0000 — l-stepQ
—— 1-step SARSA

8000 ngéep Y
6000
4000
2000

\\ Score

0/

0 2

4 6

8 10 12 14

Training time (hours)

1600

Space Invaders

— DQN

1400 ——]_.Step Q

1200
1000
800
600

— 1-step SARSA
—— n-step Q

A3C

400 /
200

0

2 4 6 8

10 12 14
Training time (hours)

Number of threads

Method

1

2

4

8

16

I-step Q

1.0

3.0

6.3

13.3

24.1

I-step SARSA

1.0

2.8

5.9

13.1

22.1

n-step Q

1.0

2.7

5.9

10.7

17.2

| Method Training Time | Mean | Median |
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C,LSTM 4 days on CPU 623.0% | 112.6%

A3C

1.0

2.1

3.7

6.9

12.5

Table 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by/\\ﬂ/o/lzdym{r Table 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr
nih et al.

NPFL122, Lecture 7 Policy Gradient Methods

REINFORCE

Baseline

Actor-Critic

A3C

Mnih et al.

20,23

Methods for

Breakout

1-step Q, 1 threads
1-step Q, 2 threads

Asynchronous

10000 Beamrider 350

1-step Q, 1 threads
1-step Q, 2 threads

1-step Q, 4 threads 300 1-step Q, 4 threads
8000 1-step Q, 8 threads 1-step Q, 8 threads AN
1-step Q, 16 threads 1-step Q, 16 threads
250

6000
© © 200
s s
& &
4000 150
100
2000
0
0 10 20 30 40 20 30 40
Training epochs Training epochs
12000 Beamrider 350 Breakout
— n-step Q, 1 threads — n-step Q, 1 threads
— n-step Q, 2 threads — n-step Q, 2 threads
— n-step Q, 4 threads 300 — n-step Q, 4 threads Ay \/\,
10000\ iep o 8 threads — n-step Q, 8 threads 2
n-step Q, 16 threads n-step Q, 16 threads
250 A
8000
© o 200
g 6000 §
150
4000
100
2000
0
0 10 20 30 40 20 30 40
Training epochs Training epochs
16000 Beamrider 800 Breakout
—— A3C, 1 threads —— A3C, 1 threads
— A3C, 2 threads —— A3C, 2 threads
14000 __ a3c, 4 threads 700 — A3C, 4 threads
—— A3C, 8 threads —— A3C, 8 threads
12000 A3C, 16 threads 1 600 A3C, 16 threads
10000 500 A fyﬁ 0
. . ANALRBLTN
g 8000 g 400 .f
6000 300
4000 200
100
0 10 20 30 40 10 20 30 40

Trainina epochs Trainina enochs

NPFL122, Lecture 7 Policy Gradient Methods

REINFORCE

Score

Score

Score

-
20 Pong 4500 Q*bert
— 1step Q, 1 threads
15 4000 — 1-step Q2 threads
— 1-step Q, 4 threads
~— 1-step Q, 8 threads
10 3500 1-step Q, 16 threads
5 3000
0 o 2500
s
5
=5 ¥ 2000
-10 1500
_ — 1step Q, 1 threads
1 — 1-step Q, 2 threads 1000
— 1-step Q, 4 threads
-20 ~— 1Lstep Q, 8 threads 500
1-step Q, 16 threads
-25 0
0 10 20 30 40 0 10 20 30 40
Training epochs Training epochs
20 Pong) 6000 Q*bert
— n-step Q, 1 threads
15 — n-step Q, 2 threads
— n-step Q, 4 threads
o 5000 __ | ctep Q. 8 threads
L n-step Q, 16 threads
5 4000
0 g
S 3000
-5)
-10 2000
_1s — n-step Q, 1 threads
— n-step Q, 2 threads 1000
— n-step Q, 4 threads
-20 —— n-step Q, 8 threads
n-step Q, 16 threads
-25 0
10 20 30 40 0 10 20 30 40
Training epochs Training epochs
*
30 Pong 12000 Q*bert
— A3C, 1 threads
— A3C, 2 threads
— A3C, 4 threads
20 10000 __ 3¢ g threads
A3C, 16 threads
10 8000
<
0 S 6000
@
-10 4000
/ — A3C, 1 threads
— A3C, 2 threads
-20 — A3C, 4 threads 2000
—— A3C, 8 threads
A3C, 16 threads e
-30 0°
0 10 20 30 40 0 10 20 30 40

Trainina enochs

Trainina enochs

Figure 3 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

Baseline Actor-Critic A3C

Space Invaders

800
700 A\}N P N
600
© 500
S
&
400
300
— 1-step Q, 1 threads
— 1-step Q, 2 threads
200 —— 1-step Q, 4 threads
~—— 1-step Q, 8 threads
1-step Q, 16 threads
100
0 10 20 30 40
Training epochs
800 Space Invaders
700
600
o 500
s
&
400
300
— n-step Q, 1 threads
— n-step Q, 2 threads
200 — n-step Q, 4 threads
~—— n-step Q, 8 threads
n-step Q, 16 threads
100
[10 20 30 40
Training epochs
1400 Space Invaders

Score

—— A3C, 1 threads
— A3C, 2 threads
1200 — A3C, 4 threads
—— A3C, 8 threads
A3C, 16 threads

[10 20 30 40
Trainina eochs

21/23

Asynchronous

Beamrider

ethods for

Deep RL

Breakout Pong Q*bert Space Invaders

9000 300 20 4000 800
— 1-step Q, 1 threads — 1-step Q, 1 threads — 1-step Q, 1 threads — 1-step Q, 1 threads — 1-step Q, 1 threads
8000 — l-stepQ, 2 threads — 1-step Q, 2 threads 15 — lstepQ,2 threads 3500 — Lstep Q.2 threads — 1-step Q, 2 threads
— 1-step Q, 4 threads 250 — lstepQ, 4 threads — 1-step Q, 4 threads — 1-step Q, 4 threads 700 — 1-step Q, 4 threads
— 1-step Q, 8 threads — 1-step Q, 8 threads — 1-step Q, 8 threads — 1step Q, 8 threads — 1-step Q, 8 threads
7000 1-step Q, 16 threads 1-step Q, 16 threads 10 1-step Q, 16 threads 3000 1-step Q, 16 threads 1-step Q, 16 threads
600
6000 200 5
2500
© 5000 o o 0 o o 500
8 g g $ 2000 :
4000 -5 400
1500
3000 100 -10
1000 300
2000 -15
50
200
1000 -20 500
0 0 =25 0 100
0 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours) Training time (hours) Training time (hours) Training time (hours) Training time (hours)
i -
12000 Beamrider 350 Breakout 20 Pong 4500 Q*bert 800 Space Invaders
— n-step Q, 1 threads — n-step Q, 1 threads —_— — n-step Q, 1 threads — n-step Q, 1 threads
— n-step Q, 2 threads — n-step Q, 2 threads 15 4000 — n-step Q. 2 threads — n-step Q, 2 threads
10000 — M-step Q. 4 threads 300 — n-step Q, 4 threads — n-step Q, 4 threads 700 — n-step Q, 4 threads
— n-step Q, 8 threads — n-step Q, 8 threads — n-step Q, 8 threads — n-step Q, 8 threads
n-step Q, 16 threads n-step Q, 16 threads 10 3500 n-step Q, 16 threads n-step Q, 16 thre:
250 600
8000 5 3000
o o 200 o 0 o 2500 o 500
g o g & & g
150 -5 2000 400
4000 -10 1500
100 300
_ ep Q, 1 threads
2000 s “step Q, 2 threads 1000
50 n-step Q, 4 threads 200
-20 n-step Q, 8 threads 500
n-step Q, 16 threads
0 0 =25 0 100
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours) Training time (hours) Training time (hours) Training time (hours) Training time (hours)
i *
16000 Beamrider 600 Breakout 30 Pong 12000 Q*bert 1600 Space Invaders
— A3C, 1 threads — A3C, 1 threads — A3C, 1 threads — A3C, 1 threads — A3C, 1 threads
— A3C, 2 threads — A3C, 2 threads — A3C, 2 threads — A3C, 2 threads — A3C, 2 threads
14000 __ a3c, 4 threads 500 — A3C, 4 threads 20 — A3C, 4 threads 10000 — A3C, 4 threads 1400 __ a3c, 4 threads
—— A3C, 8 threads —— A3C, 8 threads —— A3C, 8 threads —— A3C, 8 threads —— A3C, 8 threads
12000 A3C, 16 threads A3C, 16 threads A3C, 16 threads A3C, 16 threads 1200 A3C, 16 threads
400 10 8000
10000 1000
L < g < o
S 8000 S 300 s 0 S 6000 S 800
@ @ ful @ a
6000 600
200 -10 4000
4000 400
100 -20 2000
2000 200
0 0 -30 0 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Training time (hours)

NPFL122, Lecture 7

Policy Gradient Methods

Training time (hours)

Training time (hours) Training time (hours)

Training time (hours)

Figure 4 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

REINFORCE Baseline Actor-Critic A3C

22/23

Asynchronous Methods for Deep RL Uz

16000 A3C, Beamrider 1000 A3C, Breakout 30 A3C, Pong 12000 A3C, Q*bert 1400 A3C, Space Invaders
14000 o oee o
800 ° 20 o ® wawe 8gc @ o 10000 °° = 1200
12000 o d . . q N °
Litf 4o oot 8000 1000
10000 A9 Lo 600 10 aq |
° ® o Hl o - e Y
@ 8000 . 3 o AT e o , o 6000 : o 800 AR
§ . § 400 SRBEG Set sty § 0 .’ § . B § L te, @ o ° 0 48 L
6000 gs ‘e T o b 4000 = 600 d . s
ae o X 7 7 ° e e o 0o ® e
4000 o o 1 200 -10 = i a L
°ao . — . K 2000 - O 400 . .
2000 00 e . e) © e ey " .
g oo s . o ° -
. | 0 emose ® a0 oao -20 @ ome con o o b|dH 200 ° |
-2000 -200 -30 -2000 0
10" 1073 102 10" 103 102 10" 102 102 10" 102 10° 10 107 102
Learnina rate Learnina rate Learnina rate Learnina rate Learnina rate

Figure 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C 23/23

