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Instead of predicting expected returns, we could train the method to directly predict the policy
m(als; 0).

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution 7 instead of just e-greedy sampling.

However, to train the network, we maximize the expected return v, () and to that account we
need to compute its gradient Vgu,(s).
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In addition to discarding e-greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might
be of some use though).
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Let m(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the
def

on-policy distribution under 7 as u(s). Let also J(0) = Ej rv:(s).
Then

Vovr(s) x ZP(S —...— 8| Zqﬂ(S,,CI,)VgTF(CL’S,; 0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vegm(als;0),

s€S acA

where P(s — ... — §'|m) is probability of transitioning from state s to s’ using 0, 1, ... steps.
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Vo (s) = V[Za m(als; 8)gx (s, a)}
— :Vﬂ'(a $;0)q:(s,a) + m(a|s;0)Va, (s, a)}
_ :vﬂ(a 5104 (s,a) +(als;0)V (Y p(s'|s,a)(r + vw(S')))}
— :Vw(a $;0)g-(s,a) + w(als; 9)(23/ p(s'|s, a,)VvW(s'))]
We now expand v, (s').
=" | Vn(als; 0)a.(s,a) + m(als;8) (Y p(s']s, 0)
3 [VW(a’ 5';0)g:(s',d') + 7(d']s'; 6) ( >, ps"ls, a')V’Uw(s")) )}

a/

Continuing to expand all v;(s"), we obtain the following:

0. @)
Vur(s) = Z ZP(S — &' in k steps |m) Zqﬂ(s', a)Vem(als'; ).
s'eS k=0 acA
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To finish the proof of the first part, it is enough to realize that

ZP(S — s in k steps |7) < P(s — ... — §'|m).
k=0

For the second part, we know that

VoJ(0) = EsrVour(s) x Egon Y P(s— ... = 8'|m) > g:(s',a)Vor(als'; ),
s'eS acA

therefore using the fact that pu(s') = Egop D o P(s — ... — §'|T) we get

VoJ(0) < Y u(s) > ax(s,a)Ver(als;0).

scS acA
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The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

minimizing —J(0) = —Ej, rvx(s). The loss gradient is then

Vo — J(0) x — Z,u(s) Zqﬁ(s,a)ng(ab; 0) = —E;., Zqﬂ(s,a)er(a\s; 0).

s€S acA acA

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

Vo — J(0) x Es ) Eorngr(s,a)Ve — Inm(als; 6),

where we used the fact that

1
m(als; 0)

Volnm(als;0) = Vom(als; 8).
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REINFORCE Algorithm UL
REINFORCE therefore minimizes the loss
EsyEoorgr(s,a)Ve —Inm(als; 0),

estimating the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .,

Input: a differentiable policy parameterization m(al|s, @)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € R (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7(:|-, )
Loop for each step of the episode t =0,1,...,7T — 1:
G Zfzm YRy, (Gt)
0+ 0+ OéGVlHW(At|St,0)

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition" by removingy”t from the update of .
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The returns can be arbitrary — better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

VeJ(0) x Z,u Z (g-(s,a) — b(s)) Vem(als; 6).

s€S acA

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because

Zb (s)Ver(a|s; 8) = b(s va (als; 0) = b(s)V1 = 0.
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A good choice for b(s) is v (s), which can be shown to minimize variance of the estimator.
Such baseline reminds centering of returns, given that

Vr(8) = Equrgr (s, a).
Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting ¢, (s, a) — v;(s) function is also called an advantage function

def
ar(s,a) = q:(s,a) — v(s).
Of course, the v, (s) baseline can be only approximated. If neural networks are used to estimate
m(als; @), then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.
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REINFORCE with Baseline Uz

REINFORCE with Baseline (episodic), for estimating 79 ~ T,

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a? > 0, a% > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7-1, Ar_1, R7, following 7(:|-, )
Loop for each step of the episode t =0,1,...,1T — 1:
XD DINTE L (Gy)
6 < G — 0(S,w)
W < W+ aV Vo (S,w)
00+ a% Vinm(AS:,0)

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition" by removing y t from the update of 6.
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Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".
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It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called actor-critic methods.

The idea is straightforward — instead of estimating the episode return using the whole episode
rewards, we can use m-step temporal difference estimation.

13/23
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Actor-Critic UL

One-step Actor—Critic (episodic), for estimating w9 ~ m,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0
Initialize policy parameter 8 € RY and state-value weights w € RY (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

Loop while S is not terminal (for each time step):

A~ 7(]S,0)
Take action A, observe S/, R
d « R+ ~y0(S",w) — 0(S,w) (if S’ is terminal, then 0(S’,w) = 0)

W w4+ aVoVo(S,w)
0+ 60+ a5Vinn(4]S,0)
S5

Modified from Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition" by removing I.
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A 2015 paper from Volodymyr Mnih et al., the same group as DQN.

The authors propose an asynchronous framework, where multiple workers share one neural
network, each training using either an off-line or on-line RL algorithm.

They compare 1-step Q-learning, 1-step Sarsa, n-step Q-learning and A3C (an asynchronous
advantage actor-critic method). For A3C, they compare a version with and without LSTM.

The authors also introduce entropy regularization term BH (7 (s;0)) to the loss to support
exploration and discourage premature convergence.
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Asynchronous Methods for Deep RL

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 0, 0, and counter T' = 0.

Initialize thread step counter ¢ <— 0

Initialize target network weights 6~ < 6

Initialize network gradients df < 0

Get initial state s

repeat
Take action a with e-greedy policy based on Q(s, a; 0)
Receive new state s’ and reward r

[ for terminal s’
Y71 r+ymax, Q(s',a’;07) for non-terminal s’
. 2
Accumulate gradients wrt 0: df < db + 8(y—Qé§;,a,9))
/
s=3s

T+ T+ 1landt <+ t+1

if T" mod Iiqrget == 0 then
Update the target network 6~ < 6

end if

ift mod Iasyncupdate == 0 or s is terminal then
Perform asynchronous update of 8 using d6.
Clear gradients df < 0.

end if

until 7’ > T}, 02

Algorithm 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL

Algorithm S2 Asynchronous n-step Q-learning - pseudocode for each actor-learner thread.

// Assume global shared parameter vector 6.
// Assume global shared target parameter vector 0~ .
// Assume global shared counter T' = 0.
Initialize thread step counter ¢ <— 1
Initialize target network parameters 8~ <— 6
Initialize thread-specific parameters 6’ = 6
Initialize network gradients df <— 0
repeat

Clear gradients df <— 0

Synchronize thread-specific parameters 6’ = 0

tsta'rt =t
Get state s¢
repeat

Take action a; according to the e-greedy policy based on Q(s:, a; 6")
Receive reward r; and new state S¢1

t+—t+1
T+ T+1
until terminal s; or t — tsiart == tmax
R = 0 for terminal s
| maxe Q(st,a;07) for non-terminal s,
fori e {t —1,...,tstart} do
R+ ri+~vR

8(R—Q(s1,ai30"))*
o6’

Accumulate gradients wrt 0": df < df +
end for
Perform asynchronous update of 6 using df.
if ' mod Ita'r'get == (0 then
0~ 0
end if
until 7 > Taz

Algorithm S2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL Uz

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 6 and 0, and global shared counter T' = 0
// Assume thread-specific parameter vectors 0" and 0,
Initialize thread step counter ¢ <— 1
repeat
Reset gradients: df <— 0 and df, < 0.
Synchronize thread-specific parameters 8’ = 6 and 0, = 0,

tsta'rt =t
Get state s¢
repeat

Perform a; according to policy m(az|s¢;0")
Receive reward 7; and new state s;41

t—t+1
T+ T+1
until terminal s; or t — tstart == tmaz
R = { 0 for terminal s;
1 Vs, 0,) for non-terminal s;// Bootstrap from last state
forie {t —1,... tstare} do
R+ ri+~vR

Accumulate gradients wrt 0": d < dO + Vo log w(ai|si; 0') (R — V (si;0,,))
Accumulate gradients wrt 8., d6, < d6, + 8 (R — V (si;05))* /06,
end for
Perform asynchronous update of 6 using df and of 6,, using d@.,,.
until 7' > Th0q0

Algorithm S3 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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All methods performed updates every 5 actions (fmax = IAsyncUpdate = D), updating the target
network each 40 000 frames.
The Atari inputs were processed as in DQN, using also action repeat 4.

The network architecture is: 16 filters 8 X 8 stride 4, 32 filters 4 X 4 stride 2, followed by a

fully connected layer with 256 units. All hidden layers apply a ReLU non-linearity. Values and/or
action values were then generated from the (same) last hidden layer.

The LSTM methods utilized a 256-unit LSTM cell after the dense hidden layer.

All experiments used a discount factor of v = 0.99 and used RMSProp with momentum decay
factor of 0.99.
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Asynchronous Methods for Deep RL
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Figure 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

Pong

— DQN
— 1-step Q
—— 1-step SARSA
—— n-step Q

A3C

6 8 10 12 14

12000

Q*bert

— DQN

0000 — l-stepQ
—— 1-step SARSA

8000 ngéep Y
6000
4000
2000

\\ Score

0/

0 2

4 6

8 10 12 14

Training time (hours)

1600

Space Invaders

— DQN

1400 —— ]_.Step Q

1200
1000
800
600

— 1-step SARSA
—— n-step Q

A3C

400 /
200

0

2 4 6 8

10 12 14
Training time (hours)

Number of threads

Method

1

2

4

8

16

I-step Q

1.0

3.0

6.3

13.3

24.1

I-step SARSA

1.0

2.8

5.9

13.1

22.1

n-step Q

1.0

2.7

5.9

10.7

17.2

| Method Training Time | Mean | Median |
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C,LSTM 4 days on CPU 623.0% | 112.6%
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Table 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by/\\ﬂ/o/lzdym{r Table 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr
nih et al.

NPFL122, Lecture 7 Policy Gradient Methods

REINFORCE

Baseline

Actor-Critic

A3C

Mnih et al.

20,23



Methods for

Breakout

1-step Q, 1 threads
1-step Q, 2 threads

Asynchronous

10000 Beamrider 350

1-step Q, 1 threads
1-step Q, 2 threads

1-step Q, 4 threads 300 1-step Q, 4 threads
8000 1-step Q, 8 threads 1-step Q, 8 threads AN
1-step Q, 16 threads 1-step Q, 16 threads
250

6000
© © 200
s s
& &
4000 150
100
2000
0
0 10 20 30 40 20 30 40
Training epochs Training epochs
12000 Beamrider 350 Breakout
— n-step Q, 1 threads — n-step Q, 1 threads
— n-step Q, 2 threads — n-step Q, 2 threads
— n-step Q, 4 threads 300 — n-step Q, 4 threads Ay \/\,
10000\ iep o 8 threads — n-step Q, 8 threads 2
n-step Q, 16 threads n-step Q, 16 threads
250 A
8000
© o 200
g 6000 §
150
4000
100
2000
0
0 10 20 30 40 20 30 40
Training epochs Training epochs
16000 Beamrider 800 Breakout
—— A3C, 1 threads —— A3C, 1 threads
— A3C, 2 threads —— A3C, 2 threads
14000 __ a3c, 4 threads 700 — A3C, 4 threads
—— A3C, 8 threads —— A3C, 8 threads
12000 A3C, 16 threads 1 600 A3C, 16 threads
10000 500 A fyﬁ 0
. . ANALRBLTN
g 8000 g 400 .f
6000 300
4000 200
100
0 10 20 30 40 10 20 30 40

Trainina epochs Trainina enochs

NPFL122, Lecture 7 Policy Gradient Methods

REINFORCE

Score

Score

Score

-
20 Pong 4500 Q*bert
— 1step Q, 1 threads
15 4000 — 1-step Q2 threads
— 1-step Q, 4 threads
~— 1-step Q, 8 threads
10 3500 1-step Q, 16 threads
5 3000
0 o 2500
s
5
=5 ¥ 2000
-10 1500
_ — 1step Q, 1 threads
1 — 1-step Q, 2 threads 1000
— 1-step Q, 4 threads
-20 ~— 1Lstep Q, 8 threads 500
1-step Q, 16 threads
-25 0
0 10 20 30 40 0 10 20 30 40
Training epochs Training epochs
20 Pong ) 6000 Q*bert
— n-step Q, 1 threads
15 — n-step Q, 2 threads
— n-step Q, 4 threads
o 5000 __ | ctep Q. 8 threads
L n-step Q, 16 threads
5 4000
0 g
S 3000
-5 )
-10 2000
_1s — n-step Q, 1 threads
— n-step Q, 2 threads 1000
— n-step Q, 4 threads
-20 —— n-step Q, 8 threads
n-step Q, 16 threads
-25 0
10 20 30 40 0 10 20 30 40
Training epochs Training epochs
*
30 Pong 12000 Q*bert
— A3C, 1 threads
— A3C, 2 threads
— A3C, 4 threads
20 10000 __ 3¢ g threads
A3C, 16 threads
10 8000
<
0 S 6000
@
-10 4000
/ — A3C, 1 threads
— A3C, 2 threads
-20 — A3C, 4 threads 2000
—— A3C, 8 threads
A3C, 16 threads e
-30 0°
0 10 20 30 40 0 10 20 30 40

Trainina enochs

Trainina enochs

Figure 3 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Figure 4 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL Uz
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Figure 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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