NPFL122, Lecture 4 =

N-step Temporal Difference
Methods

Self-Study

m November 4, 2019

a L Charles University in Prague @ 3) (0
L EUROPEAN UNION Faculty of Mathematics and Physics -~
European Structural and Investment Fund

ol Proorartms Recears Institute of Formal and Applied Linguistics .
LAN GTECH 8zvek:pmeln't:angd EducatiR::Jn " pp g UnleSS Othel’Wlse Stated

n-step Methods

Full return is

Gy =) Ri,
k=t

one-step return is
Grir1 = Re1 + YV (St41).

We can generalize both into n-step returns:

t+n—1
Grtin = (Z 'thRkJrl) + 9"V (St1n)-

k=t

def

with Gt = Gy if t +n > T (episode length).

NPFL122, Lecture 4 n-step Methods n-step Sarsa Off-policy n-step Sarsa

U=
FA'L

1-step TD oo-step TD
and TD(0) 2-stepTD 3-step TD n-step TD and Monte Carlo

T 1 1
!

b
!
O

O+—0—CO—o—0O—o
o—O—o—0O——0
- (00— 10

!
B

Figure 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

TreeBackup 2/11

n-step Methods Uz
A natural update rule is

V(St) < V(St) + o [Gt:t—l—n — V(St)] .

n-step TD for estimating V ~ v,

Input: a policy 7

Algorithm parameters: step size « € (0, 1], a positive integer n

Initialize V' (s) arbitrarily, for all s € 8

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T+ o0
Loop fort =0,1,2,... :
| Ift <T, then:

] Take an action according to 7(+|.S;)

| Observe and store the next reward as R;y; and the next state as Sy
| If Siy1 is terminal, then T+t +1

| 7+ t—n+1 (7isthe time whose state’s estimate is being updated)

|

|

|

|

If 7> 0:
G o e g
frd+n< T, then: G + G + ’)’nV(ST+n) (GT:T+n)

V(S:) « V(S;)+alG—-V(S;)
Until7=T7T-1

Algorithm 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 4 n-step Methods n-step Sarsa Off-policy n-step Sarsa TreeBackup 3/11

n-step Methods Example

Using the random walk example, but with 19 states instead of 5,

PRy I U I o B oy BN S

start

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

we obtain the following comparison of different values of n:

NPFL122, Lecture 4

256

0.55 y 512
128 h=64

n=32

05

Average 045}
RMS error
over 19 states 04f

and first 10 A\
episodes ¥

03k n=16

n=4

025F

1
0 0.2 0.4 0.6 0.8 1
(87

Figure 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

n-step Methods n-step Sarsa Off-policy n-step Sarsa TreeBackup

4/11

n-step Sarsa UL
Defining the n-step return to utilize action-value function as

t+n—1

Gt:t+n = Z 'Yk_tRkH—l + ')’nQ(St—l—na At—l—n)
k=t

with Griin = Gy if t +n > T, we get the following straightforward algorithm:

Q(St, Ar) < Q(St, Ar) + o |Grirn — Q(St, Ar)] .

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
—> > +
v
- T >y
' G G G| |y
T * $ < |«

Figure 7.4 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 4 n-step Methods n-step Sarsa Off-policy n-step Sarsa TreeBackup 5/11

n-step Sarsa Algorithm Uz

n-step Sarsa for estimating () ~ ¢, or ¢,

Initialize (s, a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @, or to a fixed given policy

Algorithm parameters: step size a € (0, 1], small € > 0, a positive integer n

All store and access operations (for S;, A, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ag ~ 7(+|Sp)

T <+ o0
Loop fort =10,1,2,...:
| Ift<T, then:

| Take action A;

| Observe and store the next reward as R;;; and the next state as Sy4;
| If Si4+1 is terminal, then:

| T t+1

| else:

| Select and store an action A¢1q ~ w(+|St41)

| 7<t—n+1 (7 is the time whose estimate is being updated)
| Ifr>0:

|

|

|

|

G — Z?:Tlgrnj) ’)’i_T_lRi
If74+n<T,then G < G+Y"Q(Sr4n, Arin) (Gririn)
Q(ST7 AT) — Q(S’T7 A’T) + « [G - Q(ST7 A’T)]

If 7 is being learned, then ensure that 7(:|S;) is e-greedy wrt @

Until r=T1T -1

Algorithm 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 4 n-step Methods n-step Sarsa Off-policy n-step Sarsa TreeBackup 6/11

Recall the relative probability of a trajectory under the target and behaviour policies, which we
now generalize as
min(t+n,T—1)
o def H W(Ak‘Sk)
t:t+n — .
b(Ax|Sk)

k=t
Then a simple off-policy n-step TD can be computed as
V(St) < V(S) + apitin-1 |Grern — V(St)] -
Similarly, n-step Sarsa becomes

Q(St, Ar) < Q(St, Ar) + aptiit+n |Grtin — Q(St, At)] -

Off-policy n-step Sarsa 7/11

Off-policy n-step Sarsa U=t

Off-policy n-step Sarsa for estimating @) ~ q. or ¢r

Input: an arbitrary behavior policy b such that b(als) > 0, for all s € §,;a € A
Initialize Q(s, a) arbitrarily, for all s € §,a € A

Initialize 7 to be greedy with respect to @), or as a fixed given policy

Algorithm parameters: step size a € (0, 1], a positive integer n

All store and access operations (for S¢, A:, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ag ~ b(:|So)

T+ o0
Loop fort =0,1,2,...:
| Ift<T, then:

| Take action A

| Observe and store the next reward as R;4+1 and the next state as Siy1
| If S¢41 is terminal, then:

| T+—t+1

| else:

| Select and store an action A¢y1 ~ b(-|S41)

| 7 t—n+1 (7 is the time whose estimate is being updated)
|

|

|

|

|

|

If+>0:
min(t4+n ,T—1) w(A;|S;
o TG 7 sadsy o)
G ya Z;‘Iil:—gi’l—i—n,'f) fyz—T—lRi
If74+n<T,then: G« G+~"Q(Sr4n, Artn) (Gririn)

Q(S+,Ar) « Q(S+, Ar) + ap G — Q(S-, A)]
If 7 is being learned, then ensure that 7(-|S;) is greedy wrt Q
Until r=T -1

Moditfied from Algorithm 7.3 of "Reinforcement Learning: An Introduction, Second Edition" by changing p_ {t+1:1+n-1} top_ {t+1:t1+n}.

NPFL122, Lecture 4 n-step Methods n-step Sarsa Off-policy n-step Sarsa TreeBackup 8/11

Off-policy n-step Without Importance Sampling Uz

4-step 4-step 4-step
Sarsa Tree backup Expected Sarsa

I I I
A
A q
Ad
/N /N

e O © e o o
Figure 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

Q-learning and Expected Sarsa can learn off-policy without importance sampling.

To generalize to n-step off-policy method, we must compute expectations over actions in each
step of n-step update. However, we have not obtained a return for the non-sampled actions.

Luckily, we can estimate their values by using the current action-value function.

NPFL122, Lecture 4 n-step Methods n-step Sarsa Off-policy n-step Sarsa TreeBackup 9/11

We now derive the n-step reward, starting from one-step:

Guti1 = Ryy1 + Z (a]Si+1)Q(St+1,a). /(l)\&tﬂ

o A o
For two-step, we get: Rt+2I t+1
def St—|—2
Gt 2 = Rt+1 + 7y E :a,#A a‘St—l—l)Q(St—l—la a) + 77T(At+1’St+1)Gt+1:t+2- /f\‘
t+1
* IA#Q
Rits

Therefore, we can generalize to:

N
Gt :t+n = Riy1 + 8 ZG#A 1 W(a\StH)Q(StH, a) + ’Y7T(At+1‘st+1)Gt+1:t+n- o o o

the 3-step
tree-backup
The resulting algorithm is n-step Tree backup and it is an off-policy n-step temporal update

difference method not requiring importance sampling.

TreeBackup 10/11

Off-policy n-step Without Importance Sampling Ut

Initialize (s, a) arbitrarily, for all s € §,a € A

Initialize 7w to be greedy with respect to @, or as a fixed given policy
Algorithm parameters: step size a € (0, 1], a positive integer n

All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Choose an action Ag arbitrarily as a function of Sp; Store Ay
T + o0
Loop fort=0,1,2,... :
| Ift<T:
| Take action A;; observe and store the next reward and state as Ryy1,S¢41
| If Sy41 is terminal:
| T+t+1
] else:
] Choose an action A;4q arbitrarily as a function of S;11; Store A;q4
| 7+ t+1—n (7 is the time whose estimate is being updated)
| If7>0:
| ft+1>1:
’ G+ Rp
] else
| G < Rip1 + 722, m(a]Si41)Q(Si41,)
] Loop for k = min(¢,7 — 1) down through 7 + 1:
| G Ry +7 2 4za, ™(alSk)Q(Sk, a) + ym(Ak|Sk)G
’ Q(ST7AT) < Q(STaAT) +a[G_Q(ST7AT)]
| If 7 is being learned, then ensure that 7 (-|S;) is greedy wrt @
Until 7 =T -1

Algorithm 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 4 n-step Methods n-step Sarsa Off-policy n-step Sarsa TreeBackup 11/11

