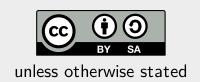


N-step Temporal Difference Methods

Self-Study

■ November 4, 2019

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics



n-step Methods

Full return is

$$G_t = \sum_{k=t}^{\infty} R_{k+1},$$

one-step return is

$$G_{t:t+1} = R_{t+1} + \gamma V(S_{t+1}).$$

We can generalize both into n-step returns:

$$G_{t:t+n} \stackrel{ ext{ iny def}}{=} \left(\sum_{k=t}^{t+n-1} \gamma^{k-t} R_{k+1}
ight) + \gamma^n V(S_{t+n}).$$

with $G_{t:t+n} \stackrel{ ext{def}}{=} G_t$ if $t+n \geq T$ (episode length).

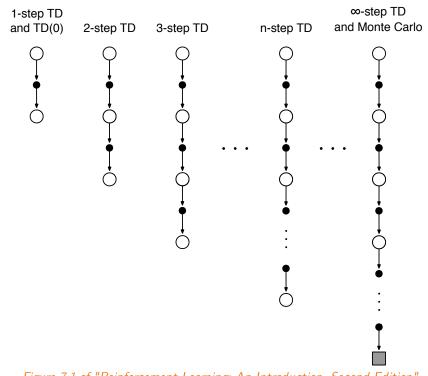


Figure 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

n-step Methods

A natural update rule is

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_{t:t+n} - V(S_t) \right].$$

```
n-step TD for estimating V \approx v_{\pi}
Input: a policy \pi
Algorithm parameters: step size \alpha \in (0,1], a positive integer n
Initialize V(s) arbitrarily, for all s \in S
All store and access operations (for S_t and R_t) can take their index mod n+1
Loop for each episode:
   Initialize and store S_0 \neq \text{terminal}
   T \leftarrow \infty
   Loop for t = 0, 1, 2, ...:
       If t < T, then:
            Take an action according to \pi(\cdot|S_t)
            Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
            If S_{t+1} is terminal, then T \leftarrow t+1
       \tau \leftarrow t - n + 1 (\tau is the time whose state's estimate is being updated)
        If \tau > 0:
           G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i
If \tau + n < T, then: G \leftarrow G + \gamma^n V(S_{\tau+n})
V(S_{\tau}) \leftarrow V(S_{\tau}) + \alpha \left[ G - V(S_{\tau}) \right]
    Until \tau = T - 1
```

Algorithm 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

n-step Methods Example

Using the random walk example, but with 19 states instead of 5,

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

we obtain the following comparison of different values of n:

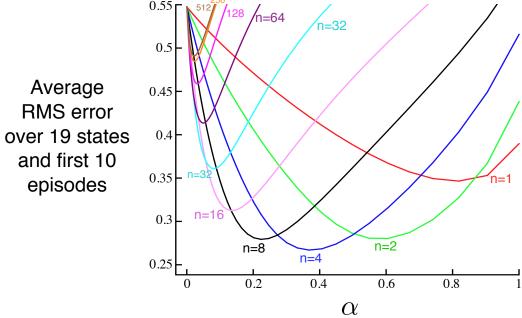


Figure 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

n-step Sarsa

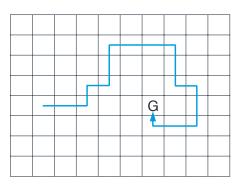
Defining the n-step return to utilize action-value function as

$$G_{t:t+n} \stackrel{ ext{def}}{=} \left(\sum_{k=t}^{t+n-1} \gamma^{k-t} R_{k+1}
ight) + \gamma^n Q(S_{t+n},A_{t+n})$$

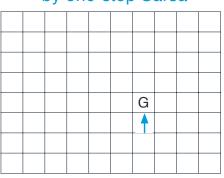
with $G_{t:t+n}\stackrel{ ext{def}}{=} G_t$ if $t+n\geq T$, we get the following straightforward algorithm:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[G_{t:t+n} - Q(S_t, A_t) \right].$$

Path taken



Action values increased by one-step Sarsa



Action values increased by 10-step Sarsa

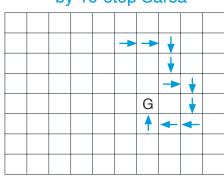


Figure 7.4 of "Reinforcement Learning: An Introduction, Second Edition".

n-step Sarsa Algorithm


```
n-step Sarsa for estimating Q \approx q_* or q_{\pi}
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A
Initialize \pi to be \varepsilon-greedy with respect to Q, or to a fixed given policy
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0, a positive integer n
All store and access operations (for S_t, A_t, and R_t) can take their index mod n+1
Loop for each episode:
   Initialize and store S_0 \neq \text{terminal}
   Select and store an action A_0 \sim \pi(\cdot|S_0)
   T \leftarrow \infty
   Loop for t = 0, 1, 2, ...:
       If t < T, then:
           Take action A_t
           Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
           If S_{t+1} is terminal, then:
               T \leftarrow t + 1
           else:
               Select and store an action A_{t+1} \sim \pi(\cdot|S_{t+1})
       \tau \leftarrow t - n + 1 (\tau is the time whose estimate is being updated)
       If \tau > 0:
           G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i
           If \tau + n < T, then G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})
           Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \left[ G - Q(S_{\tau}, A_{\tau}) \right]
           If \pi is being learned, then ensure that \pi(\cdot|S_{\tau}) is \varepsilon-greedy wrt Q
    Until \tau = T - 1
```

Algorithm 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

Off-policy n-step Sarsa

Recall the relative probability of a trajectory under the target and behaviour policies, which we now generalize as

$$ho_{t:t+n} \stackrel{ ext{def}}{=} \prod_{k=t}^{\min(t+n,T-1)} rac{\pi(A_k|S_k)}{b(A_k|S_k)}.$$

Then a simple off-policy n-step TD can be computed as

$$V(S_t) \leftarrow V(S_t) + \alpha \rho_{t:t+n-1} \left[G_{t:t+n} - V(S_t) \right].$$

Similarly, *n*-step Sarsa becomes

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \rho_{t+1:t+n} \left[G_{t:t+n} - Q(S_t, A_t) \right].$$

Off-policy *n*-step Sarsa


```
Off-policy n-step Sarsa for estimating Q \approx q_* or q_{\pi}
Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s \in \mathcal{S}, a \in \mathcal{A}
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A
Initialize \pi to be greedy with respect to Q, or as a fixed given policy
Algorithm parameters: step size \alpha \in (0,1], a positive integer n
All store and access operations (for S_t, A_t, and R_t) can take their index mod n+1
Loop for each episode:
   Initialize and store S_0 \neq \text{terminal}
   Select and store an action A_0 \sim b(\cdot|S_0)
   T \leftarrow \infty
   Loop for t = 0, 1, 2, ...:
       If t < T, then:
           Take action A_t
           Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
           If S_{t+1} is terminal, then:
               T \leftarrow t + 1
           else:
               Select and store an action A_{t+1} \sim b(\cdot|S_{t+1})
       \tau \leftarrow t - n + 1 (\tau is the time whose estimate is being updated)
       If \tau \geq 0:
           G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i
           If \tau + n < T, then: G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})
           Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \rho \left[ G - Q(S_{\tau}, A_{\tau}) \right]
           If \pi is being learned, then ensure that \pi(\cdot|S_{\tau}) is greedy wrt Q
    Until \tau = T - 1
```

Modified from Algorithm 7.3 of "Reinforcement Learning: An Introduction, Second Edition" by changing ρ_{τ} $\{\tau+1:\tau+n-1\}$ to ρ_{τ} $\{\tau+1:\tau+n\}$.

Off-policy *n*-step Without Importance Sampling

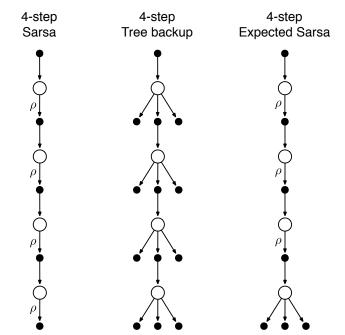


Figure 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

Q-learning and Expected Sarsa can learn off-policy without importance sampling.

To generalize to n-step off-policy method, we must compute expectations over actions in each step of n-step update. However, we have not obtained a return for the non-sampled actions.

Luckily, we can estimate their values by using the current action-value function.

Off-policy *n*-step Without Importance Sampling

We now derive the n-step reward, starting from one-step:

$$G_{t:t+1} \stackrel{ ext{ iny def}}{=} R_{t+1} + \sum
olimits_a \pi(a|S_{t+1})Q(S_{t+1},a).$$

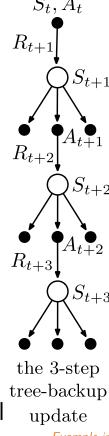
For two-step, we get:

$$G_{t:t+2} \stackrel{ ext{def}}{=} R_{t+1} + \gamma \sum
olimits_{a
eq A_{t+1}} \pi(a|S_{t+1})Q(S_{t+1},a) + \gamma \pi(A_{t+1}|S_{t+1})G_{t+1:t+2}.$$

Therefore, we can generalize to:

$$G_{t:t+n} \stackrel{ ext{def}}{=} R_{t+1} + \gamma \sum
olimits_{a
eq A_{t+1}} \pi(a|S_{t+1})Q(S_{t+1},a) + \gamma \pi(A_{t+1}|S_{t+1})G_{t+1:t+n}.$$

The resulting algorithm is n-step **Tree backup** and it is an off-policy n-step temporal difference method not requiring importance sampling.



Learning: An Introduction, Second Edition".

Off-policy *n*-step Without Importance Sampling


```
n-step Tree Backup for estimating Q \approx q_* or q_{\pi}
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A
Initialize \pi to be greedy with respect to Q, or as a fixed given policy
Algorithm parameters: step size \alpha \in (0,1], a positive integer n
All store and access operations can take their index mod n+1
Loop for each episode:
   Initialize and store S_0 \neq \text{terminal}
   Choose an action A_0 arbitrarily as a function of S_0; Store A_0
   T \leftarrow \infty
   Loop for t = 0, 1, 2, ...:
      If t < T:
           Take action A_t; observe and store the next reward and state as R_{t+1}, S_{t+1}
           If S_{t+1} is terminal:
              T \leftarrow t + 1
           else:
               Choose an action A_{t+1} arbitrarily as a function of S_{t+1}; Store A_{t+1}
       \tau \leftarrow t + 1 - n (\tau is the time whose estimate is being updated)
       If \tau \geq 0:
          If t + 1 > T:
              G \leftarrow R_T
           else
              G \leftarrow R_{t+1} + \gamma \sum_{a} \pi(a|S_{t+1})Q(S_{t+1}, a)
           Loop for k = \min(t, T - 1) down through \tau + 1:
              G \leftarrow R_k + \gamma \sum_{a \neq A_k} \pi(a|S_k)Q(S_k, a) + \gamma \pi(A_k|S_k)G
           Q(S_{\tau}, A_{\tau}) \leftarrow Q(\overline{S_{\tau}}, A_{\tau}) + \alpha \left[G - Q(S_{\tau}, A_{\tau})\right]
           If \pi is being learned, then ensure that \pi(\cdot|S_{\tau}) is greedy wrt Q
   Until \tau = T - 1
```

Algorithm 7.5 of "Reinforcement Learning: An Introduction, Second Edition".