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Figure 3.1 of "Reinforcement Learning: An Introduction, Second Edition".

A Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action  will lead from

state  to , producing a reward ,

 is a discount factor.

Let a return  be . The goal is to optimize .

(S,A, p, γ)

S
A
p(S  =t+1 s ,R  =′

t+1 r∣S  =t s,A  =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1]

G  t G  t =def
 γ R  ∑k=0

∞ k
t+1+k E[G  ]0
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Multi-armed Bandits as MDP

To formulate -armed bandits problem as MDP, we do not need states. Therefore, we could

formulate it as:

one-element set of states, ;

an action for every arm, ;

assuming every arm produces rewards with a distribution of , the MDP dynamics

function  is defined as

One possibility to introduce states in multi-armed bandits problem is to have separate reward
distribution for every state. Such generalization is usually called Contextualized Bandits problem.
Assuming that state transitions are independent on rewards and given by a distribution ,

the MDP dynamics function for contextualized bandits problem is given by

n

S = {S}
A = {a  , a  , … , a }1 2 n

N (μ  ,σ  )i i
2

p

p(S, r∣S, a  ) =i N (r∣μ  ,σ  ).i i
2

next(s)

p(s , r∣s, a  ) =′
i N (r∣μ  ,σ  ) ⋅i,s i,s

2 next(s ∣s).′
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Episodic and Continuing Tasks

If the agent-environment interaction naturally breaks into independent subsequences, usually
called episodes, we talk about episodic tasks. Each episode then ends in a special terminal
state, followed by a reset to a starting state (either always the same, or sampled from a
distribution of starting states).

In episodic tasks, it is often the case that every episode ends in at most  steps. These finite-

horizont tasks then can use discount factor , because the return  is

well defined.

If the agent-environment interaction goes on and on without a limit, we instead talk about
continuing tasks. In this case, the discount factor  needs to be sharply smaller than 1.

H

γ = 1 G =def
 γ R  ∑t=0

H t
t+1

γ
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(State-)Value and Action-Value Functions

A policy  computes a distribution of actions in a given state, i.e.,  corresponds to a

probability of performing an action  in state .

To evaluate a quality of a policy, we define value function , or state-value function, as

An action-value function for a policy  is defined analogously as

Evidently,

π π(a∣s)
a s

v  (s)π

v  (s)π =
def E  G  S  = s =π [ t∣ t ] E   γ R   S  = s .π [∑

k=0

∞
k

t+k+1∣
∣∣
∣

t ]

π

q  (s, a)π =def E  G  S  = s,A  = a =π [ t∣ t t ] E   γ R   S  = s,A  = a .π [∑
k=0

∞
k

t+k+1∣
∣∣
∣

t t ]

  

v  (s)π

q  (s, a)π

= E  [q  (s, a)],π π

= E  [R  + γv  (S  )∣S  = s,A  = a].π t+1 π t+1 t t
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Optimal Value Functions

Optimal state-value function is defined as

analogously

Any policy  with  is called an optimal policy. Such policy can be defined as 

. When multiple

actions maximize , the optimal policy can stochastically choose any of them.

Existence
In finite-horizont tasks or if , there always exists a unique optimal state-value function,

unique optimal action-value function, and (not necessarily unique) optimal policy.

v (s)∗ =def
 v  (s),

π
max π

q  (s, a)∗ =
def

 q  (s, a).
π

max π

π  ∗ v  =π  ∗ v  ∗

π  (s)∗ =def
 q  (s, a) =

a
arg max ∗  E[R  +

a
arg max t+1 γv  (S  )∣S  =∗ t+1 t s,A  =t a]

q  (s, a)∗

γ < 1
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Dynamic Programming

Dynamic programming is an approach devised by Richard Bellman in 1950s.

To apply it to MDP, we now consider finite-horizon problems with finite number of states 

and actions , and known MDP dynamics .

The following recursion is usually called the Bellman equation:

It must hold for an optimal value function in a MDP, because future decisions does not depend
on the current one. Therefore, the optimal policy can be expressed as one action followed by
optimal policy from the resulting state.

S
A p

  

v  (s)∗ =  E R  + γv  (S  ) S  = s,A  = a
a

max [ t+1 ∗ t+1 ∣ t t ]

=   p(s , r∣s, a) r + γv  (s ) .
a

max
s ,r′

∑ ′ [ ∗
′ ]
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Dynamic Programming

To turn the Bellman equation into an algorithm, we change the equal signs to assignments:

In a finite-horizon task with at most  steps, the optimal value function is reached after 

iterations of the above assignment – we can show by induction that  is the maximum

return reachable from state  in  steps.

  

v  (s)0

v  (s)k+1

←   {
0
−∞

for terminal state s
otherwise

←  E R  + γv  (S  ) S  = s,A  = a .
a

max [ t+1 k t+1 ∣ t t ]

H H

v  (s)k

s k
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Relations to Graph Algorithms

Searching for optimal value functions of deterministic problems is in fact search for the shortest
path in a suitable graph.

 

https://upload.wikimedia.org/wikipedia/commons/a/a0/Convolutional_code_trellis_diagram.svg
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Bellman-Ford-Moore Algorithm

Bellman-Ford-Moore algorithm:

# input: graph `g`, initial vertex `s` 

for v in g.vertices: d[v] = 0 if v == s else +∞ 

 

for i in range(len(g.vertices) - 1): 

  for e in g.edges: 

    if d[e.source] + e.length < d[e.target]: 

      d[e.target] = d[e.source] + e.length 

 

v  (s) ←k+1  E R  + γv  (S  ) S  = s,A  = a .
a

max [ t+1 k t+1 ∣ t t ]
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Bellman Equation Solutions

If we fix value of terminal states to 0, the Bellman equation has a unique solution. Therefore,
not only does the optimal value function satisfy the Bellman equation, but the converse
statement is also true: If a value function satisfies the Bellman equation, it is optimal.

To sketch the proof of the statement, consider for a contradiction that the value function is not
optimal. Then there exists a state  which has different than optimal value.

Consider now a trajectory following some optimal policy. Such a trajectory eventually reaches a
terminal state.

Lastly focus on the last state on the trajectory with different than optimal value – the Bellman
Equation cannot be fulfilled in this state.

s
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Bellman Backup Operator

Our goal is now to handle also infinite horizon tasks, using discount factor of .

For any value function  we define Bellman backup operator  as

It is not difficult to show that Bellman backup operator is a contraction:

Considering a normed vector space  with sup-norm , from Banach fixed-point

theorem it follows there exist a unique value function  such that

Such unique  is the optimal value function, because it satistifes the Bellman equation.

γ < 1

v ∈ R∣S∣ B : R →∣S∣ R∣S∣

Bv(s) =def
 E R  + γv(S  ) S  = s,A  = a .

a
max [ t+1 t+1 ∣ t t ]

 Bv  (s) − Bv  (s) ≤
s

max ∣ 1 2 ∣ γ  v  (s) − v  (s) .
s

max ∣ 1 2 ∣

R∣S∣ ∣∣ ⋅ ∣∣  ∞

v  ∗

Bv  =∗ v  .∗

v  ∗
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Bellman Backup Operator

Furthermore, iterative application of  on arbitrary  converges to , because

and therefore .

B v v  ∗

∣∣Bv − v  ∣∣  =∗ ∞ ∣∣Bv − Bv  ∣∣  ≤∗ ∞ γ∣∣v − v  ∣∣,∗

B v →n v  ∗
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Value Iteration Algorithm

We can turn the iterative application of Bellman backup operator into an algorithm.

      
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Modification of Algorithm 4.4 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

Bv(s) =def
 E R  + γv(S  ) S  = s,A  = a

a
max [ t+1 t+1 ∣ t t ]
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Value Iteration Algorithm

Although we have described the so-called synchronous implementation requiring two arrays for 

 and , usual implementations are asynchronous and modify the value function in place (if a

fixed ordering is used, usually such value iteration is called Gauss-Seidel).

Even with such asynchronous update value iteration can be proven to converge, and usually
performs better in practise.

For example, the Bellman-Ford-Moore algorithm also updates the distances in-place. In the case
of dynamic programming, we can extend the invariant from “  is the maximum return

reachable from state  in  steps” to include not only all trajectories of  steps, but also some

number of longer trajectories.

v Bv

v  (s)k

s k k
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Bellman Backup Operator as a Contraction

To show that Bellman backup operator is a contraction, we proceed as follows:

where the second line follows from  and

the last line from the fact that from any given  and , the  sums to 1.

  

∣∣Bv  − Bv  ∣∣  1 2 ∞ = ∣∣  E R  + γv  (S  ) −  E R  + γv  (S  ) ∣∣  

a
max [ t+1 1 t+1 ]

a
max [ t+1 2 t+1 ] ∞

≤  ∣∣E R  + γv  (S  ) − E R  + γv  (S  ) ∣∣  

a
max ( [ t+1 1 t+1 ] [ t+1 2 t+1 ] ∞)

=     p s , r s, a γ(v  (s ) − v  (s ))    

a
max (

∣
∣∣
∣
∣
∣∣
∣
∑

s ,r′
( ′ ∣ ) 1

′
2

′

∣
∣∣
∣
∣
∣∣
∣
∞

)

= γ     p s s, a (v  (s ) − v  (s ))    

a
max(

∣
∣∣
∣
∣
∣∣
∣
∑

s′
( ′ ∣ ) 1

′
2

′

∣
∣∣
∣
∣
∣∣
∣
∞
)

≤ γ∣∣v  − v  ∣∣  ,1 2 ∞

∣ max  f(x) −x max  g(x)∣ ≤x max  ∣f(x) −x g(x)∣
s a  p(s ∣s, a)∑s′

′
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Speed of Convergence

Assuming maximum reward is , we have that

Starting with , we have

Compare to finite horizon case, where .

R  max

v  (s) ≤∗  γ R  =
t=0

∑
∞

t
max  .

1 − γ

R  max

v(s) ← 0

∣∣B v −k v  ∣∣  ≤∗ ∞ γ ∣∣v −k v  ∣∣  ≤∗ ∞ γ  .k

1 − γ

R  max

B v =T v  ∗
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Value Iteration Example

Consider a simple betting game, where a gambler bets on the outcomes of a sequence of coin
flips, either losing their stake or winning the same amount of coints that was bet. The gambler
wins if they obtain 100 coins, and lose if they run our of money.

We can formulate the problem as an undiscounted episodic MDP. The states are the coins
owned by the gambler, , and actions are stakes . The

reward is  when reaching 100 and 0 otherwise.

The state-value function then gives probability of winning from each state, and policy prescribes
a stake with a given capital.

{1, … , 99} {1, … , min(s, 100 − s)}
+1
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Value Iteration Example















   






 

 

 

 

























 

Figure 4.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Policy Iteration Algorithm

We now propose another approach of computing optimal policy. The approach, called policy
iteration, consists of repeatedly performing policy evaluation and policy improvement.

Policy Evaluation
Given a policy , policy evaluation computes .

Recall that

If the dynamics of the MDP  is known, the above is a system of linear equations, and

therefore,  can be computed exactly.

π v  π

  

v  (s)π E  G  S  = s=
def

π [ t∣ t ]

= E  R  + γv  (S  ) S  = sπ [ t+1 π t+1 ∣ t ]

=  π(a∣s)  p(s , r∣s, a) r + γv  (s ) .∑
a

∑
s ,r′

′ [ π
′ ]

p

v  π
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Policy Evaluation

The equation

is called Bellman equation for  and analogously to Bellman optimality equation, it can be

proven that

under the same assumptions as before (  or termination),  exists and is unique;

 is a fixed point of the Bellman equation

iterative application of the Bellman equation to any  converges to .

v  (s) =π  π(a∣s)  p(s , r∣s, a) r + γv  (s )∑
a

∑
s ,r′

′ [ π
′ ]

v  π

γ < 1 v  π

v  π

v  (s) =k+1  π(a∣s)  p(s , r∣s, a) r + γv  (s ) ;∑
a

∑
s ,r′

′ [ k
′ ]

v v  π
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Policy Evaluation
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
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
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Modification of Algorithm 4.1 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).
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Policy Improvement

Given  and computed , we would like to improve the policy. A straightforward way to do so

is to define a policy using a greedy action

For such , we can easily show that

π v  π

  

π (s)′
 q  (s, a)=def

a
arg max π

=   p(s , r∣s, a) r + γv  (s ) .
a

arg max∑
s ,r′

′ [ π
′ ]

π′

q  (s,π (s)) ≥π
′ v  (s).π
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Policy Improvement Theorem

Let  and  be any pair of deterministic policies, such that .

Then for all states , .

The proof is straightforward, we repeatedly expand  and use the assumption of the policy

improvement theorem:

π π′ q  (s,π (s)) ≥π
′ v  (s)π

s v  (s) ≥π′ v  (s)π

q  π

  

v  (s)π ≤ q (s,π (s))π
′

= E[R  + γv  (S )∣S  = s,A  = π (s)]t+1 π t+1 t t
′

= E  [R  + γv  (S )∣S  = s]π′ t+1 π t+1 t

≤ E  [R  + γq  (S ,π (S  ))∣S  = s]π′ t+1 π t+1
′

t+1 t

= E  [R  + γE[R  + γv  (S  )∣S ,A  = π (S  )]∣S  = s]π′ t+1 t+2 π t+2 t+1 t+1
′

t+1 t

= E  [R  + γR  + γ v  (S  )∣S = s]π′ t+1 t+2
2

π t+2 t

…

≤ E  [R  + γR  + γ R  + … ∣S  = s] = v  (s)π′ t+1 t+2
2

t+3 t π′
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Policy Improvement Example
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Example 4.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Figure 4.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Policy Iteration Algorithm

Policy iteration consists of repeatedly performing policy evaluation and policy improvement:

The result is a sequence of monotonically improving policies . Note that when , also 

, which means Bellman optimality equation is fulfilled and both  and  are optimal.

Considering that there is only a finite number of policies, the optimal policy and optimal value
function can be computed in finite time (contrary to value iteration, where the convergence is
only asymptotic).

Note that when evaluating policy , we usually start with , which is assumed to be a

good approximation to .

π   0 ⟶
E
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…  ⟶
I

π   ∗ ⟶
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π  i π =′ π
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Policy Iteration Algorithm
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Algorithm 4.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Value Iteration as Policy Iteration

Note that value iteration is in fact a policy iteration, where policy evaluation is performed only
for one step:

Substituting the former into the latter, we get

   

π (s)′

v (s)′

=   p(s , r∣s, a) r + γv(s )
a

arg max∑
s ,r′

′ [ ′ ]

=  π (a∣s)  p(s , r∣s, a) r + γv(s )∑
a

′ ∑
s ,r′

′ [ ′ ]

(policy improvement)

(one step of policy evaluation)

v (s) =′
  p(s , r∣s, a) r + γv(s) =

a
max∑

s ,r′

′ [ ] Bv(s).
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Generalized Policy Iteration

Therefore, it seems that to achieve convergence, it is not necessary to perform policy evaluation
exactly.

Generalized Policy Evaluation is a general idea of interleaving policy evaluation and policy
improvement at various granularity.
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Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".
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Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

If both processes stabilize, we know we have obtained optimal policy.
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Monte Carlo Methods

We now present the first algorithm for computing optimal policies without assuming a
knowledge of the environment dynamics.

However, we still assume there are finitely many states  and we will store estimates for each of

them.

Monte Carlo methods are based on estimating returns from complete episodes. Furthermore, if
the model (of the environment) is not known, we need to estimate returns for the action-value
function  instead of .

We can formulate Monte Carlo methods in the generalized policy improvement framework.

Keeping estimated returns for the action-value function, we perform policy evaluation by
sampling one episode according to current policy. We then update the action-value function by
averaging over the observed returns, including the currently sampled episode.

S

q v
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Monte Carlo Methods

To guarantee convergence, we need to visit each state infinitely many times. One of the
simplest way to achieve that is to assume exploring starts, where we randomly select the first
state and first action, each pair with nonzero probability.

Furthermore, if a state-action pair appears multiple times in one episode, the sampled returns
are not independent. The literature distinguishes two cases:

first visit: only the first occurence of a state-action pair in an episode is considered
every visit: all occurences of a state-action pair are considered.

Even though first-visit is easier to analyze, it can be proven that for both approaches, policy
evaluation converges. Contrary to the Reinforcement Learning: An Introduction book, which
presents first-visit algorithms, we use every-visit.
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Monte Carlo with Exploring Starts

 

Modification of algorithm 5.3 of "Reinforcement Learning: An Introduction, Second Edition" from first-visit to every-visit.
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Monte Carlo and -soft Policiesε

A policy is called -soft, if

For -soft policy, Monte Carlo policy evaluation also converges, without the need of exploring

starts.

We call a policy -greedy, if one action has maximum probability of .

The policy improvement theorem can be proved also for the class of -soft policies, and using 

-greedy policy in policy improvement step, policy iteration has the same convergence

properties. (We can embed the -soft behaviour “inside” the environment and prove

equivalence.)

ε

π(a∣s) ≥  .
∣A(s)∣

ε

ε

ε 1 − ε + ∣A(s)∣
ε

ε

ε

ε
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Monte Carlo for -soft Policiesε

On-policy every-visit Monte Carlo for -soft Policies

Algorithm parameter: small 

Initialize  arbitrarily (usually to 0), for all  

Initialize  to 0, for all 

Repeat forever (for each episode):

Generate an episode , by generating actions as follows:

With probability , generate a random uniform action

Otherwise, set 

For each :

ε

ε > 0

Q(s, a) ∈ R s ∈ S, a ∈ A

C(s, a) ∈ Z s ∈ S, a ∈ A

S  ,A  ,R  , … ,S  ,A  ,R  0 0 1 T−1 T−1 T

ε

A  t =def arg max  Q(S  , a)a t

G ← 0
t = T − 1,T − 2, … , 0

G ← γG + R  t+1

C(S ,A  ) ←t t C(S  ,A  ) +t t 1
Q(S  ,A  ) ←t t Q(S  ,A  ) +t t  (G −

C(S  ,A  )t t

1 Q(S  ,A  ))t t
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