N-step Temporal Difference Methods

Self-Study

November 4, 2019
Full return is

\[G_t = \sum_{k=t}^{\infty} R_{k+1}, \]

one-step return is

\[G_{t:t+1} = R_{t+1} + \gamma V(S_{t+1}). \]

We can generalize both into \(n \)-step returns:

\[G_{t:t+n} \overset{\text{def}}{=} \left(\sum_{k=t}^{t+n-1} \gamma^{k-t} R_{k+1} \right) + \gamma^n V(S_{t+n}). \]

with \(G_{t:t+n} \overset{\text{def}}{=} G_t \) if \(t + n \geq T \).
A natural update rule is

\[V(S_t) \leftarrow V(S_t) + \alpha [G_{t:t+n} - V(S_t)] . \]

n-step TD for estimating \(V \approx v_\pi \)

- **Input:** a policy \(\pi \)
- **Algorithm parameters:** step size \(\alpha \in (0, 1] \), a positive integer \(n \)
- **Initialize:** \(V(s) \) arbitrarily, for all \(s \in S \)
- All store and access operations (for \(S_t \) and \(R_t \)) can take their index mod \(n + 1 \)

Loop for each episode:
 - Initialize and store \(S_0 \neq \text{terminal} \)
 - \(T \leftarrow \infty \)
 - Loop for \(t = 0, 1, 2, \ldots \):
 - If \(t < T \), then:
 - Take an action according to \(\pi(\cdot|S_t) \)
 - Observe and store the next reward as \(R_{t+1} \) and the next state as \(S_{t+1} \)
 - If \(S_{t+1} \) is terminal, then \(T \leftarrow t + 1 \)
 - \(\tau \leftarrow t - n + 1 \) (\(\tau \) is the time whose state’s estimate is being updated)
 - If \(\tau \geq 0 \):
 - \(G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i \)
 - If \(\tau + n < T \), then: \(G \leftarrow G + \gamma^n V(S_{\tau+n}) \) \((G_{\tau+n})\)
 - \(V(S_\tau) \leftarrow V(S_\tau) + \alpha [G - V(S_\tau)] \)
 - Until \(\tau = T - 1 \)

Algorithm 7.1 of “Reinforcement Learning: An Introduction, Second Edition”.
Using the random walk example, but with 19 states instead of 5,

we obtain the following comparison of different values of n:

Average RMS error over 19 states and first 10 episodes

Figure 7.2 of "Reinforcement Learning: An Introduction, Second Edition".
Defining the n-step return to utilize action-value function as

$$G_{t:t+n} \overset{\text{def}}{=} \left(\sum_{k=t}^{t+n-1} \gamma^{k-t} R_{k+1} \right) + \gamma^n Q(S_{t+n}, A_{t+n})$$

with $G_{t:t+n} \overset{\text{def}}{=} G_t$ if $t + n \geq T$, we get the following straightforward algorithm:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [G_{t:t+n} - Q(S_t, A_t)].$$
n-step Sarsa Algorithm

n-step Sarsa for estimating $Q \approx q_*$ or q_π

- Initialize $Q(s, a)$ arbitrarily, for all $s \in S$, $a \in A$
- Initialize π to be ε-greedy with respect to Q, or to a fixed given policy
- Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$, a positive integer n
- All store and access operations (for S_t, A_t, and R_t) can take their index mod $n + 1$

Loop for each episode:
- Initialize and store $S_0 \neq$ terminal
- Select and store an action $A_0 \sim \pi(\cdot|S_0)$
- $T \leftarrow \infty$

Loop for $t = 0, 1, 2, \ldots$:
- If $t < T$, then:
 - Take action A_t
 - Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
 - If S_{t+1} is terminal, then:
 - $T \leftarrow t + 1$
 - else:
 - Select and store an action $A_{t+1} \sim \pi(\cdot|S_{t+1})$
- $\tau \leftarrow t - n + 1$ \hspace{1cm} (τ is the time whose estimate is being updated)
- If $\tau \geq 0$:
 - $G \leftarrow \sum_{i=\tau+1}^{\tau+n} \gamma^{i-\tau-1} R_i$
 - If $\tau + n < T$, then $G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})$
 - $Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha [G - Q(S_{\tau}, A_{\tau})]$ \hspace{1cm} ($G_{\tau, \tau+n}$)
- If π is being learned, then ensure that $\pi(\cdot|S_{\tau})$ is ε-greedy wrt Q

Until $\tau = T - 1$

Algorithm 7.2 of "Reinforcement Learning: An Introduction, Second Edition".
Off-policy n-step Sarsa

Recall the relative probability of a trajectory under the target and behaviour policies, which we now generalize as

$$\rho_{t:t+n} \overset{\text{def}}{=} \prod_{k=t}^{\min(t+n,T-1)} \frac{\pi(A_k|S_k)}{b(A_k|S_k)}.$$

Then a simple off-policy n-step TD can be computed as

$$V(S_t) \leftarrow V(S_t) + \alpha \rho_{t:t+n-1} \left[G_{t:t+n} - V(S_t) \right].$$

Similarly, n-step Sarsa becomes

$$Q(S_t,A_t) \leftarrow Q(S_t,A_t) + \alpha \rho_{t+1:t+n} \left[G_{t:t+n} - Q(S_t,A_t) \right].$$
Off-policy n-step Sarsa

For estimating $Q \approx q_*$ or q_π

Input: an arbitrary behavior policy b such that $b(a|s) > 0$, for all $s \in S, a \in A$

- Initialize $Q(s,a)$ arbitrarily, for all $s \in S, a \in A$
- Initialize π to be greedy with respect to Q, or as a fixed given policy

Algorithm parameters: step size $\alpha \in (0,1]$, a positive integer n

- All store and access operations (for S_t, A_t, and R_t) can take their index mod $n + 1$

Loop for each episode:

- Initialize and store $S_0 \neq$ terminal
- Select and store an action $A_0 \sim b(\cdot|S_0)$
- $T \leftarrow \infty$

Loop for $t = 0, 1, 2, \ldots$:

- If $t < T$, then:
 - Take action A_t
 - Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
 - If S_{t+1} is terminal, then:
 - $T \leftarrow t + 1$
 - else:
 - Select and store an action $A_{t+1} \sim b(\cdot|S_{t+1})$
 - $\tau \leftarrow t + n + 1$ (\tau is the time whose estimate is being updated)

If $\tau \geq 0$:

- $\rho \leftarrow \prod_{i=\tau+1}^{\min(\tau+n-1,T-1)} \pi(A_{i+1}|S_{i+1}) b(A_i|S_i)$
- $G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau} R_i$

- If $\tau + n < T$, then:
 - $G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})$
 - $Q(S_t,A_t) \leftarrow Q(S_t,A_t) + \alpha \rho [G - Q(S_{t},A_{t})]$

- If π is being learned, then ensure that $\pi(\cdot|S_t)$ is greedy wrt Q

Until $\tau = T - 1$

Algorithm 7.3 of "Reinforcement Learning: An Introduction, Second Edition".
Q-learning and Expected Sarsa can learn off-policy without importance sampling.

To generalize to n-step off-policy method, we must compute expectations over actions in each step of n-step update. However, we have not obtained a return for the non-sampled actions.

Luckily, we can estimate their values by using the current action-value function.
Off-policy n-step Without Importance Sampling

We now derive the n-step reward, starting from one-step:

$$G_{t:t+1} \overset{\text{def}}{=} R_{t+1} + \sum_a \pi(a \mid S_{t+1}) Q(S_{t+1}, a).$$

For two-step, we get:

$$G_{t:t+2} \overset{\text{def}}{=} R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) + \gamma \pi(A_{t+1} \mid S_{t+1}) G_{t+1:t+2}.$$

Therefore, we can generalize to:

$$G_{t:t+n} \overset{\text{def}}{=} R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) + \gamma \pi(A_{t+1} \mid S_{t+1}) G_{t+1:t+n}.$$

The resulting algorithm is n-step Tree backup and it is an off-policy n-step temporal difference method not requiring importance sampling.
n-step Tree Backup for estimating $Q \approx q_\pi$ or q_π

Initialize $Q(s, a)$ arbitrarily, for all $s \in S, a \in A$
Initialize π to be greedy with respect to Q, or as a fixed given policy
Algorithm parameters: step size $\alpha \in (0, 1]$, a positive integer n
All store and access operations can take their index mod $n + 1$

Loop for each episode:
- Initialize and store $S_0 \neq$ terminal
- Choose an action A_0 arbitrarily as a function of S_0; Store A_0
- $T \leftarrow \infty$

Loop for $t = 0, 1, 2, \ldots$
 - If $t < T$:
 - Take action A_t; observe and store the next reward and state as R_{t+1}, S_{t+1}
 - If S_{t+1} is terminal:
 - $T \leftarrow t + 1$
 - else:
 - Choose an action A_{t+1} arbitrarily as a function of S_{t+1}; Store A_{t+1}
 - $\tau \leftarrow t + 1 - n$ (\(\tau\) is the time whose estimate is being updated)
 - If $\tau \geq 0$:
 - $G \leftarrow R_T$
 - else
 - $G \leftarrow R_{t+1} + \gamma \sum_{a} \pi(a|S_{t+1})Q(S_{t+1}, a)$
 - Loop for $k = \min(t, T - 1)$ down through $\tau + 1$:
 - $G \leftarrow R_k + \gamma \sum_{a \neq A_k} \pi(a|S_k)Q(S_k, a) + \gamma \pi(A_k|S_k)G$
 - $Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha [G - Q(S_{\tau}, A_{\tau})]$
 - If π is being learned, then ensure that $\pi(\cdot|S_{\tau})$ is greedy wrt Q

Until $\tau = T - 1$

Algorithm 7.5 of "Reinforcement Learning: An Introduction, Second Edition".