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IMPALA

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper
and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicates gradients with respect to the parameters
of the policy, IMPALA actors communicates trajectories to the centralized learner.
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Figure 1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures" by Lasse Espeholt et al.
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Figure 2 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures" by Lasse Espeholt et al.

If many actors are used, the policy used to generate a trajectory can lag behind the latest
policy. Therefore, a new V-trace off-policy actor-critic algorithm is proposed.
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IMPALA – V-trace

Consider a trajectory  generated by a behaviour policy .

The -step V-trace target for  is defined as

where  is the temporal difference for V

and  and  are truncated importance sampling ratios with :

Note that if  and assuming ,  reduces to -step Bellman target.
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IMPALA – V-trace

Note that the truncated IS weights  and  play different roles:

The  appears in the definition of  and defines the fixed point of the update rule. For 

, the target is the value function , if , the fixed point is somewhere

between  and . Notice that we do not compute a product of these  coefficients.

The  impacts the speed of convergence (the contraction rate of the Bellman operator),

not the sought policy. Because a product of the  ratios is computed, it plays an important

role in variance reduction.

The paper utilizes  and out of ,  works empirically the best.
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IMPALA – V-trace

Consider a parametrized functions computing  and . Assuming the defined -

step V-trace target

we update the critic in the direction of

and the actor in the direction of the policy gradient

Finally, we again add the entropy regularization term  to the loss function.
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IMPALA

Architecture CPUs GPUs1 FPS2

Single-Machine Task 1 Task 2

A3C 32 workers 64 0 6.5K 9K
Batched A2C (sync step) 48 0 9K 5K
Batched A2C (sync step) 48 1 13K 5.5K
Batched A2C (sync traj.) 48 0 16K 17.5K
Batched A2C (dyn. batch) 48 1 16K 13K
IMPALA 48 actors 48 0 17K 20.5K
IMPALA (dyn. batch) 48 actors3 48 1 21K 24K

Distributed

A3C 200 0 46K 50K
IMPALA 150 1 80K
IMPALA (optimised) 375 1 200K
IMPALA (optimised) batch 128 500 1 250K

1 Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3 Limited by

amount of rendering possible on a single machine.

 

Table 1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp  and the global gradient norm clipping

threshold.
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Figure 1 of paper "Population Based Training of Neural Networks" by Max Jaderberg et al.

ε
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IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp  and the global gradient norm clipping

threshold.

In population based training, several agents are trained in parallel. When an agent is ready
(after 5000 episodes), then:

it may be overwritten by parameters and hyperparameters of another agent, if it is
sufficiently better (5000 episode mean capped human normalized score returns are 5%
better);
and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or
1/1.2 with 33% chance).

ε
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IMPALA

IMPALA - 1 GPU - 200 actors Batched A2C - Single Machine - 32 workers A3C - Single Machine - 32 workers A3C - Distributed - 200 workers
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Figure 4 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

9/32NPFL122, Lecture 11 IMPALA PopArt Normalization POMDPs MERLIN CTF-FTW



IMPALA – Learning Curves

 

Figures 5, 6 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Atari Games

 

Table 4 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Ablations

Task 1 Task 2 Task 3 Task 4 Task 5

Without Replay

V-trace 46.8 32.9 31.3 229.2 43.8
1-Step 51.8 35.9 25.4 215.8 43.7
ε-correction 44.2 27.3 4.3 107.7 41.5
No-correction 40.3 29.1 5.0 94.9 16.1

With Replay

V-trace 47.1 35.8 34.5 250.8 46.9
1-Step 54.7 34.4 26.4 204.8 41.6
ε-correction 30.4 30.2 3.9 101.5 37.6
No-correction 35.0 21.1 2.8 85.0 11.2

Tasks: rooms watermaze, rooms keys doors puzzle,

lasertag three opponents small,

explore goal locations small, seekavoid arena 01

 

Table 2 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Ablations

 

Figure E.1 of the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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PopArt Normalization

An improvement of IMPALA from Sep 2018, which performs normalization of task rewards
instead of just reward clipping. PopArt stands for Preserving Outputs Precisely, while Adaptively
Rescaling Targets.

Assume the value estimate  is computed using a normalized value predictor 

and further assume that  is an output of a linear function

We can update the  and  using exponentially moving average with decay rate  (in the

paper, first moment  and second moment  is tracked, and standard deviation is computed as 

; decay rate  is employed).

v(s; θ,σ,μ) n(s; θ)

v(s; θ,σ,μ) =def
σn(s; θ) + μ

n(s; θ)

n(s; θ) =def
ω f(s; θ −T {ω, b}) + b.

σ μ β

μ υ

σ =  υ − μ2 β = 3 ⋅ 10−4
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PopArt Normalization

Utilizing the parameters  and , we can normalize the observed (unnormalized) returns as 

 and use an actor-critic algorithm with advantage .

However, in order to make sure the value function estimate does not change when the
normalization parameters change, the parameters  computing the unnormalized value

estimate are updated under any change  and  as:

In multi-task settings, we train a task-agnostic policy and task-specific value functions
(therefore, ,  and  are vectors).

μ σ

(G − μ)/σ (G − μ)/σ − n(S; θ)

ω, b
μ → μ′ σ → σ′

ω′ =def
 ω,     b

σ′

σ ′ =def
 .

σ′

σb + μ − μ′

μ σ n(s; θ)
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PopArt Results

Atari-57 Atari-57 (unclipped) DmLab-30

Agent Random Human Random Human Train Test

IMPALA 59.7% 28.5% 0.3% 1.0% 60.6% 58.4%

PopArt-IMPALA 110.7% 101.5% 107.0% 93.7% 73.5% 72.8%

 

Table 1 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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Figures 1, 2 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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PopArt Results
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Figure 3 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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PopArt Results
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Figures 4, 5 of paper "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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Partially Observable MDPs

Recall that a Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action  will lead from

state  to , producing a reward ,

 is a discount factor.

Partially observable Markov decision process extends the Markov decision process to a sextuple 

, where in addition to an MDP

 is a set of observations,

 is an observation model.

In robotics (out of the domain of this course), several approaches are used to handle POMDPs,
to model uncertainty, imprecise mechanisms and inaccurate sensors.

(S,A, p, γ)

S
A
p(S  =t+1 s ,R  =′

t+1 r∣S  =t s,A  =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1]

(S,A, p, γ,O, o)

O
o(O  ∣S  ,A  )t t t−1
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Partially Observable MDPs

In Deep RL, partially observable MDPs are usually handled using recurrent networks. After
suitable encoding of input observation  and previous action , a RNN (usually LSTM)

unit is used to model the current  (or its suitable latent representation), which is in turn

utilized to produce .

 

Figure 1a of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.

O  t A  t−1

S  t

A  t
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MERLIN

However, keeping all information in the RNN state is substantially limiting. Therefore, memory-
augmented networks can be used to store suitable information in external memory (in the lines
of NTM, DNC or MANN models).

We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

 

Figure 1b of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN – Memory Module

 

Figure 1b of paper "Unsupervised Predictive Memory in a
Goal-Directed Agent" by Greg Wayne et al.

Let  be a memory matrix of size .

Assume we have already encoded observations as  and previous

action . We concatenate them with  previously read vectors

and process by a deep LSTM (two layers are used in the paper) to
compute .

Then, we apply a linear layer to , computing  key vectors 

 of length  and  positive scalars .

Reading: For each , we compute cosine similarity of  and all memory rows , multiply the

similarities by  and pass them through a  to obtain weights . The read vector is

then computed as .

Writing: We find one-hot write index  to be the least used memory row (we keep usage

indicators and add read weights to them). We then compute , and

update the memory matrix using .

M N  ×mem 2∣z∣

e  t

a  t−1 K

h  t

h  t K

k  , …k  1 K 2∣z∣ K β  , … , β  1 K

i k  i M  j

β  i softmax ω  i

Mw  i

v  wr

v  ←ret γv  +ret (1 − γ)v  wr

M ← M + v  [e  , 0] +wr t v  [0, e  ]ret t
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MERLIN — Prior and Posterior

However, updating the encoder and memory content purely using RL is inefficient. Therfore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations  and storing them in

memory.

According to the paper, the idea of unsupervised and predictive modeling has been entertained
for decades, and recent discussions have proposed such modeling to be connected to
hippocampal memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a prior distribution over  predicts next state variable conditioned on history of

state variables and actions , and posterior corrects the prior using

the new observation , forming a better estimate .

z

z  t

p(z  ∣z  , a  , … , z  , a  )t t−1 t−1 1 1

o  t q(z  ∣o  , z  , a  , … , z  , a  )t t t−1 t−1 1 1
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MERLIN — Prior and Posterior

To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state
variable posterior, and add the difference of the reconstruction and ground truth to the loss.

We also add KL divergence of the prior and posterior to the loss, to ensure consistency
between the prior and posterior.

 

Figure 1c of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN — Algorithm
Algorithm 1 MERLIN Worker Pseudocode

// Assume global shared parameter vectors θ for the policy network and χ for the memory-

based predictor; global shared counter T := 0
// Assume thread-specific parameter vectors θ′, χ′

// Assume discount factor γ ∈ (0, 1] and bootstrapping parameter λ ∈ [0, 1]
Initialize thread step counter t := 1
repeat

Synchronize thread-specific parameters θ′ := θ;χ′ := χ

Zero model’s memory & recurrent state if new episode begins

tstart := t

repeat

Prior N (µp
t , log Σ

p
t ) = p(ht−1,mt−1)

et = enc(ot)
Posterior N (µq

t , log Σ
q
t ) = q(et, ht−1,mt−1, µ

p
t , log Σ

p
t )

Sample zt ∼ N (µq
t , log Σ

q
t )

Policy network update h̃t = rec(h̃t−1, m̃t, StopGradient(zt))
Policy distribution πt = π(h̃t, StopGradient(zt))
Sample at ∼ πt

ht = rec(ht−1,mt, zt)
Update memory with zt by Methods Eq. 2

Rt, o
r
t = dec(zt, πt, at)

Apply at to environment and receive reward rt and observation ot+1
t := t+ 1;T := T + 1

until environment termination or t− tstart == τwindow

If not terminated, run additional step to compute V π
ν (zt+1, log πt+1)

and set Rt+1 := V π(zt+1, log πt+1) // (but don’t increment counters)

Reset performance accumulators A := 0;L := 0;H := 0
for k from t down to tstart do

γt :=

{

0, if k is environment termination

γ, otherwise

Rk := rk + γtRk+1

δk := rk + γtV
π(zk+1, log πk+1)− V π(zk, log πk)

Ak := δk + (γλ)Ak+1

L := L+ Lk (Eq. 7)

A := A+ Ak log πk[ak]
H := H− αentropy

∑

i πk[i] log πk[i] (Entropy loss)

end for

dχ′ := ∇χ′L

dθ′ := ∇θ′(A+H)
Asynchronously update via gradient ascent θ using dθ′ and χ using dχ′

until T > Tmax

 

Algorithm 1 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

 

Figure 2 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

 

Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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MERLIN

 

Extended Figure 3 of paper "Unsupervised Predictive Memory in a Goal-Directed Agent" by Greg Wayne et al.
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Figure 2 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

Extension of the MERLIN architecture.

Hierarchical RNN with two timescales.

Population based training controlling KL divergence penalty weights, slow ticking RNN
speed and gradient flow factor from fast to slow RNN.
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For the Win agent for Capture The Flag

 

Figure S10 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag
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Figure 4 of paper "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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