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Deterministic Policy Gradient Theorem

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

Deterministic Policy Gradient Theorem
Assume that the policy  is deterministic and computes an action . Then under

several assumptions about continuousness, the following holds:

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al.

∇  J(θ) ∝θ  μ(s)  q  (s, a)∇  π(a∣s; θ).
s∈S

∑
a∈A

∑ π θ

π(s; θ) a ∈ R

∇  J(θ) ∝θ E  [∇  π(s; θ)∇  q  (s, a)   ].s∼μ(s) θ a π ∣
∣
a=π(s;θ)
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Deep Deterministic Policy Gradients

Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions (similarly to how expected
Sarsa is also an off-policy algorithm).

We therefore train function approximation for both  and , training 

using a deterministic variant of the Bellman equation:

and  according to the deterministic policy gradient theorem.

The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with ), batch normalization for CNNs, and perform exploration by adding a normal-

distributed noise to predicted actions. Training is performed by Adam with learning rates of 1e-4
and 1e-3 for the policy and critic network, respectively.

π(s; θ) q(s, a; θ) q(s, a; θ)

q(S  ,A  ; θ) =t t E  [R  +R  ,S  t+1 t+1 t+1 γq(S  ,π(S  ; θ))]t+1 t+1

π(s; θ)

τ = 0.001
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Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ.

Initialize target network Q′ and µ′ with weights θQ
′

← θQ, θµ
′

← θµ

Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do
Select action at = µ(st|θ

µ) +Nt according to the current policy and exploration noise
Execute action at and observe reward rt and observe new state st+1
Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R

Set yi = ri + γQ′(si+1, µ
′(si+1|θ

µ′

)|θQ
′

)
Update critic by minimizing the loss: L = 1

N

∑
i(yi −Q(si, ai|θ

Q))2

Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N



i

∇aQ(s, a|θ
Q)|s=si,a=µ(si)∇θµµ(s|θ

µ)|si

Update the target networks:

θQ
′

← τθQ + (1− τ)θQ
′

θµ
′

← τθµ + (1− τ)θµ
′

end for
end for

 

Algorithm 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.
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Twin Delayed Deep Deterministic Policy Gradient

The paper Addressing Function Approximation Error in Actor-Critic Methods by Scott Fujimoto
et al. from February 2018 proposes improvements to DDPG which

decrease maximization bias by training two critics and choosing minimum of their
predictions;

introduce several variance-lowering optimizations:
delayed policy updates;
target policy smoothing.

5/28NPFL122, Lecture 10 Refresh TD3 AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation



TD3 – Maximization Bias

Similarly to Q-learning, the DDPG algorithm suffers from maximization bias. In Q-learning, the
maximization bias was caused by the explicit  operator. For DDPG methods, it can be

caused by the gradient descent itself. Let  be the parameters maximizing the  and let 

 be the hypothetical parameters which maximise true , and let  and  denote

the corresponding policies.

Because the gradient direction is a local maximizer, for sufficiently small  we have

However, for real  and for sufficiently small  it holds that

Therefore, if , for 

max
θ  approx q  θ

θ  true q  π π  approx π  true

α < ε  1

E[q  (s,π  )] ≥θ approx E[q  (s,π  )].θ true

q  π α < ε  2

E[q  (s,π  )] ≥π true E[q  (s,π  )].π approx

E[q  (s,π  )] ≥θ true E[q  (s,π  )]π true α < min(ε  , ε  )1 2

E[q  (s,π  )] ≥θ approx E[q  (s,π  )].π approx
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TD3 – Maximization Bias
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Figure 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by
Scott Fujimoto et al.
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Figure 2 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by
Scott Fujimoto et al.

Analogously to Double DQN we could compute the learning targets using the current policy and
the target critic, i.e.,  (instead of using target policy and target critic as in

DDPG), obtaining DDQN-AC algorithm. However, the authors found out that the policy
changes too slowly and the target and current networks are too similar.

Using the original Double Q-learning, two pairs of actors and critics could be used, with the
learning targets computed by the opposite critic, i.e.,  for updating .

The resulting DQ-AC algorithm is slightly better, but still suffering from oversetimation.

r + γq  (s ,π  (s ))θ′ ′
θ

′

r + γq  (s ,π  (s))θ  2
′

′
θ  1 q  θ  1
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TD3 – Algorithm

The authors instead suggest to employ two critics and one actor. The actor is trained using one
of the critics, and both critics are trained using the same target computed using the minimum

value of both critics as

Furthermore, the authors suggest two additional improvements for variance reduction.

For obtaining higher quality target values, the authors propose to train the critics more
often. Therefore, critics are updated each step, but the actor and the target networks are
updated only every -th step (  is used in the paper).

To explictly model that similar actions should lead to similar results, a small random noise is
added to performed actions when computing the target value:

r + γ  q  (s ,π  (s )).
i=1,2
min θ  i

′
′

θ
′

d d = 2

r + γ  q  (s ,π  (s ) +
i=1,2
min θ  i

′
′

θ
′ ε)   for   ε ∼ clip(N (0,σ), −c, c).
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TD3 – Algorithm

Algorithm 1 TD3

Initialize critic networks Qθ1 , Qθ2 , and actor network πφ
with random parameters θ1, θ2, φ

Initialize target networks θ′1 ← θ1, θ
′

2 ← θ2, φ
′ ← φ

Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ πφ(s) + ǫ,

ǫ ∼ N (0, σ) and observe reward r and new state s′

Store transition tuple (s, a, r, s′) in B

Sample mini-batch ofN transitions (s, a, r, s′) from B
ã← πφ′(s′) + ǫ, ǫ ∼ clip(N (0, σ̃),−c, c)
y ← r + γmini=1,2Qθ′

i
(s′, ã)

Update critics θi ← argminθi N
−1
∑

(y−Qθi(s, a))
2

if t mod d then

Update φ by the deterministic policy gradient:

∇φJ(φ) = N−1
∑
∇aQθ1(s, a)|a=πφ(s)∇φπφ(s)

Update target networks:

θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

end if

end for

 

Algorithm 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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TD3 – Algorithm

Hyper-parameter Ours DDPG

Critic Learning Rate 10−3 10−3

Critic Regularization None 10−2 · ||θ||2

Actor Learning Rate 10−3 10−4

Actor Regularization None None
Optimizer Adam Adam

Target Update Rate (τ ) 5 · 10−3 10−3

Batch Size 100 64
Iterations per time step 1 1
Discount Factor 0.99 0.99
Reward Scaling 1.0 1.0
Normalized Observations False True
Gradient Clipping False False
Exploration Policy N (0, 0.1) OU, θ = 0.15, µ = 0, σ = 0.2

 

Table 3 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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TD3 – Results

 

Figure 5 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

 

Table 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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TD3 – Ablations
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Figure 7 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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Figure 8 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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TD3 – Ablations

Method HCheetah Hopper Walker2d Ant

TD3 9532.99 3304.75 4565.24 4185.06
DDPG 3162.50 1731.94 1520.90 816.35

AHE 8401.02 1061.77 2362.13 564.07

AHE + DP 7588.64 1465.11 2459.53 896.13

AHE + TPS 9023.40 907.56 2961.36 872.17

AHE + CDQ 6470.20 1134.14 3979.21 3818.71

TD3 - DP 9590.65 2407.42 4695.50 3754.26

TD3 - TPS 8987.69 2392.59 4033.67 4155.24
TD3 - CDQ 9792.80 1837.32 2579.39 849.75

DQ-AC 9433.87 1773.71 3100.45 2445.97

DDQN-AC 10306.90 2155.75 3116.81 1092.18

 

Table 2 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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AlphaZero

On 7 December 2018, the AlphaZero paper came out in Science journal. It demonstrates
learning chess, shogi and go, tabula rasa – without any domain-specific human knowledge or
data, only using self-play. The evaluation is performed against strongest programs available.

 

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Overview

AlphaZero uses a neural network which using the current state  predicts ,

where:

 is a vector of move probabilities, and

 is expected outcome of the game in range .

Instead of usual alpha-beta search used by classical game playing programs, AlphaZero uses
Monte Carlo Tree Search (MCTS). By a sequence of simulated self-play games, the search can
improve the estimate of  and , and can be considered a powerful policy evaluation operator.

The network is trained from self-play games. The game is played by repeatedly running MCTS
from the state  and choosing a move , until a terminal position  is encountered,

which is scored according to game rules as . Finally, the network parameters are

trained to minimize the error between the predicted outcome  and simulated outcome , and

maximize the similarity of the policy vector  and the search probabilities :

s (p, v) = f(s; θ)

p

v [−1, 1]

p v

s  t a  ∼t π  t s  T

z ∈ {−1, 0, 1}
v z

p  t π  t

L =def (z − v) +2 π logp +T c∣∣θ∣∣ .2

15/28NPFL122, Lecture 10 Refresh TD3 AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation



AlphaZero – Monte Carlo Tree Search

MCTS keeps a tree of currently explored states from a fixed root state. Each node corresponds
to a game state. Each state-action pair  stores the following set of statistics:

visit count ,

total action-value ,

mean action value ,

prior probability  of selecting action  in state .

Each simulation starts in the root node and finishes in a leaf node . In a state , an action

is selected using a variant of PUCT algorithm as , where

with  being slightly time-increasing exploration

rate. Additionally, exploration in  is supported by ,

with  and  for chess, shogi and go, respectively.

(s, a)

N(s, a)
W(s, a)
Q(s, a) =def

W(s, a)/N(s, a)
P (s, a) a s

s  L s  t

a  =t arg max  (Q(s  , a) +a t U(s  , a))t

U(s, a) =def
C(s)P (s, a)  

1 + N(s, a)
 N(s)

C(s) = log((1 + N(s) + c  )/c  ) +base base c  init

s  root P (s  , a) =root (1 − ε)p  +a εDir(α)
ε = 0.25 α = 0.3, 0.15, 0.03
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AlphaZero – Monte Carlo Tree Search

When reaching a leaf node, it is evaluated by the network producing  and all its children

are initialized to , , and in the backward pass for all  the

statistics are updates using  and .
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Figure 2 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.

Finally, the search probabilities in the root are defined as .

(p, v)
N = W = Q = 0 P = p t ≤ L

N(s  , a  ) ←t t N(s  , a  ) +t t 1 W(s  , a  ) ←t t W(s  , a  ) +t t v

π  ∝root N(s  , ⋅)root
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AlphaZero – Network Architecture

The network processes game-specific input, which consists of a history of 8 board positions
encoded by several  planes, and some number of constant-valued inputs.

Output is considered to be a categorical distribution of possible moves. For chess and shogi, for
each piece we consider all possible moves (56 queen moves, 8 knight moves and 9
underpromotions for chess).

The input is processed by:

initial convolution block with CNN with 256  kernels with stride 1, batch

normalization and ReLU activation,
19 residual blocks, each consisting of two CNN with 256  kernels with stride 1, batch

normalization and ReLU activation, and a residual connection around them,
policy head, which applies another CNN with batch normalization, followed by a convolution
with 73/139 filters for chess/shogi, or a linear layer of size 362 for go,
value head, which applies another CNN with 1  kernel with stride 1, followed by a

ReLU layer of size 256 and final  layer of size 1.

N × N

3 × 3

3 × 3

1 × 1
tanh

18/28NPFL122, Lecture 10 Refresh TD3 AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation



AlphaZero – Network Inputs

Go Chess Shogi

Feature Planes Feature Planes Feature Planes

P1 stone 1 P1 piece 6 P1 piece 14

P2 stone 1 P2 piece 6 P2 piece 14

Repetitions 2 Repetitions 3

P1 prisoner count 7

P2 prisoner count 7

Colour 1 Colour 1 Colour 1

Total move count 1 Total move count 1

P1 castling 2

P2 castling 2

No-progress count 1

Total 17 Total 119 Total 362

 

Table S1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

19/28NPFL122, Lecture 10 Refresh TD3 AlphaZero A0-MCTS A0-Network A0-Training A0-Evaluation



AlphaZero – Network Outputs

Chess Shogi

Feature Planes Feature Planes

Queen moves 56 Queen moves 64

Knight moves 8 Knight moves 2

Underpromotions 9 Promoting queen moves 64

Promoting knight moves 2

Drop 7

Total 73 Total 139

 

Table S2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Training

Training is performed by running self-play games of the network with itself. Each MCTS uses
800 simulations. A replay buffer of one million most recent games is kept.

During training, 5000 first-generation TPUs are used to generate self-play games.
Simultaneously, network is trained using SGD with momentum of 0.9 on batches of size 4096,
utilizing 16 second-generation TPUs. Training takes approximately 9 hours for chess, 12 hours
for shogi and 13 days for go.
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AlphaZero – Training

 

Figure 1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

Chess Shogi Go

Mini-batches 700k 700k 700k

Training Time 9h 12h 13d

Training Games 44 million 24 million 140 million

Thinking Time 800 sims 800 sims 800 sims

∼ 40 ms ∼ 80 ms ∼ 200 ms

 

Table S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Training

According to the authors, training is highly repeatable.
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Figure S3 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Symmetries

In the original AlphaGo Zero, symmetries were explicitly utilized, by

randomly sampling a symmetry during training,
randomly sampling a symmetry during evaluation.

However, AlphaZero does not utilize symmetries in any way (because chess and shogi do not
have them).
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Figure S1 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Inference

During inference, AlphaZero utilizes much less evaluations than classical game playing programs.

Program Chess Shogi Go

AlphaZero 63k (13k) 58k (12k) 16k (0.6k)

Stockfish 58,100k (24,000k)

Elmo 25,100k (4,600k)

AlphaZero 1.5 GFlop 1.9 GFlop 8.5 GFlop

 

Table S4 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations

AlphaZero Opponent

Fig. Match Start Position Book Main Inc Book Main Inc Program

2A Main Initial Board No 3h 15s No 3h 15s Stockfish 8

2B 1/100 time Initial Board No 108s 0.15s No 3h 15s Stockfish 8

2B 1/30 time Initial Board No 6min 0.5s No 3h 15s Stockfish 8

2B 1/10 time Initial Board No 18min 1.5s No 3h 15s Stockfish 8

2B 1/3 time Initial Board No 1h 5s No 3h 15s Stockfish 8

2C latest Stockfish Initial Board No 3h 15s No 3h 15s Stockfish 2018.01.13

2C Opening Book Initial Board No 3h 15s Yes 3h 15s Stockfish 8

2D Human Openings Figure 3A No 3h 15s No 3h 15s Stockfish 8

2D TCEC Openings Figure S4 No 3h 15s No 3h 15s Stockfish 8

 

Table S8 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

AlphaZero Opponent

Fig. Match Start Position Book Main Inc Book Main Inc Program

2A Main Initial Board No 3h 15s Yes 3h 15s Elmo

2B 1/100 time Initial Board No 108s 0.15s Yes 3h 15s Elmo

2B 1/30 time Initial Board No 6min 0.5s Yes 3h 15s Elmo

2B 1/10 time Initial Board No 18min 1.5s Yes 3h 15s Elmo

2B 1/3 time Initial Board No 1h 5s Yes 3h 15s Elmo

2C Aperyqhapaq Initial Board No 3h 15s No 3h 15s Aperyqhapaq

2C CSA time control Initial Board No 10min 10s Yes 10min 10s Elmo

2D Human Openings Figure 3B No 3h 15s Yes 3h 15s Elmo

 

Table S9 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations

 

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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AlphaZero – Ablations
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Figure 4 of the paper "Mastering the game of Go without human knowledge" by David Silver et al.
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