
NPFL122, Lecture 9

Deterministic Policy Gradient,

Advanced RL Algorithms
Milan Straka

December 10, 2018

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

REINFORCE with Baseline

The returns can be arbitrary – better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline to

A good choice for is , which can be shown to minimize variance of the estimator.

Such baseline reminds centering of returns, given that . Then, better-

than-average returns are positive and worse-than-average returns are negative.

The resulting value is also called an advantage function .

Of course, the baseline can be only approximated. If neural networks are used to estimate

, then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.

b(s)

∇ J(θ) ∝θ μ(s) (q (s, a) −
s∈S

∑
a∈A

∑ π b(s))∇ π(a∣s; θ).θ

b(s) v (s)π

v (s) =π E q (s, a)a∼π π

a (s, a)π =def
q (s, a) −π v (s)π

v (s)π

π(a∣s; θ)

2/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Parallel Advantage Actor Critic

An alternative to independent workers is to train in a synchronous and centralized way by
having the workes to only generate episodes. Such approach was described in May 2017 by
Celemente et al., who named their agent parallel advantage actor-critic (PAAC).

...

ne0

Worker 0 Worker nw

DNN

learn

Master

States, Rewards Targets

States

Actions

...

Environments

...

Figure 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

3/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Continuous Action Space

p

✓

−

(x− µ)2

2σ2

◆

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5

x

1.0

−1 0 2 4−2−4

0,µ=

0,µ=

0,µ=

−2,µ=

2
0.2,σ =

2
1.0,σ =

2
5.0,σ =

2
0.5,σ =

Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".

Until now, the actions were discreet. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range for , or more

generally from a Cartesian product of several such ranges:

A simple way how to parametrize the action distribution
is to choose them from the normal distribution.
Given mean and variance , probability density

function of is

[a, b] a, b ∈ R

 [a , b].
i

∏ i i

μ σ2

N (μ,σ)2

p(x) =def
 e .
 2πσ2

1 − 2σ2
(x−μ)2

4/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Continuous Action Space in Gradient Methods

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the

 distribution we suitably parametrize the action value, usually using the normal

distribution. Considering only one real-valued action, we therefore have

where and are function approximation of mean and standard deviation of the

action distribution.

The mean and standard deviation are usually computed from the shared representation, with

the mean being computed as a regular regression (i.e., one output neuron without
activation);
the standard variance (which must be positive) being computed again as a regression,

followed most commonly by either or , where .

softmax

π(a∣s; θ) =
def

P(a ∼ N(μ(s; θ),σ(s; θ))),2

μ(s; θ) σ(s; θ)

exp softplus softplus(x) =def log(1 + e)x

5/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Continuous Action Space in Gradient Methods

During training, we compute and and then sample the action value (clipping it

to if required). To compute the loss, we utilize the probability density function of the

normal distribution (and usually also add the entropy penalty).

 mu = tf.layers.dense(hidden_layer, 1)[:, 0]

 sd = tf.layers.dense(hidden_layer, 1)[:, 0]

 sd = tf.exp(log_sd) # or sd = tf.nn.softplus(sd)

 normal_dist = tf.distributions.Normal(mu, sd)

 # Loss computed as - log π(a|s) - entropy_regularization
 loss = - normal_dist.log_prob(self.actions) * self.returns \

 - args.entropy_regularization * normal_dist.entropy()

μ(s; θ) σ(s; θ)
[a, b]

6/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Deterministic Policy Gradient Theorem

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

Deterministic Policy Gradient Theorem
Assume that the policy is deterministic and computes an action . Then under

several assumptions about continuousness, the following holds:

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al.

∇ J(θ) ∝θ μ(s) q (s, a)∇ π(a∣s; θ).
s∈S

∑
a∈A

∑ π θ

π(s; θ) a ∈ R

∇ J(θ) ∝θ E [∇ π(s; θ)∇ q (s, a)].s∼μ(s) θ a π ∣
∣
a=π(s;θ)

7/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Deterministic Policy Gradient Theorem – Proof

The proof is very similar to the original (stochastic) policy gradient theorem. We assume that

 are continuous in all params.

Similarly to the gradient theorem, we finish the proof by continually expanding .

p(s ∣s, a), ∇ p(s ∣s, a), r(s, a), ∇ r(s, a),π(s; θ), ∇ π(s; θ)′
a

′
a θ

∇ v (s) =θ π ∇ q (s,π(s; θ))θ π

= ∇ (r(s,π(s; θ))+θ γ p(s ∣s,π(s; θ))v (s) ds)∫
s′

′
π

′ ′

= ∇ π(s; θ)∇ r(s, a) +θ a ∣
∣
a=π(s;θ)

γ∇ p(s ∣s,π(s; θ))v (s) dsθ ∫
s′

′
π

′ ′

= ∇ π(s; θ)∇ (r(s, a) +θ a ∣
∣
a=π(s;θ)

γ p(s ∣s, a))v (s) ds)∫
s′

′
π

′ ′

+ γ p(s ∣s,π(s; θ))∇ v (s) ds∫
s′

′
θ π

′ ′

= ∇ π(s; θ)∇ q (s, a) +θ a π ∣
∣
a=π(s;θ) γ p(s ∣s,π(s; θ))∇ v (s) ds∫

s′

′
θ π

′ ′

∇ v (s)θ π
′

8/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Deep Deterministic Policy Gradients

Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions (similarly to how expected
Sarsa is also an off-policy algorithm).

We therefore train function approximation for both and , training

using a deterministic variant of the Bellman equation:

and according to the deterministic policy gradient theorem.

The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with), batch normalization for CNNs, and perform exploration by adding a normal-

distributed noise to predicted actions. Training is performed by Adam with learning rates of 1e-4
and 1e-3 for the policy and critic network, respectively.

π(s; θ) q(s, a; θ) q(s, a; θ)

q(S ,A ; θ) =t t E [R +R ,S t+1 t+1 t+1 γq(S ,π(S ; θ))]t+1 t+1

π(s; θ)

τ = 0.001

9/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ.

Initialize target network Q′ and µ′ with weights θQ
′

← θQ, θµ
′

← θµ

Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do
Select action at = µ(st|θ

µ) +Nt according to the current policy and exploration noise
Execute action at and observe reward rt and observe new state st+1
Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R

Set yi = ri + γQ′(si+1, µ
′(si+1|θ

µ′

)|θQ
′

)
Update critic by minimizing the loss: L = 1

N

∑
i(yi −Q(si, ai|θ

Q))2

Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N

i

∇aQ(s, a|θ
Q)|s=si,a=µ(si)∇θµµ(s|θ

µ)|si

Update the target networks:

θQ
′

← τθQ + (1− τ)θQ
′

θµ
′

← τθµ + (1− τ)θµ
′

end for
end for

Algorithm 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

10/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Deep Deterministic Policy Gradients
Cart Pendulum Swing-up Cartpole Swing-up

Fixed Reacher

BlockworldGripper Puck Shooting

Monoped Balancing

Moving GripperCheetah

Million Steps

0

1 1

0

1

1

0

0

1

1

0

0

1

0

0

1

1

1

0

0

N
o
r
m
a
li
z
e
d
R
e
w
a
r
d

10 0 0 0 01 1 1 1

Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG
algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark
grey), with target networks and batch normalization (green), with target networks from pixel-only
inputs (blue). Target networks are crucial.

Figure 3 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

11/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Deep Deterministic Policy Gradients

Results using low-dimensional (lowd) version of the environment, pixel representation (pix) and
DPG reference (cntrl).

environment Rav,lowd Rbest,lowd Rav,pix Rbest,pix Rav,cntrl Rbest,cntrl

blockworld1 1.156 1.511 0.466 1.299 -0.080 1.260
blockworld3da 0.340 0.705 0.889 2.225 -0.139 0.658

canada 0.303 1.735 0.176 0.688 0.125 1.157
canada2d 0.400 0.978 -0.285 0.119 -0.045 0.701
cart 0.938 1.336 1.096 1.258 0.343 1.216

cartpole 0.844 1.115 0.482 1.138 0.244 0.755
cartpoleBalance 0.951 1.000 0.335 0.996 -0.468 0.528

cartpoleParallelDouble 0.549 0.900 0.188 0.323 0.197 0.572
cartpoleSerialDouble 0.272 0.719 0.195 0.642 0.143 0.701
cartpoleSerialTriple 0.736 0.946 0.412 0.427 0.583 0.942

cheetah 0.903 1.206 0.457 0.792 -0.008 0.425
fixedReacher 0.849 1.021 0.693 0.981 0.259 0.927

fixedReacherDouble 0.924 0.996 0.872 0.943 0.290 0.995
fixedReacherSingle 0.954 1.000 0.827 0.995 0.620 0.999

gripper 0.655 0.972 0.406 0.790 0.461 0.816
gripperRandom 0.618 0.937 0.082 0.791 0.557 0.808
hardCheetah 1.311 1.990 1.204 1.431 -0.031 1.411
hopper 0.676 0.936 0.112 0.924 0.078 0.917
hyq 0.416 0.722 0.234 0.672 0.198 0.618

movingGripper 0.474 0.936 0.480 0.644 0.416 0.805
pendulum 0.946 1.021 0.663 1.055 0.099 0.951
reacher 0.720 0.987 0.194 0.878 0.231 0.953

reacher3daFixedTarget 0.585 0.943 0.453 0.922 0.204 0.631
reacher3daRandomTarget 0.467 0.739 0.374 0.735 -0.046 0.158

reacherSingle 0.981 1.102 1.000 1.083 1.010 1.083
walker2d 0.705 1.573 0.944 1.476 0.393 1.397

torcs -393.385 1840.036 -401.911 1876.284 -911.034 1961.600

Table 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

12/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Natural Policy Gradient

The following approach has been introduced by Kakade (2002).

Using policy gradient theorem, we are able to compute . Normally, we update the

parameters by using directly this gradient. This choice is justified by the fact that a vector

which maximizes under the constraint that is bounded by a small constant is

exactly the gradient .

Normally, the length is computed using Euclidean metric. But in general, any metric could

be used. Representing a metric using a positive-definite matrix (identity matrix for Euclidean

metric), we can compute the distance as . The steepest ascent

direction is then given by .

Note that when is the Hessian , the above process is exactly Newton's method.

∇v π

d

v (s; θ +π d) ∣d∣2

∇v π

∣d∣2

G

∣d∣ =2
 G d d =∑ij ij i j d GdT

G ∇v

−1
π

G Hv π

13/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Natural Policy Gradient

J , / ()

(a) Vanilla policy gradient. (b) Natural policy gradient.

Figure 3 of the paper "Reinforcement learning of motor skills with policy gradients" by Jan Peters et al.

14/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Natural Policy Gradient

A suitable choice for the metric is Fisher information matrix defined as

It can be shown that the Fisher information metric is the only Riemannian metric (up to
rescaling) invariant to change of parameters under sufficient statistic.

Recall Kullback-Leibler distance (or relative entropy) defined as

The Fisher information matrix is also a Hessian of the :

F (θ)s =def E =π(a∣s;θ) [
∂θ i

∂ log π(a∣s; θ)
∂θ j

∂ log π(a∣s; θ)
] E[∇π(a∣s; θ)]E[∇π(a∣s; θ)] .T

D (p∣∣q)KL =
def

 p log =
i

∑ i
q i

p i
H(p, q) − H(p).

D (π(a∣s; θ)∣∣π(a∣s; θ)KL
′

F (θ) =s D (π(a∣s; θ)∣∣π(a∣s; θ) .
∂θ ∂θ i

′
j
′

∂2

KL
′

∣
∣
∣
θ =θ′

15/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Natural Policy Gradient

Using the metric

we want to update the parameters using .

An interesting property of using the to update the parameters is that

updating using will choose an arbitrary better action in state ;

updating using chooses the best action (maximizing expected return),

similarly to tabular greedy policy improvement.

However, computing in a straightforward way is too costly.

F (θ) = E F (θ)s∼μ θ s

d F =def
F (θ) ∇v

−1
π

d F

θ ∇v π s

θ F (θ) ∇v

−1
π

d F

16/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Truncated Natural Policy Gradient

Duan et al. (2016) in paper Benchmarking Deep Reinforcement Learning for Continuous

Control propose a modification to the NPG to efficiently compute .

Following Schulman et al. (2015), they suggest to use conjugate gradient algorithm, which can
solve a system of linear equations in an iterative manner, by using only to compute

products for a suitable .

Therefore, is found as a solution of

and using only 10 iterations of the algorithm seem to suffice according to the experiments.

Furthermore, Duan et al. suggest to use a specific learning rate suggested by Peters et al
(2008) of

d F

Ax = b A

Av v

d F

F (θ)d =F ∇v π

 .
 (∇v) F (θ) ∇vπ

T −1
π

α

17/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Trust Region Policy Optimization

Schulman et al. in 2015 wrote an influential paper introducing TRPO as an improved variant of
NPG.

Considering two policies , we can write

where is the advantage function and is the on-policy

distribution of the policy .

Analogously to policy improvement, we see that if , policy performance increases

(or stays the same if the advantages are zero everywhere).

However, sampling states is costly. Therefore, we instead consider

π, π~

v =π~ v +π E E a (a∣s),s∼μ()π~ a∼ (a∣s)π~ π

a (a∣s)π q (a∣s) −π v (s)π μ()π~

π~

a (a∣s) ≥π 0 π~

s ∼ μ()π~

L () =π π~ v +π E E a (a∣s).s∼μ(π) a∼ (a∣s)π~ π

18/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Trust Region Policy Optimization

It can be shown that for parametrized the matches to the first order.

Schulman et al. additionally proves that if we denote

, then

Therefore, TRPO minimizes subject to , where

 is used instead of for

performance reasons;
 is a constant found empirically, as the one implied by the above equation is too small;

importance sampling is used to account for sampling actions from .

L () =π π~ v +π E E a (a∣s)s∼μ(π) a∼ (a∣s)π~ π

π(a∣s; θ) L ()π π~ v π~

α = D (π ∣∣π) =KL
max

old new

max D (π (⋅∣s)∣∣π (⋅∣s))s KL old new

v ≥π new L (π) −π old new α where ε =
(1 − γ)2

4εγ
 ∣a (s, a)∣.

s,a
max π

L (π)π θ 0 θ D (π ∣∣π) <KL
θ 0

θ 0 θ δ

D (π ∣∣π) =KL
θ 0

θ 0 θ E [D (π (⋅∣s)∣∣π (⋅∣s))]s∼μ(π)θ 0 KL old new D KL
max

δ

π

19/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Trust Region Policy Optimization

The parameters are updated using , utilizing the conjugate gradient

algorithm as described earlier for TNPG (note that the algorithm was designed originally for
TRPO and only later employed for TNPG).

To guarantee improvement and respect the constraint, a line search is in fact performed.

We start by the learning rate of and shrink it exponentially until the

constraint is satistifed and the objective improves.

minimize L (π) subject to D (π ∣∣π) <π θ 0 θ KL
θ 0

θ 0 θ δ

d =F F (θ) ∇L (π)−1
π θ 0 θ

D KL

 δ/(d F (θ) d)F
T −1

F

20/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Trust Region Policy Optimization

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. Illustration of locomotion tasks: (a) Swimmer; (b) Hop-

per; (c) Walker; (d) Half-Cheetah; (e) Ant; (f) Simple Humanoid;

and (g) Full Humanoid.

Figure 1 of the paper "Benchmarking Deep Reinforcement Learning for Continuous Control" by Duan et al.

Task Random REINFORCE TNPG RWR REPS TRPO CEM CMA-ES DDPG

Cart-Pole Balancing 77.1±0.0 4693.7± 14.0 3986.4 ± 748.9 4861.5 ± 12.3 565.6±137.6 4869.8 ± 37.6 4815.4± 4.8 2440.4±568.3 4634.4 ± 87.8

Inverted Pendulum* −153.4±0.2 13.4± 18.0 209.7 ± 55.5 84.7± 13.8 −113.3± 4.6 247.2 ± 76.1 38.2± 25.7 −40.1± 5.7 40.0 ±244.6

Mountain Car −415.4±0.0 −67.1± 1.0 -66.5 ± 4.5 −79.4± 1.1 −275.6±166.3 -61.7 ± 0.9 −66.0± 2.4 −85.0± 7.7 −288.4±170.3

Acrobot −1904.5±1.0 −508.1± 91.0 −395.8±121.2 −352.7± 35.9 −1001.5± 10.8 −326.0± 24.4 −436.8± 14.7 −785.6± 13.1 -223.6 ± 5.8

Double Inverted Pendulum* 149.7±0.1 4116.5± 65.2 4455.4 ± 37.6 3614.8±368.1 446.7±114.8 4412.4 ± 50.4 2566.2±178.9 1576.1± 51.3 2863.4±154.0

Swimmer* −1.7±0.1 92.3± 0.1 96.0 ± 0.2 60.7± 5.5 3.8± 3.3 96.0 ± 0.2 68.8± 2.4 64.9± 1.4 85.8± 1.8

Hopper 8.4±0.0 714.0± 29.3 1155.1 ± 57.9 553.2± 71.0 86.7± 17.6 1183.3 ± 150.0 63.1± 7.8 20.3± 14.3 267.1± 43.5

2D Walker −1.7±0.0 506.5± 78.8 1382.6 ± 108.2 136.0± 15.9 −37.0± 38.1 1353.8 ± 85.0 84.5± 19.2 77.1± 24.3 318.4±181.6

Half-Cheetah −90.8±0.3 1183.1± 69.2 1729.5 ± 184.6 376.1± 28.2 34.5± 38.0 1914.0 ± 120.1 330.4±274.8 441.3±107.6 2148.6 ± 702.7

Ant* 13.4±0.7 548.3± 55.5 706.0 ± 127.7 37.6± 3.1 39.0± 9.8 730.2 ± 61.3 49.2± 5.9 17.8± 15.5 326.2± 20.8

Simple Humanoid 41.5±0.2 128.1± 34.0 255.0 ± 24.5 93.3± 17.4 28.3± 4.7 269.7 ± 40.3 60.6± 12.9 28.7± 3.9 99.4± 28.1

Full Humanoid 13.2±0.1 262.2± 10.5 288.4 ± 25.2 46.7± 5.6 41.7± 6.1 287.0 ± 23.4 36.9± 2.9 N/A± N/A 119.0± 31.2

Table 1 of the paper "Benchmarking Deep Reinforcement Learning for Continuous Control" by Duan et al.

21/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Proximal Policy Optimization

A simplification of TRPO which can be implemented using a few lines of code.

Let . PPO minimizes the objective

Such is a lower (pessimistic) bound.

r

LCLIP

0 1 1+ ǫ

A > 0

r

LCLIP

0 11− ǫ

A < 0

Figure 1 of the paper "Proximal Policy Optimization Algorithms" by Schulman et al.

r (θ)t =def

π(A ∣S ;θ)t t old

π(A ∣S ;θ)t t

L (θ)CLIP =def E [min (r (θ) , clip(r (θ), 1 −t t Ât t ε, 1 + ε)))].Ât

L (θ)CLIP

22/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Proximal Policy Optimization

The advantages are additionally estimated using generalized advantage estimation. Instead of

the usual the authors employ

where .

Algorithm 1 PPO, Actor-Critic Style

for iteration=1, 2, do

for actor=1, 2, , N do

Run policy πθold in environment for T timesteps

Compute advantage estimates Â1, , ÂT

end for

Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT

θold ← θ

end for

Algorithm 1 of the paper "Proximal Policy Optimization Algorithms" by Schulman et al.

 Ât

 Ât =def
 γ R +∑i=0

T−t−1 i
t+1+i γ V (S) −T−t

T V (S)t

 Ât =def
 (γλ) δ ,

i=0

∑
T−t−1

i
t+i

δ =t R +t+1 γV (S) −t+1 V (S)t

23/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Proximal Policy Optimization

Figure 3 of the paper "Proximal Policy Optimization Algorithms" by Schulman et al.

24/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Soft Actor Critic

The paper Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor by Tuomas Haarnoja et al. introduces a different off-policy algorithm for
continuous action space.

The general idea is to introduce entropy directly in the value function we want to maximize.

25/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Soft Actor Critic

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors ψ, ψ̄, θ, φ.

for each iteration do

for each environment step do

at ∼ πφ(at|st)
st+1 ∼ p(st+1|st,at)
D ← D ∪ {(st,at, r(st,at), st+1)}

end for

for each gradient step do

ψ ← ψ − λV ∇̂ψJV (ψ)

θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2}

φ← φ− λπ∇̂φJπ(φ)
ψ̄ ← τψ + (1− τ)ψ̄

end for

end for

Algorithm 1 of the paper "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor" by Tuomas Haarnoja et al.

26/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

Soft Actor Critic

0.0 0.2 0.4 0.6 0.8 1.0

million steps

0

1000

2000

3000

4000

av
er
ag
e
re
tu
rn

pp

(a) Hopper-v1

0.0 0.2 0.4 0.6 0.8 1.0

million steps

0

1000

2000

3000

4000

5000

6000

av
er
ag
e
re
tu
rn

(b) Walker2d-v1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

million steps

0

5000

10000

15000

av
er
ag
e
re
tu
rn

(c) HalfCheetah-v1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

million steps

0

2000

4000

6000

av
er
ag
e
re
tu
rn

(d) Ant-v1

0 2 4 6 8 10

million steps

0

2000

4000

6000

8000

av
er
ag
e
re
tu
rn

(e) Humanoid-v1

0 2 4 6 8 10

million steps

0

2000

4000

6000

av
er
ag
e
re
tu
rn

()

SAC

DDPG

PPO

SQL

TD3 (concurrent)

(f) Humanoid (rllab)

Figure 1 of the paper "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor" by Tuomas Haarnoja et al.

27/27NPFL122, Lecture 9 Refresh DPG DDPG NPG TRPO PPO SAC

