
NPFL122, Lecture 8

Advantage Actor-Critic,

Continuous Action Space
Milan Straka

December 3, 2018

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

REINFORCE Algorithm

The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

maximizing . To compute the gradient

REINFORCE algorithm estimates the by a single sample.

Modification of Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition".

J(θ) =def E v (s)h,π π

∇ J(θ) ∝θ μ(s) q (s, a)∇ π(a∣s; θ),
s∈S

∑
a∈A

∑ π θ

q (s, a)π

2/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

REINFORCE with Baseline

The returns can be arbitrary – better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline to

A good choice for is , which can be shown to minimize variance of the estimator.

Such baseline reminds centering of returns, given that . Then, better-

than-average returns are positive and worse-than-average returns are negative.

The resulting value is also called an advantage function .

Of course, the baseline can be only approximated. If neural networks are used to estimate

, then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.

b(s)

∇ J(θ) ∝θ μ(s) (q (s, a) −
s∈S

∑
a∈A

∑ π b(s))∇ π(a∣s; θ).θ

b(s) v (s)π

v (s) =π E q (s, a)a∼π π

a (s, a)π =def
q (s, a) −π v (s)π

v (s)π

π(a∣s; θ)

3/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

REINFORCE with Baseline

Modification of Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition".

4/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Actor-Critic

It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called actor-critic methods.

The idea is straightforward – instead of estimating the episode return using the whole episode
rewards, we can use -step temporal difference estimation.

Modification of Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition".

n

5/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Asynchronous Methods for Deep RL

A 2015 paper from Volodymyr Mnih et al., the same group as DQN.

The authors propose an asynchronous framework, where multiple workers share one neural
network, each training using either an off-line or on-line RL algorithm.

They compare 1-step Q-learning, 1-step Sarsa, -step Q-learning and A3C (an asynchronous

advantage actor-critic method). For A3C, they compare a version with and without LSTM.

The authors also introduce entropy regularization term to the loss to support

exploration and discourage premature convergence.

n

βH(π(s; θ))

6/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Asynchronous Methods for Deep RL

Algorithm 1 Asynchronous one-step Q-learning - pseu-

docode for each actor-learner thread.

// Assume global shared θ, θ−, and counter T = 0.
Initialize thread step counter t← 0
Initialize target network weights θ− ← θ
Initialize network gradients dθ ← 0
Get initial state s
repeat
Take action a with ǫ-greedy policy based on Q(s, a; θ)
Receive new state s′ and reward r

y =

{

r for terminal s′

r + γmaxa′ Q(s′, a′; θ−) for non-terminal s′

Accumulate gradients wrt θ: dθ ← dθ + ∂(y−Q(s,a;θ))2

∂θ

s = s′

T ← T + 1 and t← t+ 1
if T mod Itarget == 0 then
Update the target network θ− ← θ

end if
if t mod IAsyncUpdate == 0 or s is terminal then
Perform asynchronous update of θ using dθ.
Clear gradients dθ ← 0.

end if
until T > Tmax

Algorithm 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

7/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Asynchronous Methods for Deep RL

Algorithm S2 Asynchronous n-step Q-learning - pseudocode for each actor-learner thread.

// Assume global shared parameter vector θ.
// Assume global shared target parameter vector θ−.
// Assume global shared counter T = 0.
Initialize thread step counter t← 1
Initialize target network parameters θ− ← θ
Initialize thread-specific parameters θ′ = θ
Initialize network gradients dθ ← 0
repeat
Clear gradients dθ ← 0
Synchronize thread-specific parameters θ′ = θ
tstart = t
Get state st
repeat
Take action at according to the ǫ-greedy policy based on Q(st, a; θ

′)
Receive reward rt and new state st+1

t← t+ 1
T ← T + 1

until terminal st or t− tstart == tmax

R =

{

0 for terminal st
maxaQ(st, a; θ

−) for non-terminal st
for i ∈ {t− 1, . . . , tstart} do

R← ri + γR

Accumulate gradients wrt θ′: dθ ← dθ +
∂(R−Q(si,ai;θ

′))2

∂θ′

end for
Perform asynchronous update of θ using dθ.
if T mod Itarget == 0 then

θ− ← θ
end if

until T > Tmax

Algorithm S2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

8/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Asynchronous Methods for Deep RL

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors θ and θv and global shared counter T = 0
// Assume thread-specific parameter vectors θ′ and θ′

v

Initialize thread step counter t← 1
repeat

Reset gradients: dθ ← 0 and dθv ← 0.
Synchronize thread-specific parameters θ′ = θ and θ′

v = θv
tstart = t
Get state st
repeat

Perform at according to policy π(at|st; θ
′)

Receive reward rt and new state st+1
t← t+ 1
T ← T + 1

until terminal st or t− tstart == tmax

R =

{

0 for terminal st
V (st, θ

′

v) for non-terminal st// Bootstrap from last state

for i ∈ {t− 1, . . . , tstart} do
R← ri + γR
Accumulate gradients wrt θ′: dθ ← dθ +∇θ′ log π(ai|si; θ

′)(R− V (si; θ
′

v))

Accumulate gradients wrt θ′

v: dθv ← dθv + ∂ (R− V (si; θ
′

v))
2
/∂θ′

v

end for
Perform asynchronous update of θ using dθ and of θv using dθv .

until T > Tmax

Algorithm S3 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

9/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Asynchronous Methods for Deep RL

Figure 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

Method Training Time Mean Median

DQN 8 days on GPU 121.9% 47.5%
Gorila 4 days, 100 machines 215.2% 71.3%
D-DQN 8 days on GPU 332.9% 110.9%
Dueling D-DQN 8 days on GPU 343.8% 117.1%
Prioritized DQN 8 days on GPU 463.6% 127.6%
A3C, FF 1 day on CPU 344.1% 68.2%
A3C, FF 4 days on CPU 496.8% 116.6%
A3C, LSTM 4 days on CPU 623.0% 112.6%

Table 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr
Mnih et al.

Number of threads

Method 1 2 4 8 16

1-step Q 1.0 3.0 6.3 13.3 24.1

1-step SARSA 1.0 2.8 5.9 13.1 22.1

n-step Q 1.0 2.7 5.9 10.7 17.2

A3C 1.0 2.1 3.7 6.9 12.5

Table 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr
Mnih et al.

10/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Asynchronous Methods for Deep RL

Figure 3 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

11/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Asynchronous Methods for Deep RL

Figure 4 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

12/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Asynchronous Methods for Deep RL

Figure 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

13/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Parallel Advantage Actor Critic

An alternative to independent workers is to train in a synchronous and centralized way by
having the workes to only generate episodes. Such approach was described in May 2017 by
Clemente et al., who named their agent parallel advantage actor-critic (PAAC).

...

ne0

Worker 0 Worker nw

DNN

learn

Master

States, Rewards Targets

States

Actions

...

Environments

...

Figure 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

14/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Parallel Advantage Actor Critic

Algorithm 1 Parallel advantage actor-critic

1: Initialize timestep counter N = 0 and network weights θ, θv
2: Instantiate set e of ne environments
3: repeat
4: for t = 1 to tmax do
5: Sample at from π(at|st; θ)
6: Calculate vt from V (st; θv)
7: parallel for i = 1 to ne do
8: Perform action at,i in environment ei
9: Observe new state st+1,i and reward rt+1,i
10: end parallel for
11: end for

12: Rtmax+1 =

{

0 for terminal st
V (stmax+1; θ) for non-terminal st

13: for t = tmax down to 1 do
14: Rt = rt + γRt+1

15: end for
16: dθ = 1

ne·tmax

∑ne
i=1

∑tmax
t=1

(Rt,i − vt,i)∇θ log π(at,i|st,i; θ) + β∇θH(π(se,t; θ))

17: dθv = 1

ne·tmax

∑ne
i=1

∑tmax
t=1

∇θv (Rt,i − V (st,i; θv))
2

18: Update θ using dθ and θv using dθv .
19: N ← N + ne · tmax
20: until N ≥ Nmax

Algorithm 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

15/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Parallel Advantage Actor Critic

Game Gorila A3C FF GA3C PAAC archnips PAAC archnature

Amidar 1189.70 263.9 218 701.8 1348.3

Centipede 8432.30 3755.8 7386 5747.32 7368.1

Beam Rider 3302.9 22707.9 N/A 4062.0 6844.0

Boxing 94.9 59.8 92 99.6 99.8

Breakout 402.2 681.9 N/A 470.1 565.3

Ms. Pacman 3233.50 653.7 1978 2194.7 1976.0

Name This Game 6182.16 10476.1 5643 9743.7 14068.0

Pong 18.3 5.6 18 20.6 20.9

Qbert 10815.6 15148.8 14966.0 16561.7 17249.2

Seaquest 13169.06 2355.4 1706 1754.0 1755.3

Space Invaders 1883.4 15730.5 N/A 1077.3 1427.8

Up n Down 12561.58 74705.7 8623 88105.3 100523.3

Training 4d CPU cluster 4d CPU 1d GPU 12h GPU 15h GPU

Table 1 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

The authors use workers, parallel environments, -step returns, , ,

 and a learning rate of .

The is from A3C: 16 filters stride 4, 32 filters stride 2, a dense layer with

256 units. The is from DQN: 32 filters stride 4, 64 filters stride 2, 64

filters stride 1 and 512-unit fully connected layer. All nonlinearities are ReLU.

8 n =e 32 5 γ = 0.99 ε = 0.1
β = 0.01 α = 0.0007 ⋅ n =e 0.0224

arch nips 8 × 8 4 × 4
arch nature 8 × 8 4 × 4

3 × 3
16/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Parallel Advantage Actor Critic

Figure 3 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

17/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Parallel Advantage Actor Critic

Figure 4 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

18/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Parallel Advantage Actor Critic

Figure 2 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

19/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Continuous Action Space

p

✓

−

(x− µ)2

2σ2

◆

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5

x

1.0

−1 0 2 4−2−4

0,µ=

0,µ=

0,µ=

−2,µ=

2
0.2,σ =

2
1.0,σ =

2
5.0,σ =

2
0.5,σ =

Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range for , or more

generally from a Cartesian product of several such ranges:

A simple way how to parametrize the action distribution
is to choose them from the normal distribution.
Given mean and variance , probability density

function of is

[a, b] a, b ∈ R

 [a , b].
i

∏ i i

μ σ2

N (μ,σ)2

p(x) =def
 e .
 2πσ2

1 − 2σ2
(x−μ)2

20/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Continuous Action Space in Gradient Methods

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the

 distribution we suitably parametrize the action value, usually using the normal

distribution. Considering only one real-valued action, we therefore have

where and are function approximation of mean and standard deviation of the

action distribution.

The mean and standard deviation are usually computed from the shared representation, with

the mean being computed as a regular regression (i.e., one output neuron without
activation);
the standard variance (which must be positive) being computed again as a regression,

followed most commonly by either or , where .

softmax

π(a∣s; θ) =
def

P(a ∼ N(μ(s; θ),σ(s; θ))),2

μ(s; θ) σ(s; θ)

exp softplus softplus(x) =def log(1 + e)x

21/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Continuous Action Space in Gradient Methods

During training, we compute and and then sample the action value (clipping it

to if required). To compute the loss, we utilize the probability density function of the

normal distribution (and usually also add the entropy penalty).

 mu = tf.layers.dense(hidden_layer, 1)[:, 0]

 sd = tf.layers.dense(hidden_layer, 1)[:, 0]

 sd = tf.exp(log_sd) # or sd = tf.nn.softplus(sd)

 normal_dist = tf.distributions.Normal(mu, sd)

 # Loss computed as - log π(a|s) - entropy_regularization
 loss = - normal_dist.log_prob(self.actions) * self.returns \

 - args.entropy_regularization * normal_dist.entropy()

μ(s; θ) σ(s; θ)
[a, b]

22/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

Continuous Action Space

When the action consists of several real values, i.e., action is a suitable subregion of for

, we can:

either use multivariate Gaussian distribution;
or factorize the probability into a product of univariate normal distributions.

Modeling the action distribution using a single normal distribution might be insufficient, in
which case a mixture of normal distributions is usually used.

Sometimes, the continuous action space is used even for discrete output -- when modeling pixels
intensities (256 values) or sound amplitude (2 values), instead of a softmax we use discretized

mixture of distributions, usually (a distribution with a sigmoid cdf). Then,

However, such mixtures are usually used in generative modeling, not in reinforcement learning.

Rn

n > 1

16

logistic

π(a) = p (σ((a +
i

∑ i 0.5 − μ)/σ)−i i σ((a − 0.5 − μ)/σ)).i i

23/23NPFL122, Lecture 8 Refresh A3C PAAC Continuous Action Space

