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Instead of predicting expected returns, we could train the method to directly predict the policy
m(als; 0).

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution 7 instead of just e-greedy sampling.

However, to train the network, we maximize the expected return v, () and to that account we
need to compute its gradient Vgu,(s).
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In addition to discarding e-greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might
be of some use though).
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Let m(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the
def

on-policy distribution under 7 as u(s). Let also J(0) = Ej rv:(s).
Then

Vovr(s) x ZP(S —...— 8| Zqﬂ(S,,CI,)VgTF(CL’S,; 0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vegm(als;0),

s€S acA

where P(s — ... — §'|m) is probability of transitioning from state s to s’ using 0, 1, ... steps.
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Vo (s) = V[Za m(als; 8)gx (s, a)}
_ :Vw(a $;0)q,(s,a) + m(als;0)Vag, (s, a)}
_ :vﬂ(a 5104 (s,a) +(als;0)V (Y p(s'|s,a)(r + vw(S')))}
— :Vw(a $;0)g-(s,a) + w(als; 9)(23/ p(s'|s, a,)VvW(s'))]
We now expand v, (s').
=" | Vr(als; 0)as(s,a) + m(als;0)( D (s'|s,a)
3 [VW(a’ 5';0)g:(s',d') + 7(d']s'; 6) ( >, ps"ls, a')V’Uw(s")) )}

a/

Continuing to expand all v;(s"), we obtain the following:

Vur(s) = ZP(S — ... — §|m) Zqﬂ(s', a)Vem(als'; ).
s'eS acA
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Recall that the initial state distribution is h(s) and the on-policy distribution under 7 is p(s).
If we let 77(s) denote the number of time steps spent, on average, in state s in a single episode,

we have
n(s) = h(s) + Zn Zﬂ' a|s )p(s|s',a).

The on-policy distribution is then the normalization of 7(s):

def n(s)
ws) = 5 s

The last part of the policy gradient theorem follows from the fact that u(s) is

p(s) = Eg ns)P(so — ... — s|m).
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The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

def

maximizing J(0) = Ep rv:(s). The loss is defined as

—VeJ(0) x Z,u(s) qu(s, a)Vegm(als;0)

scS acA

=E,;p Z qr(s,a)Vem(als; 0).
acA

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

—VeJ(0) x Es Egngr(s,a)VeInm(als; ),

where we used the fact that

1
Volnm(als;0) = (a5 ) Vom(als; 8).
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REINFORCE Algorithm UL
REINFORCE therefore minimizes the loss
—EsyEorqr(s,a)VeInm(als; 9),

estimating the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .,

Input: a differentiable policy parameterization m(al|s, @)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € R (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7(:|-, )
Loop for each step of the episode t =0,1,...,7T — 1:
G Zfzm YRy, (Gt)
0+ 0+ OéGVlHW(At|St,0)

Moditfication of Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition".
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The returns can be arbitrary — better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

VeJ(0) x Z,u Z (g-(s,a) — b(s)) Vem(als; 6).

s€S acA

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because

Zb (s)Ver(a|s; 8) = b(s va (als; 0) = b(s)V1 = 0.
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A good choice for b(s) is v (s), which can be shown to minimize variance of the estimator.
Such baseline reminds centering of returns, given that

Vr(8) = Equrgr (s, a).
Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting ¢, (s, a) — v;(s) function is also called an advantage function

def
ar(s,a) = q:(s,a) — v(s).
Of course, the v, (s) baseline can be only approximated. If neural networks are used to estimate
m(als; @), then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.
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REINFORCE with Baseline Uz

REINFORCE with Baseline (episodic), for estimating 79 ~ T,

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a? > 0, a% > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S57-1, Ar_1, R, following 7(-|-, )
Loop for each step of the episode t =0,1,...,1T — 1:
G Y1 VT Ry (Gy)
6 < G — 0(S,w)
W — W+ aV Vo (S,w)
00+ a% Vinm(AS:,0)

Modification of Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition".
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REINFORCE with Baseline Upt
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Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".
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It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called actor-critic methods.

The idea is straightforward — instead of estimating the episode return using the whole episode
rewards, we can use m-step temporal difference estimation.
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Actor-Critic UL

One-step Actor—Critic (episodic), for estimating w9 ~ m,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0
Initialize policy parameter 6 € RY and state-value weights w € RY (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

Loop while S is not terminal (for each time step):

A~ 7(]S,0)
Take action A, observe S/, R
d < R+~y0(S",w) — 0(S,w) (if S’ is terminal, then 0(S’,w) = 0)

W w4+ aVoVo(S,w)
0+ 60+ a5Vinn(4]S,0)
S5

Modification of Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition".
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