NPFL122, Lecture 7 U

Policy Gradient Methods

Milan Straka

m November 26, 2018

a N Charles University in Prague @ (7) (0
L EUROPEAN UNION Faculty of Mathematics and Physics ——
European Structural and Investment Fund

ol Proorartms Recears Institute of Formal and Applied Linguistics .
LAN GTECH gzveI;pmeln}tDangd Educatir\:an " pp g UnleSS Othel’Wlse Stated

Instead of predicting expected returns, we could train the method to directly predict the policy
m(als; 0).

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution 7 instead of just e-greedy sampling.

However, to train the network, we maximize the expected return v, () and to that account we
need to compute its gradient Vgu,(s).

Policy Gradient Methods 2/14

In addition to discarding e-greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might
be of some use though).

1.6 -

20k optir'nal
stochastic

policy

-40 F
£-greedy right
J(0) = v (S)
-60 -
S=—|G
0 £-greedy left
-100 _l 1 1 1 1 |

0 0.1 0.2 013 OT4 0i5 056 0i7 0.8 0.9 1
probability of right action

Policy Gradient Methods

3/14

Let m(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the
def

on-policy distribution under 7 as u(s). Let also J(0) = Ej rv:(s).
Then

Vovr(s) x ZP(S —...— 8| Zqﬂ(S,,CI,)VgTF(CL’S,; 0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vegm(als;0),

s€S acA

where P(s — ... — §'|m) is probability of transitioning from state s to s’ using 0, 1, ... steps.

Policy Gradient Methods 4/14

Vo (s) = V[Za m(als; 8)gx (s, a)}
_ :Vw(a $;0)q,(s,a) + m(als;0)Vag, (s, a)}
_ :vﬂ(a 5104 (s,a) +(als;0)V (Y p(s'|s,a)(r + vw(S')))}
— :Vw(a $;0)g-(s,a) + w(als; 9)(23/ p(s'|s, a,)VvW(s'))]
We now expand v, (s').
=" | Vr(als; 0)as(s,a) + m(als;0)(D (s'|s,a)
3 [VW(a’ 5';0)g:(s',d') + 7(d']s'; 6) (>, ps"ls, a')V’Uw(s")))}

a/

Continuing to expand all v;(s"), we obtain the following:

Vur(s) = ZP(S — ... — §|m) Zqﬂ(s', a)Vem(als';).
s'eS acA

Policy Gradient Methods 5/14

Recall that the initial state distribution is h(s) and the on-policy distribution under 7 is p(s).
If we let 77(s) denote the number of time steps spent, on average, in state s in a single episode,

we have
n(s) = h(s) + Zn Zﬂ' a|s)p(s|s',a).

The on-policy distribution is then the normalization of 7(s):

def n(s)
ws) = 5 s

The last part of the policy gradient theorem follows from the fact that u(s) is

p(s) = Eg ns)P(so — ... — s|m).

Policy Gradient Methods 6/14

The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

def

maximizing J(0) = Ep rv:(s). The loss is defined as

—VeJ(0) x Z,u(s) qu(s, a)Vegm(als;0)

scS acA

=E,;p Z qr(s,a)Vem(als; 0).
acA

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

—VeJ(0) x Es Egngr(s,a)VeInm(als;),

where we used the fact that

1
Volnm(als;0) = (a5) Vom(als; 8).

REINFORCE 7/14

REINFORCE Algorithm UL
REINFORCE therefore minimizes the loss
—EsyEorqr(s,a)VeInm(als; 9),

estimating the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .,

Input: a differentiable policy parameterization m(al|s, @)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € R (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7(:|-,)
Loop for each step of the episode t =0,1,...,7T — 1:
G Zfzm YRy, (Gt)
0+ 0+ OéGVlHW(At|St,0)

Moditfication of Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic 8/14

The returns can be arbitrary — better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

VeJ(0) x Z,u Z (g-(s,a) — b(s)) Vem(als; 6).

s€S acA

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because

Zb (s)Ver(a|s; 8) = b(s va (als; 0) = b(s)V1 = 0.

Baseline

9/14

A good choice for b(s) is v (s), which can be shown to minimize variance of the estimator.
Such baseline reminds centering of returns, given that

Vr(8) = Equrgr (s, a).
Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting ¢, (s, a) — v;(s) function is also called an advantage function

def
ar(s,a) = q:(s,a) — v(s).
Of course, the v, (s) baseline can be only approximated. If neural networks are used to estimate
m(als; @), then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.

Baseline 10/14

REINFORCE with Baseline Uz

REINFORCE with Baseline (episodic), for estimating 79 ~ T,

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a? > 0, a% > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S57-1, Ar_1, R, following 7(-|-,)
Loop for each step of the episode t =0,1,...,1T — 1:
G Y1 VT Ry (Gy)
6 < G — 0(S,w)
W — W+ aV Vo (S,w)
00+ a% Vinm(AS:,0)

Modification of Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic 11/14

REINFORCE with Baseline Upt

10w REINFOR vith baseline o® =279, a% =27
TN WA wmmwmww-,-.wm MRS < V- (S0)
-20 i 1y
REINFORCE
_ 913
Go _40}- “
Total reward
on episode
averaged over 100 runs
_60 L
_80 L
_90 i | | | | |
1 200 400 600 800 1000
Episode

Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic 12/14

It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called actor-critic methods.

The idea is straightforward — instead of estimating the episode return using the whole episode
rewards, we can use m-step temporal difference estimation.

Actor-Critic 13/14

Actor-Critic UL

One-step Actor—Critic (episodic), for estimating w9 ~ m,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0
Initialize policy parameter 6 € RY and state-value weights w € RY (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

Loop while S is not terminal (for each time step):

A~ 7(]S,0)
Take action A, observe S/, R
d < R+~y0(S",w) — 0(S,w) (if S’ is terminal, then 0(S’,w) = 0)

W w4+ aVoVo(S,w)
0+ 60+ a5Vinn(4]S,0)
S5

Modification of Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 7 Policy Gradient Methods REINFORCE Baseline Actor-Critic 14/14

