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We will approximate value function v and/or state-value function g, choosing from a family of
functions parametrized by a weight vector w € R?.

We denote the approximations as

v (s, w),

G(s,a,w).

We utilize the Mean Squared Value Error objective, denoted V E:

VE(w) £y u(s) [vx(s) — o(s,w)]’,

seS

where the state distribution w(s) is usually on-policy distribution.
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The functional approximation (i.e., the weight vector w) is usually optimized using gradient
methods, for example as

1 .
Wiy — W — §aV ['Uﬂ(St) — 'U(St,wt)]2

— W + o [Uﬂ'(St) — ﬁ(St, wt)] V’l/}(St, 'wt).
As usual, the v;(S;) is estimated by a suitable sample. For example in Monte Carlo methods,

we use episodic return G¢, and in temporal difference methods, we employ bootstrapping and
use Ryiq + ’Yﬁ(St_|_1, ’lIJ)
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Deep Q Network U=t

Off-policy Q-learning algorithm with a convolutional neural network function approximation of
action-value function.

Training can be extremely brittle (and can even diverge as shown earlier).
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Figure 1 of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Preprocessing: 210 x 160 128-color images are converted to grayscale and then resized to
84 x &4.
Frame skipping technique is used, i.e., only every 4 frame (out of 60 per second) is

considered, and the selected action is repeated on the other frames.
Input to the network are last 4 frames (considering only the frames kept by frame skipping),

i.e., an image with 4 channels.

The network is fairly standard, performing
32 filters of size 8 X 8 with stride 4 and RelLU,

o
O 64 filters of size 4 X 4 with stride 2 and RelLU,
O 64 filters of size 3 X 3 with stride 1 and RelU,
o
o

fully connected layer with 512 units and RelU,
output layer with 18 output units (one for each action)
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® Network is trained with RMSProp to minimize the following loss:

def

L= IE‘:(s,a,r,s’)Ndata (’I" + ’)’II?JXQ(SI, CL,; é) - Q(Sa a, 9))2] .

® An e-greedy behavior policy is utilized.

Important improvements:

® experience replay: the generated episodes are stored in a buffer as (s, a,r,s’) quadruples,
and for training a transition is sampled uniformly;
® separate target network 6: to prevent instabilities, a separate target network is used to

estimate state-value function. The weights are not trained, but copied from the trained
network once in a while;

* reward clipping of (r + vy maxy Q(s',a’;0) — Q(s,a;0)) to [—1,1].
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Deep Q Networks Hyperparameters Ut

minibatch size 32

replay buffer size 1M

target network update frequency 10k

discount factor 0.99

training frames 50M
RMSProp learning rate and momentum 0.00025, 0.95
initial €, final € and frame of final € 1.0, 0.1, 1M
replay start size 50k

no-op max 30
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Rainbow

There have been many suggested improvements to the DQN architecture. In the end of 2017,
the Rainbow: Combining Improvements in Deep Reinforcement Learning paper combines 7 of
them into a single architecture they call Rainbow.
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Figure 1 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow DQN Extensions Uz

Double Q-learning

Similarly to double Q-learning, instead of

T+ 'Yma,‘XQ(Sla CL,; é) o Q(Sv a; 9)7

we minimize

r+7Q(s', arg max Q(s', a5 0); ) — Q(s, a; ).

il

error

IS

AR ARCE R YN
v %

number of actions
Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {€,}7; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.
Figure 1 of the paper "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions Uz

Double Q-learning

True value and an estimate All estimates and max Bias as function of state Average error
2 2 max, Q¢(s,a) — max, Q«(s,a
Q-(s.a) 1 o 0 o
0" R N\ ¢ 0 ~0.02
Qi(s,a 1 Double-Q estimate
—2 —2
9 9 max, Q¢(s, a) ;] MaXa Q:(s,a) — maxq Q« (s, a) +0.47
0 - - +0.02
0 0 — 1 Double-Q estimate
4 4 4
max, Q¢(s,a)
2 2 2 +3.35
0 0 - - 0 -
Double-Q estimate 0.02
-6 —4 -2 0 2 4 6 -6 —4 -2 0 2 4 6 -6 —4 -2 0 2 4 6
state state state

Figure 2 of the paper "Deep Reinforcement Learning with Double Q-learning” by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning

Value estimates

Value estimates
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Figure 3 of the paper "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning

NPFL122, Lecture 6 Refresh

DQN  Double DQN
Median 93.5% 114.7%
Mean 241.1% 330.3%

Table 1 of the paper "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

DQN Double DQN  Double DQN (tuned)

Median 47.5% 88.4% 116.7%

Mean 122.0% 273.1% 475.2%

Table 2 of the paper "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Prioritized Replay

Instead of sampling the transitions uniformly from the replay buffer, we instead prefer those
with a large TD error. Therefore, we sample transitions according to their probability

w

pr o |r + ymax Q(s', a';8) — Q(s, ;)|

where w controls the shape of the distribution (which is uniform for w = 0 and corresponds to
TD error for w = 1).

New transitions are inserted into the replay buffer with maximum probability to support
exploration of all encountered transitions.
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Prioritized Replay
Because we now sample transitions according to p; instead of uniformly, on-policy distribution
and sampling distribution differ. To compensate, we therefore utilize importance sampling with

ratio
B
1/N
D¢

The authors utilize in fact “for stability reasons”

Pt/ mhax p;.
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Prioritized Replay

Algorithm 1 Double DQN with proportional prioritization

1: Input: minibatch k, step-size 7, replay period K and size N, exponents « and 3, budget 7.
2: Initialize replay memory H =0, A =0,p; =1

3: Observe Sy and choose Ay ~ 7y (Sp)

4: fort =1to 1 do

5 Observe S;, R, V¢

6:  Store transition (S;_1, A¢—1, R¢, V¢, S¢) in H with maximal priority p; = max;<¢ p;

7

8

if t=0 mod K then
forj =1tokdo

9: Sample transition j ~ P(j) = p$/ >, p?
10: Compute importance-sampling weight w; = (N - P(j )P / max; w;
11: Compute TD-error 5j = Rj + /Ytharget (Sj, arg maxg Q(Sj: CL)) - Q(Sj—h Aj—l)
12: Update transition priority p; < |;|
13: Accumulate weight-change A <— A +w; - §; - VoQ(Sj—1,A4;_1)
14: end for
15: Update weights 0 <— 0 +1n - A, reset A =0
16: From time to time copy weights into target network Orger < 0
17:  endif
18:  Choose action A; ~ my(Sy)
19: end for
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Rainbow DQN Extensions

Duelling Networks

Instead of computing directly Q(s, a;8), we compose it from the following quantities:

® value function for a given state s,

® advantage function computing an advantage of using action a in state s.

Za’eA A(f(S, C)a a',; ¢)
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Figure 1 of the paper "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions Uz

Duelling Networks
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Figure 3. (a) The corridor environment. The star marks the starting state. The redness of a state signifies the reward the agent receives
upon arrival. The game terminates upon reaching either reward state. The agent’s actions are going up, down, left, right and no action.
Plots (b), (¢) and (d) shows squared error for policy evaluation with 5, 10, and 20 actions on a log-log s ale. The dueling network

(Duel) consistently outperforms a conventional single-stream network (Single), with the performance gap increasing with the number of
actions.

No. lterations

Figure 3 of the paper "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions Uz

Duelling Networks
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Figure 2 of the paper "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Duelling Networks

30 no-ops Human Starts

Mean Median Mean Median
Prior. Duel Clip | 591.9% 172.1% | 567.0% 115.3%
Prior. Single 434.6%  123.7% | 386.7%  112.9%
Duel Clip 3731%  151.5% | 343.8% 117.1%
Single Clip 3412%  132.6% | 302.8% 114.1%
Single 307.3%  117.8% | 332.9% 110.9%
Nature DQN 227.9% 79.1% | 219.6% 68.5%

Duelling
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Multi-step Learning
Instead of Q-learning, we use n-step variant Q-learning (to be exact, we use n-step Expected

Sarsa) to maximize
> i+ max Q(s', ' 0) — Q(s, ;)
a
i=1

This changes the off-policy algorithm to on-policy, but it is not discussed in any way by the
authors.
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Noisy Nets
Noisy Nets are neural networks whose weights and biases are perturbed by a parametric
function of a noise.

The parameters @ are represented as

def

0=pu+o0e,

. . . . . L def
where € is zero-mean noise with fixed statistics. We therefore learn the parameters { =

(1, 0).
Therefore, a fully connected layer

y=wx—+Db
is represented in the following way in Noisy Nets:
Y = (H‘fw T Oy ®5w)w‘|‘ (”’b + o @Eb).
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Noisy Nets

The noise € can be for example independent Gaussian noise. However, for performance reasons,
factorized Gaussian noise is used to generate a matrix of noise. If &; ; is noise corresponding to
a layer with 7 inputs and 7 outputs, we generate independent noise €; for input neurons,
independent noise €; for output neurons, and set

eij = flei)f(e;)
for f(z) = sign(z)+/|z|.

The authors generate noise samples for every batch, sharing the noise for all batch instances.

Deep Q Networks
When training a DQN, e-greedy is no longer used and all policies are greedy, and all fully
connected layers are parametrized as noisy nets.
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Rainbow DQN Extensions Uz

Noisy Nets

Baseline NoisyNet Improvement
Mean Median Mean Median (On median)

DQN 319 83 379 123 48%
Dueling 524 132 633 172 30%
A3C 293 80 347 94 18%
Table 1 of the paper "Noisy Networks for Exploration" by Meire Fortunato et al.
Median score over games 160 Median score over games
80
140
© 60 o 120
S S 100
N n
c 40 - 80
© A ©
° g S 60
v A 9]
=20 4 = 40
I — DON —— Dueling
(W —— NoisyNet-DQN 20 —— NoisyNet-Dueling
0
0 50 100 150 200 0 50 100 150 200
Million frames Million frames

Figure 2 of the paper "Noisy Networks for Exploration™ by Meire Fortunato et al.
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Rainbow DQN Extensions

Noisy Nets
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Figure 3: Comparison of the learning curves of the average noise parameter 3 across five Atari games
in NoisyNet-DQN. The results are averaged across 3 seeds and error bars (+/- standard deviation) are
plotted.

Figure 3 of the paper "Noisy Networks for Exploration" by Meire Fortunato et al.
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Distributional RL

Instead of an expected return (s, a), we could estimate distribution of expected returns
Z(s,a).

These distributions satisfy a distributional Bellman equation:
Z(s,a) = R(s,a) +vZ(s',a").

The authors of the paper prove similar properties of the distributional Bellman operator
compared to the regular Bellman operator, mainly being a contraction under a suitable metric

(Wasserstein metric).
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Distributional RL
The distribution of returns is modeled as a discrete distribution parametrized by the number of
atoms IV € N and by Vann, Vaax € R. Support of the distribution are atoms

€ . . . V —V
{z deVM1N+zAz:O§z<N} for Az & MA]?\ir_lMIN

The atom probabilities are predicted using a softmax distribution as

fl (S,CL)
Zg(s,a) = {zi with probability p; = © _ } :

DistRL
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Distributional RL

After the Bellman update, the support of the distribution
R(s,a) +vZ(s',a’) is not the same as the original support. We

therefore project it to the original support by proportionally
mapping each atom of the Bellman update to immediate neighbors

in the original support.

N [ _|_,yz ]KMAX 2
®(R(s,a) +vZ(s',a’) d:ef Z 1-— A:IN p;i(s',a).
=11 1o

The network is trained to minimize the Kullbeck-Leibler divergence between the current
distribution and the (mapped) distribution of the one-step update

Dk (®(R+ max Z(s',ad')||Z(s,a)).

Refresh DQN DDQN PriRep Duelling NoisyNets DistRL Rainbow
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Rainbow DQN Extensions Uz

Distributional RL
Algorithm 1 Categorical Algorithm

input A transition x¢, az, r¢, Tri1, v € [0, 1]
Q(zt41,0) =), Zipi(Ti41,0)
a* arginax, Q(xt-i-l) CL)
m; =0, i€0,...,N—1
forj€0,..., N—1do
# Compute the projection of 7'zj onto the support { z; }
Tzj = [re + 725y
bi < (Tzj — Van)/Dz #b; € [0, N — 1]
L= |bj]), u < [b;]
# Distribute probability of 7'zj
my < my + pi(xe41,a”)(u — by)
My = My + Pj(Te41,0") (b — 1)
end for
output — > . m;logp;(x¢, a;) # Cross-entropy loss

Algorithm 1 of the paper "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Distributional RL

Mean | Median | > H.B. | > DQN

DQN 228% 79% 24 0
DDQN 307% 118% 33 43
DUEL. 373% 151% 37 50
PRIOR. 434% 124% 39 48
PR. DUEL. | 592% 172% 39 44
C51 701 % 178 % 40 50

N Laser

N i

:g — Right

& Left ==

Figure 4. Learned value distribution during an episode of SPACE
INVADERS. Different actions are shaded different colours. Re-
turns below 0 (which do not occur in SPACE INVADERS) are not
shown here as the agent assigns virtually no probability to them.
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Distributional RL

0.5
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Figure 18. SPACE INVADERS: Top-Left: Multi-modal distribution with high uncertainty. Top-Right: Subsequent frame, a more certain
demise. Bottom-Left: Clear difference between actions. Bottom-Middle: Uncertain survival. Bottom-Right: Certain success.
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Rainbow DQN Extensions Uz

Distributional RL

| ASTERIX - 7
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Q*BERT
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Figure 3. Categorical DQN: Varying number of atoms in the discrete distribution. Scores are moving averages over 5 million frames.

Figure 3 of the paper "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow combines all described DQN extensions. Instead of 1-step updates, n-step updates are
utilized, and KL divergence of the current and target return distribution is minimized:

DKL ((I)(Gt:t+n —+ ,yn H}za;X Z(Sla CL,)) ‘ ‘Z(Sa a’)) g

The prioritized replay chooses transitions according to the probability
w
P (DKL (B(Grvin + 7" max Z(s',a'))|| Z(s, a))) .

Network utilizes duelling architecture feeding the shared representation f(s; () into value
computation V(f(s;();n) and advantage computation A;(f(s;(),a;1) for atom z;, and the
final probability of atom z; in state s and action a is computed as

oV (F(5:0)im+ Ai(F(5:0),a59) ~ T e Ai (F(550),a' ) /| Al
pi(s,a) = > eV G0+, (F(0).08) -2 Ay T ) 1AT
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Parameter

Value

Min history to start learning
Adam learning rate
Exploration e

Noisy Nets og

Target Network Period

Adam €

Prioritization type

Prioritization exponent w
Prioritization importance sampling 3
Multi-step returns n

Distributional atoms

Distributional min/max values

80K frames
0.00000625
0.0

0.5

32K frames
1.5 x 104
proportional
0.5

04— 1.0
3

51

—10, 10]

Rainbow
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Rainbow Results

Median human-normalized score
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Dueling DDQN /
A3C
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|
100
Millions of frames

|
200

Figure 1 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by
Matteo Hessel et al.
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DQN DDQN PriRep

F\RL
Agent no-ops human starts
DQN 79% 68%
DDQN (¥) 117% 110%
Prioritized DDQN (*) | 140% 128%
Dueling DDQN (*) 151% 117%
A3C (*) - 116%
Noisy DQN 118% 102%
Distributional DQN 164% 125%
Rainbow 223% 153%
Table 2 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by
Matteo Hessel et al.
NoisyNets DistRL Rainbow 34/37

Duelling



Rainbow Results
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Figure 1 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" byFigure 3 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by
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Rainbow Ablations
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Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human
performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the
first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.

Figure 2 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Figure 4 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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