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Function Approximation

We will approximate value function  and/or state-value function , choosing from a family of

functions parametrized by a weight vector .

We denote the approximations as

We utilize the Mean Squared Value Error objective, denoted :

where the state distribution  is usually on-policy distribution.
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Gradient and Semi-Gradient Methods

The functional approximation (i.e., the weight vector ) is usually optimized using gradient

methods, for example as

As usual, the  is estimated by a suitable sample. For example in Monte Carlo methods,

we use episodic return , and in temporal difference methods, we employ bootstrapping and

use 

w
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Deep Q Network

Off-policy Q-learning algorithm with a convolutional neural network function approximation of
action-value function.

Training can be extremely brittle (and can even diverge as shown earlier).
Convolution Convolution Fully connected Fully connected

No input

 

Figure 1 of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Networks

Preprocessing:  128-color images are converted to grayscale and then resized to 

.

Frame skipping technique is used, i.e., only every  frame (out of 60 per second) is

considered, and the selected action is repeated on the other frames.
Input to the network are last  frames (considering only the frames kept by frame skipping),

i.e., an image with  channels.

The network is fairly standard, performing
32 filters of size  with stride 4 and ReLU,

64 filters of size  with stride 2 and ReLU,

64 filters of size  with stride 1 and ReLU,

fully connected layer with 512 units and ReLU,
output layer with 18 output units (one for each action)

210 × 160
84 × 84

4th

4
4

8 × 8
4 × 4
3 × 3
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Deep Q Networks

Network is trained with RMSProp to minimize the following loss:

An -greedy behavior policy is utilized.

Important improvements:

experience replay: the generated episodes are stored in a buffer as  quadruples,

and for training a transition is sampled uniformly;
separate target network : to prevent instabilities, a separate target network is used to

estimate state-value function. The weights are not trained, but copied from the trained
network once in a while;
reward clipping of  to .

L =
def E  (r + γ  Q(s , a ; ) − Q(s, a; θ)) .(s,a,r,s )∼data′ [

a′
max ′ ′ θ̄ 2]

ε

(s, a, r, s )′

θ̄

(r + γ max  Q(s , a ; ) −a′
′ ′ θ̄ Q(s, a; θ)) [−1, 1]
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Deep Q Networks Hyperparameters

Hyperparameter Value

minibatch size 32

replay buffer size 1M

target network update frequency 10k

discount factor 0.99

training frames 50M

RMSProp learning rate and momentum 0.00025, 0.95

initial , final  and frame of final 1.0, 0.1, 1M

replay start size 50k

no-op max 30

ε ε ε
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Rainbow

There have been many suggested improvements to the DQN architecture. In the end of 2017,
the Rainbow: Combining Improvements in Deep Reinforcement Learning paper combines 7 of
them into a single architecture they call Rainbow.

 

Figure 1 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow DQN Extensions

Double Q-learning
Similarly to double Q-learning, instead of

we minimize
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Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s, a) =
V∗(s) + ǫa and the errors {ǫa}

m

a=1
are independent standard

normal random variables. The second set of action values
Q′, used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.

 

Figure 1 of the paper "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

r + γ  Q(s , a ; ) −
a′

max ′ ′ θ̄ Q(s, a; θ),

r + γQ(s ,  Q(s , a ; θ); ) −′

a′
arg max ′ ′ θ̄ Q(s, a; θ).
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Rainbow DQN Extensions

Double Q-learning
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Figure 2 of the paper "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning
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Figure 3 of the paper "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning

 

Table 1 of the paper "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

 

Table 2 of the paper "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Prioritized Replay
Instead of sampling the transitions uniformly from the replay buffer, we instead prefer those
with a large TD error. Therefore, we sample transitions according to their probability

where  controls the shape of the distribution (which is uniform for  and corresponds to

TD error for ).

New transitions are inserted into the replay buffer with maximum probability to support
exploration of all encountered transitions.

p  ∝t  r +
∣
∣
∣

γ  Q(s , a ; ) −
a′

max ′ ′ θ̄ Q(s, a; θ) ,
∣
∣
∣ω

ω ω = 0
ω = 1
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Rainbow DQN Extensions

Prioritized Replay
Because we now sample transitions according to  instead of uniformly, on-policy distribution

and sampling distribution differ. To compensate, we therefore utilize importance sampling with
ratio

The authors utilize in fact “for stability reasons”

p  t

ρ  =t  .(
p  t

1/N
)

β

ρ  /  ρ  .t
i

max i
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Rainbow DQN Extensions

Prioritized Replay
Algorithm 1 Double DQN with proportional prioritization

1: Input: minibatch k, step-size η, replay periodK and size N , exponents α and β, budget T .
2: Initialize replay memoryH = ∅, ∆ = 0, p1 = 1
3: Observe S0 and choose A0 ∼ πθ(S0)
4: for t = 1 to T do
5: Observe St, Rt, γt
6: Store transition (St−1, At−1, Rt, γt, St) inH with maximal priority pt = maxi<t pi
7: if t ≡ 0 mod K then
8: for j = 1 to k do
9: Sample transition j ∼ P (j) = pαj /

∑
i p

α
i

10: Compute importance-sampling weight wj = (N · P (j))−β /maxi wi

11: Compute TD-error δj = Rj + γjQtarget (Sj , argmaxaQ(Sj , a))−Q(Sj−1, Aj−1)
12: Update transition priority pj ← |δj |
13: Accumulate weight-change ∆← ∆+ wj · δj · ∇θQ(Sj−1, Aj−1)
14: end for
15: Update weights θ ← θ + η ·∆, reset ∆ = 0
16: From time to time copy weights into target network θtarget ← θ
17: end if
18: Choose action At ∼ πθ(St)
19: end for

 

Algorithm 1 of the paper "Prioritized Experience Replay" by Tom Schaul et al.
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Rainbow DQN Extensions

Duelling Networks
Instead of computing directly , we compose it from the following quantities:

value function for a given state ,

advantage function computing an advantage of using action  in state .

 

Figure 1 of the paper "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

Q(s, a; θ)

s

a s

Q(s, a) =def
V (f(s; ζ); η) + A(f(s; ζ), a;ψ) −  

∣A∣
 A(f(s; ζ), a ;ψ)∑a ∈A′

′
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Rainbow DQN Extensions

Duelling Networks
 

Figure 3 of the paper "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions

Duelling Networks
VALUE ADVANTAGE

VALUE ADVANTAGE

 

Figure 2 of the paper "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions

Duelling Networks

30 no-ops Human Starts

Mean Median Mean Median

Prior. Duel Clip 591.9% 172.1% 567.0% 115.3%
Prior. Single 434.6% 123.7% 386.7% 112.9%

Duel Clip 373.1% 151.5% 343.8% 117.1%
Single Clip 341.2% 132.6% 302.8% 114.1%
Single 307.3% 117.8% 332.9% 110.9%

Nature DQN 227.9% 79.1% 219.6% 68.5%

 

Table 1 of the paper "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions

Multi-step Learning
Instead of Q-learning, we use -step variant Q-learning (to be exact, we use -step Expected

Sarsa) to maximize

This changes the off-policy algorithm to on-policy, but it is not discussed in any way by the
authors.

n n

 γ r  +
i=1

∑
n

i−1
i γ  Q(s , a ; ) −n

a′
max ′ ′ θ̄ Q(s, a; θ),
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Rainbow DQN Extensions

Noisy Nets
Noisy Nets are neural networks whose weights and biases are perturbed by a parametric
function of a noise.

The parameters  are represented as

where  is zero-mean noise with fixed statistics. We therefore learn the parameters .

Therefore, a fully connected layer

is represented in the following way in Noisy Nets:

θ

θ =def
μ + σ ⊙ ε,

ε ζ =def (μ,σ)

y = wx + b

y = (μ  +w σ  ⊙w ε  )x +w (μ  +b σ  ⊙b ε  ).b
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Rainbow DQN Extensions

Noisy Nets
The noise  can be for example independent Gaussian noise. However, for performance reasons,

factorized Gaussian noise is used to generate a matrix of noise. If  is noise corresponding to

a layer with  inputs and  outputs, we generate independent noise  for input neurons,

independent noise  for output neurons, and set

for .

The authors generate noise samples for every batch, sharing the noise for all batch instances.

Deep Q Networks

When training a DQN, -greedy is no longer used and all policies are greedy, and all fully

connected layers are parametrized as noisy nets.

ε

ε  i,j

i j ε  i

ε  j

ε  =i,j f(ε  )f(ε  )i j

f(x) = sign(x)  ∣x∣

ε
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Rainbow DQN Extensions

Noisy Nets
 

Table 1 of the paper "Noisy Networks for Exploration" by Meire Fortunato et al.

 

Figure 2 of the paper "Noisy Networks for Exploration" by Meire Fortunato et al.
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Rainbow DQN Extensions

Noisy Nets

Figure 3: Comparison of the learning curves of the average noise parameter Σ̄ across five Atari games
in NoisyNet-DQN. The results are averaged across 3 seeds and error bars (+/- standard deviation) are
plotted.

 

Figure 3 of the paper "Noisy Networks for Exploration" by Meire Fortunato et al.
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Rainbow DQN Extensions

Distributional RL
Instead of an expected return , we could estimate distribution of expected returns 

.

These distributions satisfy a distributional Bellman equation:

The authors of the paper prove similar properties of the distributional Bellman operator
compared to the regular Bellman operator, mainly being a contraction under a suitable metric
(Wasserstein metric).

Q(s, a)
Z(s, a)

Z(s, a) = R(s, a) + γZ(s , a ).′ ′
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Rainbow DQN Extensions

Distributional RL
The distribution of returns is modeled as a discrete distribution parametrized by the number of
atoms  and by . Support of the distribution are atoms

The atom probabilities are predicted using a  distribution as

N ∈ N V  ,V  ∈MIN MAX R

{z  i =def
V  +MIN iΔz : 0 ≤ i < N}   for Δz =def

 .
N − 1

V  − V  MAX MIN

softmax

Z  (s, a) =θ z   with probability p  =  .{ i i
 e∑j

f  (s,a)j

ef  (s,a)i

}
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Rainbow DQN Extensions
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Figure 1 of the paper "A Distributional Perspective on
Reinforcement Learning" by Marc G. Bellemare et al.

Distributional RL
After the Bellman update, the support of the distribution 

 is not the same as the original support. We

therefore project it to the original support by proportionally
mapping each atom of the Bellman update to immediate neighbors
in the original support.

The network is trained to minimize the Kullbeck-Leibler divergence between the current
distribution and the (mapped) distribution of the one-step update

R(s, a) + γZ(s , a )′ ′

Φ(R(s, a) + γZ(s , a ))  

′ ′
i

=def
  1 −    p  (s , a ).

j=1

∑
N

⎣

⎡

Δz

 [r + γz  ]  − z   

∣
∣
∣

j V  MIN

V  MAX
i∣
∣
∣

⎦

⎤

0

1

j
′ ′

D  (Φ(R +KL  Z(s , a )∣∣Z(s, a)).
a′

max ′ ′
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Rainbow DQN Extensions

Distributional RL
Algorithm 1 Categorical Algorithm

input A transition xt, at, rt, xt+1, γt ∈ [0, 1]
Q(xt+1, a) :=

∑
i zipi(xt+1, a)

a∗ ← argmaxaQ(xt+1, a)
mi = 0, i ∈ 0, . . . , N − 1
for j ∈ 0, . . . , N − 1 do

# Compute the projection of T̂ zj onto the support {zi}

T̂ zj ← [rt + γtzj ]
VMAX

VMIN

bj ← (T̂ zj − VMIN)/∆z # bj ∈ [0, N − 1]
l ← ⌊bj⌋, u ← ⌈bj⌉

# Distribute probability of T̂ zj
ml ← ml + pj(xt+1, a

∗)(u− bj)
mu ← mu + pj(xt+1, a

∗)(bj − l)
end for

output −
∑

imi log pi(xt, at) # Cross-entropy loss

 

Algorithm 1 of the paper "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL
Mean Median >H.B. >DQN

DQN 228% 79% 24 0

DDQN 307% 118% 33 43

DUEL. 373% 151% 37 50

PRIOR. 434% 124% 39 48

PR. DUEL. 592% 172% 39 44

C51 701% 178% 40 50

 

Figure 6 of the paper "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Figure 4. Learned value distribution during an episode of SPACE

INVADERS. Different actions are shaded different colours. Re-

turns below 0 (which do not occur in SPACE INVADERS) are not

shown here as the agent assigns virtually no probability to them.

 

Figure 4 of the paper "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL

Figure 18. SPACE INVADERS: Top-Left: Multi-modal distribution with high uncertainty. Top-Right: Subsequent frame, a more certain

demise. Bottom-Left: Clear difference between actions. Bottom-Middle: Uncertain survival. Bottom-Right: Certain success.

 

Figure 18 of the paper "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL
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Figure 3. Categorical DQN: Varying number of atoms in the discrete distribution. Scores are moving averages over 5 million frames.

 

Figure 3 of the paper "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow Architecture

Rainbow combines all described DQN extensions. Instead of -step updates, -step updates are

utilized, and KL divergence of the current and target return distribution is minimized:

The prioritized replay chooses transitions according to the probability

Network utilizes duelling architecture feeding the shared representation  into value

computation  and advantage computation  for atom , and the

final probability of atom  in state  and action  is computed as

1 n

D  (Φ(G  +KL t:t+n γ  Z(s , a ))∣∣Z(s, a)).n

a′
max ′ ′

p  ∝t (D  (Φ(G  +KL t:t+n γ  Z(s , a ))∣∣Z(s, a))) .n

a′
max ′ ′

ω

f(s; ζ)
V (f(s; ζ); η) A  (f(s; ζ), a;ψ)i z  i

z  i s a

p  (s, a)i =def .
 e∑j

V (f (s;ζ);η)+A  (f (s;ζ),a;ψ)−  A  (f (s;ζ),a ;ψ)/∣A∣j ∑
a ∈A′ j

′

eV (f (s;ζ);η)+A  (f (s;ζ),a;ψ)−  A  (f (s;ζ),a ;ψ)/∣A∣i ∑a ∈A′ i
′
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Rainbow Hyperparameters

 

Table 1 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow Results

 

Figure 1 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by
Matteo Hessel et al.

Agent no-ops human starts

DQN 79% 68%
DDQN (*) 117% 110%
Prioritized DDQN (*) 140% 128%
Dueling DDQN (*) 151% 117%
A3C (*) - 116%
Noisy DQN 118% 102%
Distributional DQN 164% 125%

Rainbow 223% 153%

 

Table 2 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by
Matteo Hessel et al.
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Rainbow Results

 

Figure 1 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by
Matteo Hessel et al.

 

Figure 3 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by
Matteo Hessel et al.
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Rainbow Ablations

 

Figure 2 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow Ablations

 

Figure 4 of the paper "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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