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Figure 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

Full return is

one-step return is

We can generalize both into -step returns:

with  if .
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Figure 7.1 of "Reinforcement Learning: An Introduction,
Second Edition".

Defining the -step return to utilize action-value function as

with  if , we get the following

straightforward update rule:

Path taken
Action values increased

by one-step Sarsa

Action values increased

by 10-step Sarsa

G G G

 

Figure 7.4 of "Reinforcement Learning: An Introduction, Second Edition".

n

G  t:t+n =def
 γ R  +(

k=t

∑
t+n−1

k−t
k+1) γ Q(S  ,A  )n

t+n t+n

G  t:t+n =def
G  t t + n ≥ T

Q(S  ,A  ) ←t t Q(S  ,A  ) +t t α G  − Q(S  ,A  ) .[ t:t+n t t ]
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Off-policy -step Sarsan

Recall the relative probability of a trajectory under the target and behaviour policies, which we
now generalize as

Then a simple off-policy -step TD can be computed as

Similarly, -step Sarsa becomes

ρ  t:t+n =def
  .

k=t

∏
min(t+n,T−1)

b(A  ∣S  )k k

π(A  ∣S  )k k

n

V (S ) ←t V (S  ) +t αρ  G  − V (S  ) .t:t+n−1 [ t:t+n t ]

n

Q(S  ,A  ) ←t t Q(S  ,A  ) +t t αρ  G  − Q(S  ,A  ) .t+1:t+n [ t:t+n t t ]
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Off-policy -step Without Importance Samplingn
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Example in
Section 7.5 of

"Reinforcement
Learning: An
Introduction,

Second Edition".

We now derive the -step reward, starting from one-step:

For two-step, we get:

Therefore, we can generalize to:

n

G  t:t+1 =def
R  +t+1  π(a∣S  )Q(S  , a).∑

a
t+1 t+1

G  t:t+2 =def
R  +t+1 γ  π(a∣S  )Q(S  , a) +∑

a  =A   t+1
t+1 t+1 γπ(A  ∣S  )G  .t+1 t+1 t+1:t+2

G  t:t+n =def
R  +t+1 γ  π(a∣S  )Q(S  , a) +∑

a  =A   t+1
t+1 t+1 γπ(A  ∣S  )G  .t+1 t+1 t+1:t+n
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Function Approximation

We will approximate value function  and/or state-value function , choosing from a family of

functions parametrized by a weight vector .

We denote the approximations as

We utilize the Mean Squared Value Error objective, denoted :

where the state distribution  is usually on-policy distribution.

v q

w ∈ Rd

 

(s,w),v̂

 (s, a,w).q̂

V E

(w)V E =def
 μ(s) v  (s) − (s,w) ,

s∈S

∑ [ π v̂ ]2

μ(s)
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Gradient and Semi-Gradient Methods

The functional approximation (i.e., the weight vector ) is usually optimized using gradient

methods, for example as

As usual, the  is estimated by a suitable sample. For example in Monte Carlo methods,

we use episodic return , and in temporal difference methods, we employ bootstrapping and

use 

w

  

w  t+1 ← w  −  α∇ v (S  ) − (S  ,w  )t 2
1

[ π t v̂ t t ]2

← w  − α v  (S  ) − (S  ,w  ) ∇ (S  ,w  ).t [ π t v̂ t t ] v̂ t t

v  (S  )π t

G  t

R  +t+1 γ (S  ,w).v̂ t+1
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Monte Carlo Gradient Policy Evaluation

Gradient Monte Carlo Algorithm for Estimating v̂ ⇡ vπ

Input: the policy π to be evaluated
Input: a differentiable function v̂ : S⇥ Rd

! R

Algorithm parameter: step size α > 0
Initialize value-function weights w 2 Rd arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using π

Loop for each step of episode, t = 0, 1, . . . , T  1:
w w + α

⇥

Gt  v̂(St,w)
⇤

rv̂(St,w)

 

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Linear Methods

A simple special case of function approximation are linear methods, where

The  is a representation of state , which is a vector of the same size as . It is

sometimes called a feature vector.

The SGD update rule then becomes

(x(s),w)v̂ =def
x(s) w =T x(s)  w  .∑ i i

x(s) s w

w  ←t+1 w  −t α v  (S  ) − (x(S  ),w  ) x(S  ).[ π t v̂ t t ] t
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Feature Construction for Linear Methods

Many methods developed in the past:

state aggregation,

polynomials

Fourier basis

tile coding

radial basis functions

But of course, nowadays we use deep neural networks which construct a suitable feature vector
automatically as a latent variable (the last hidden layer).
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State Aggregation

Simple way of generating a feature vector is state aggregation, where several neighboring states
are grouped together.

For example, consider a 1000-state random walk, where transitions go uniformly randomly to
any of 100 neighboring states on the left or on the right. Using state aggregation, we can
partition the 1000 states into 10 groups of 100 states. Monte Carlo policy evaluation then
computes the following:
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Figure 9.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Tile Coding
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Figure 9.9 of "Reinforcement Learning: An Introduction, Second Edition".

If  overlapping tiles are used, the learning rate is usually normalized as .t α/t
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Tile Coding

For example, on the 1000-state random walk example, the performance of tile coding surpasses
state aggregation:
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Figure 9.10 of "Reinforcement Learning: An Introduction, Second Edition".
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Asymmetrical Tile Coding

In higher dimensions, the tiles should have asymmetrical offsets, with a sequence of 

 being a good choice.

Possible
generalizations
for uniformly
offset tilings

Possible
generalizations

for asymmetrically
offset tilings

 

Figure 9.11 of "Reinforcement Learning: An Introduction, Second Edition".

(1, 3, 5, … , 2d − 1)

14/33NPFL122, Lecture 5 Refresh Tile Coding Semi-Gradient TD Off-policy Divergence DQN



Temporal Difference Semi-Gradient Policy Evaluation

In TD methods, we again use bootstrapping to estimate  as 

Semi-gradient TD(0) for estimating v̂ ⇡ vπ

Input: the policy π to be evaluated
Input: a differentiable function v̂ : S+ ⇥ Rd

! R such that v̂(terminal,·) = 0
Algorithm parameter: step size α > 0
Initialize value-function weights w 2 Rd arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A ⇠ π(·|S)
Take action A, observe R,S0

w w + α
⇥

R+ γv̂(S0,w) v̂(S,w)
⇤

rv̂(S,w)
S  S0

until S is terminal

 

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".

Note that such algorithm is called semi-gradient, because it does not backpropagate through 

.

v  (S  )π t R  +t+1 γ (S  ,w).v̂ t+1

(S ,w)v̂ ′
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Temporal Difference Semi-Gradient Policy Evaluation

An important fact is that linear semi-gradient TD methods do not converge to . Instead,

they converge to a different TD fixed point .

It can be proven that

However, when  is close to one, the multiplication factor in the above bound is quite large.

V E

w  TD

(w  ) ≤V E TD   (w).
1 − γ

1
w

min V E

γ
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Temporal Difference Semi-Gradient Policy Evaluation

As before, we can utilize -step TD methods.

n-step semi-gradient TD for estimating v̂ ⇡ vπ

Input: the policy π to be evaluated
Input: a differentiable function v̂ : S+ ⇥ Rd ! R such that v̂(terminal,·) = 0
Algorithm parameters: step size α > 0, a positive integer n
Initialize value-function weights w arbitrarily (e.g., w = 0)
All store and access operations (St and Rt) can take their index mod n+ 1

Loop for each episode:
Initialize and store S0 6= terminal
T  1

Loop for t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to π(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T  t+ 1
| τ  t n+ 1 (τ is the time whose state’s estimate is being updated)
| If τ  0:

| G 
Pmin(τ+n,T )

i=τ+1 γ
i−τ−1Ri

| If τ + n < T , then: G G+ γ
nv̂(Sτ+n,w) (Gτ :τ+n)

| w w + α [G v̂(Sτ ,w)]rv̂(Sτ ,w)
Until τ = T  1

 

Algorithm 9.5 of "Reinforcement Learning: An Introduction, Second Edition".

n
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Temporal Difference Semi-Gradient Policy Evaluation
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Figure 9.2 of "Reinforcement Learning: An Introduction, Second Edition".

18/33NPFL122, Lecture 5 Refresh Tile Coding Semi-Gradient TD Off-policy Divergence DQN



Sarsa with Function Approximation

Until now, we talked only about policy evaluation. Naturally, we can extend it to a full Sarsa
algorithm:

Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a differentiable action-value function parameterization q̂ : S⇥A⇥ Rd
! R

Algorithm parameters: step size α > 0, small ε > 0
Initialize value-function weights w 2 Rd arbitrarily (e.g., w = 0)

Loop for each episode:
S,A initial state and action of episode (e.g., ε-greedy)
Loop for each step of episode:
Take action A, observe R,S0

If S0 is terminal:
w w + α

⇥

R q̂(S,A,w)
⇤

rq̂(S,A,w)
Go to next episode

Choose A0 as a function of q̂(S0, ·,w) (e.g., ε-greedy)
w w + α

⇥

R+ γq̂(S0, A0,w) q̂(S,A,w)
⇤

rq̂(S,A,w)
S  S0

A A0

 

Algorithm 10.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Sarsa with Function Approximation

Additionally, we can incorporate -step returns:

Episodic semi-gradient n-step Sarsa for estimating q̂ ⇡ q∗ or qπ

Input: a differentiable action-value function parameterization q̂ : S⇥A⇥ Rd ! R

Input: a policy π (if estimating qπ)
Algorithm parameters: step size α > 0, small ε > 0, a positive integer n
Initialize value-function weights w 2 Rd arbitrarily (e.g., w = 0)
All store and access operations (St, At, and Rt) can take their index mod n+ 1

Loop for each episode:
Initialize and store S0 6= terminal
Select and store an action A0 ⇠ π(·|S0) or ε-greedy wrt q̂(S0, ·,w)
T  1

Loop for t = 0, 1, 2, . . . :
| If t < T , then:
| Take action At

| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then:
| T  t+ 1
| else:
| Select and store At+1 ⇠ π(·|St+1) or ε-greedy wrt q̂(St+1, ·,w)
| τ  t n+ 1 (τ is the time whose estimate is being updated)
| If τ  0:

| G 
Pmin(τ+n,T )

i=τ+1 γ
i−τ−1Ri

| If τ + n < T , then G G+ γ
nq̂(Sτ+n, Aτ+n,w) (Gτ :τ+n)

| w w + α [G q̂(Sτ , Aτ ,w)]rq̂(Sτ , Aτ ,w)
Until τ = T  1

 

Algorithm 10.2 of "Reinforcement Learning: An Introduction, Second Edition".

n

20/33NPFL122, Lecture 5 Refresh Tile Coding Semi-Gradient TD Off-policy Divergence DQN



Mountain Car Example

 

Figure 10.1 of "Reinforcement Learning: An Introduction, Second Edition".

The performances are for semi-gradient Sarsa( ) algorithm (which we did not talked about yet)

with tile coding of 8 overlapping tiles covering position and velocity, with offsets of .

λ

(1, 3)
21/33NPFL122, Lecture 5 Refresh Tile Coding Semi-Gradient TD Off-policy Divergence DQN



Mountain Car Example
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Figure 10.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Figure 10.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Divergence With Function Approximation

Consider a deterministic transition between two states whose values are computed using the
same weight:

2w
0

2w
 

Figure from Section 11.2 of "Reinforcement Learning: An Introduction, Second Edition".

If initially , TD error will be also 10 (or nearly 10 if ).

If for example ,  will be increased to 1 (by 10%).

This process can continue indefinitely.

However, the problem arises only in off-policy setting, where we do not decrease value of the
second state from further observation.

w = 10 γ < 1
α = 0.1 w
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Off-policy Divergence With Function Approximation

The previous idea can be realized for instance by the following example.

2w2+w82w1+w8 2w3+w8 2w4+w8 2w5+w8 2w6+w8

w7+2w8

b(dashed|·) = 6/7

b(solid|·) = 1/7

π(solid|·) = 1

γ = 0.99

 

Figure 11.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Divergence With Function Approximation
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Figure 11.1 of "Reinforcement Learning: An Introduction, Second
Edition".
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Figure 11.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Deep Q Networks

Volodymyr Mnih et al.: Playing Atari with Deep Reinforcement Learning (Dec 2013 on arXiv).

In 2015 accepted in Nature, as Human-level control through deep reinforcement learning.

Off-policy Q-learning algorithm with a convolutional neural network function approximation of
action-value function.

Training can be extremely brittle (and can even diverge as shown earlier).
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Deep Q Network
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No input

 

Figure 1 of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Network
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Figure 3 of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Network

 

Extended Data Figure 2a of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Network

 

Extended Data Figure 2b of the paper "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Networks

Preprocessing:  128-color images are converted to grayscale and then resized to 

.

Frame skipping technique is used, i.e., only every  frame (out of 60 per second) is

considered, and the selected action is repeated on the other frames.
Input to the network are last  frames (considering only the frames kept by frame skipping),

i.e., an image with  channels.

The network is fairly standard, performing
32 filters of size  with stride 4 and ReLU,

64 filters of size  with stride 2 and ReLU,

64 filters of size  with stride 1 and ReLU,

fully connected layer with 512 units and ReLU,
output layer with 18 output units (one for each action)

210 × 160
84 × 84

4th

4
4

8 × 8
4 × 4
3 × 3
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Deep Q Networks

Network is trained with RMSProp to minimize the following loss:

An -greedy behavior policy is utilized.

Important improvements:

experience replay: the generated episodes are stored in a buffer as  quadruples,

and for training a transition is sampled uniformly;
separate target network : to prevent instabilities, a separate target network is used to

estimate state-value function. The weights are not trained, but copied from the trained
network once in a while;
reward clipping of  to .

L =
def E  (r + γ  Q(s , a ; ) − Q(s, a; θ)) .(s,a,r,s )∼data′ [

a′
max ′ ′ θ̄ 2]

ε

(s, a, r, s )′

θ̄

(r + γ max  Q(s , a ; ) −a′
′ ′ θ̄ Q(s, a; θ)) [−1, 1]
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Deep Q Networks Hyperparameters

Hyperparameter Value

minibatch size 32

replay buffer size 1M

target network update frequency 10k

discount factor 0.99

training frames 50M

RMSProp learning rate and momentum 0.00025, 0.95

initial , final  and frame of final 1.0, 0.1, 1M

replay start size 50k

no-op max 30

ε ε ε
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