
NPFL122, Lecture 4

N-step Methods, Function

Approximation
Milan Straka

November 05, 2018

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Monte Carlo Assignment

Q = np.zeros([env.states, env.actions])

C = np.zeros([env.states, env.actions])

epsilon = args.epsilon

evaluating = False

while True:

 # Perform episode

 state = env.reset(evaluating)

 states, actions, rewards = [], [], []

 while True:

 if evaluating or np.random.uniform() > epsilong: action = np.argmax(Q[state])

 else: action = np.random.randint(env.actions)

 next_state, reward, done, _ = env.step(action)

 states.append(state)

 actions.append(action)

 rewards.append(reward)

 state = next_state

 if done:

 break

 if env.episode >= args.episodes:

 evaluating = True

2/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Monte Carlo Assignment

 if not evaluating:

 # Sum discounted rewards

 for i in reversed(range(len(rewards) - 1)):

 rewards[i] += args.gamma * rewards[i + 1]

 # update Q and C

 for i in range(len(rewards)):

 C[states[i]][actions[i]] += 1

 Q[states[i]][actions[i]] += 1 / C[states[i]][actions[i]] * (rewards[i] - Q[states[i]][actions[i]])

 if args.epsilon_final:

 epsilon = np.exp(np.interp(env.episode + 1,

 [0, args.episodes],

 [np.log(args.epsilon), np.log(args.epsilon_final)]))

3/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Sarsa and Q-learning

A straightforward application to the temporal-difference policy evaluation is Sarsa algorithm,
which after generating computes

Q-learning was an important early breakthrough in reinforcement learning (Watkins, 1989).

S ,A ,R ,S ,A t t t+1 t+1 t+1

q(S ,A) ←t t q(S ,A) +t t α R + γq(S ,A) − q(S ,A) .[t+1 t+1 t+1 t t]

q(S ,A) ←t t q(S ,A) +t t α R + γ q(S , a) − q(S ,A) .[t+1
a

max t+1 t t]

4/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Refresh – Q-learning versus Sarsa

S GT h e C l i f f

R

R = -1

Safer path

Optimal path

R = -100

(! !

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

Sarsa

Q-learning

Sum of
rewards
during
episode

Episodes

-25

-50

-75

-100

0 100 200 300 400 500

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

5/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Refresh – Off-policy Prediction

Given an initial state and an episode , the probability of this episode

under a policy is

Therefore, the relative probability of a trajectory under the target and behaviour policies is

Therefore, if is a return of episode generated according to , we can estimate

S t A ,S ,A , … ,S t t+1 t+1 T

π

 π(A ∣S)p(S ∣S ,A).
k=t

∏
T−1

k k k+1 k k

ρ t =
def

 =
 b(A ∣S)p(S ∣S ,A)∏k=t

T−1
k k k+1 k k

 π(A ∣S)p(S ∣S ,A)∏k=t
T−1

k k k+1 k k
 .

k=t

∏
T−1

b(A ∣S)k k

π(A ∣S)k k

G t b

v (S) =π t E [ρ G].b t t

6/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Refresh – Off-policy Monte Carlo Prediction

Let be a set of times when we visited state . Given episodes sampled according to , we

can estimate

Such simple average is called ordinary importance sampling. It is unbiased, but can have very
high variance.

An alternative is weighted importance sampling, where we compute weighted average as

Weighted importance sampling is biased (with bias asymptotically converging to zero), but
usually has smaller variance.

T (s) s b

v (s) =π .
∣T (s)∣

 ρ G ∑t∈T (s) t t

v (s) =π .
 ρ ∑t∈T (s) t

 ρ G ∑t∈T (s) t t

7/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Refresh – Off-policy Monte Carlo Prediction

Ordinary

importance

sampling

Weighted importance sampling

Episodes (log scale)

0 10 100 1000 10,000

Mean

square

error

(average over

100 runs)

0

5

Figure 5.3 of "Reinforcement Learning: An Introduction, Second Edition".

Comparison of ordinary and weighted importance sampling on Blackjack. Given a state with
sum of player's cards 13 and a usable ace, we estimate target policy of sticking only with a sum
of 20 and 21, using uniform behaviour policy.

8/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Refresh – Expected Sarsa

The action is a source of variance, moving only in expectation.

We could improve the algorithm by considering all actions proportionally to their policy
probability, obtaining Expected Sarsa algorithm:

Compared to Sarsa, the expectation removes a source of variance and therefore usually performs
better. However, the complexity of the algorithm increases and becomes dependent on number
of actions .

Note that Expected Sarsa is also an off-policy algorithm, allowing the behaviour policy and

target policy to differ.

Especially, if is a greedy policy with respect to current value function, Expected Sarsa

simplifies to Q-learning.

A t+1

q(S ,A)t t ← q(S ,A) + α R + γE q(S , a) − q(S ,A)t t [t+1 π t+1 t t]

← q(S ,A) + α R + γ π(a∣S)q(S , a) − q(S ,A) .t t [t+1 ∑
a

t+1 t+1 t t]

∣A∣

b

π

π

9/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Q-learning and Maximization Bias

Because behaviour policy in Q-learning is -greedy variant of the target policy, the same

samples (up to -greedy) determine both the maximizing action and estimate its value.

B A
rightleft

0.
.
.

N(−0.1, 1)

0

Q-learning

Double

Q-learning

Episodes

1001 200 300

% left

actions

from A

100%

75%

50%

25%

5%

0

optimal

Figure 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

ε

ε

10/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Double Q-learning

Double Q-learning, for estimating Q1 ≈ Q2 ≈ q⇤

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialize Q1(s, a) and Q2(s, a), for all s ∈ S , a ∈ A(s), such that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A from S using the policy ε-greedy in Q1 +Q2

Take action A, observe R, S0

With 0.5 probabilility:

Q1(S,A)← Q1(S,A) + α

⇣

R+ γQ2



S0, argmax
a
Q1(S

0, a)


−Q1(S,A)
⌘

else:

Q2(S,A)← Q2(S,A) + α

⇣

R+ γQ1



S0, argmax
a
Q2(S

0, a)


−Q2(S,A)
⌘

S ← S0

until S is terminal

Modification of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition".

11/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

-step Methodsn
1-step TD

and TD(0) 2-step TD 3-step TD n-step TD

∞-step TD

and Monte Carlo

·
·
·

· · ·

·
·
·

· · ·

Figure 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

Full return is

one-step return is

We can generalize both into -step returns:

with if .

G =t R ,
k=t

∑
∞

k+1

G =t:t+1 R +t+1 γV (S).t+1

n

G t:t+n =def
 γ R +(

k=t

∑
t+n−1

k−t
k+1) γ V (S).n

t+n

G t:t+n =def
G t t + n ≥ T

12/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

-step Methodsn

A natural update rule is

n-step TD for estimating V ⇡ vπ

Input: a policy π

Algorithm parameters: step size α 2 (0, 1], a positive integer n
Initialize V (s) arbitrarily, for all s 2 S

All store and access operations (for St and Rt) can take their index mod n + 1

Loop for each episode:
Initialize and store S0 6= terminal
T 1

Loop for t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to π(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T t + 1
| τ t n + 1 (τ is the time whose state’s estimate is being updated)
| If τ  0:

| G
Pmin(τ+n,T)

i=τ+1 γ
i−τ−1Ri

| If τ + n < T , then: G G + γ
nV (Sτ+n) (Gτ :τ+n)

| V (Sτ) V (Sτ) + α [G V (Sτ)]
Until τ = T  1

Algorithm 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

V (S) ←t V (S) +t α G − V (S) .[t:t+n t]

13/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

-step Methods Examplen

Using the random walk example, but with 19 states instead of 5,

A B C D E
100000

start

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

we obtain the following comparison of different values of :

α

Average

RMS error

over 19 states

and first 10

episodes
n=1

n=2
n=4

n=8

n=16

n=32

n=32
n=64

128
512

256
0.55

0.5

0.45

0.35

0.3

0.25

0.4

0.40.20 0.80.6 1

Figure 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

n

14/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

-step Sarsan

Defining the -step return to utilize action-value function as

with if , we get the following straightforward algorithm:

Path taken
Action values increased

by one-step Sarsa

Action values increased

by 10-step Sarsa

G G G

Figure 7.4 of "Reinforcement Learning: An Introduction, Second Edition".

n

G t:t+n =def
 γ R +(

k=t

∑
t+n−1

k−t
k+1) γ Q(S ,A)n

t+n t+n

G t:t+n =def
G t t + n ≥ T

Q(S ,A) ←t t Q(S ,A) +t t α G − Q(S ,A) .[t:t+n t t]

15/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

-step Sarsa Algorithmn

n-step Sarsa for estimating Q ⇡ q∗ or qπ

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A
Initialize π to be ε-greedy with respect to Q, or to a fixed given policy
Algorithm parameters: step size α 2 (0, 1], small ε > 0, a positive integer n
All store and access operations (for St, At, and Rt) can take their index mod n+ 1

Loop for each episode:
Initialize and store S0 6= terminal
Select and store an action A0 ⇠ π(·|S0)
T 1

Loop for t = 0, 1, 2, . . . :
| If t < T , then:
| Take action At

| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then:
| T t+ 1
| else:
| Select and store an action At+1 ⇠ π(·|St+1)
| τ t n+ 1 (τ is the time whose estimate is being updated)
| If τ  0:

| G
Pmin(τ+n,T)

i=τ+1 γ
i−τ−1Ri

| If τ + n < T , then G G+ γ
nQ(Sτ+n, Aτ+n) (Gτ :τ+n)

| Q(Sτ , Aτ) Q(Sτ , Aτ) + α [GQ(Sτ , Aτ)]
| If π is being learned, then ensure that π(·|Sτ) is ε-greedy wrt Q
Until τ = T  1

Algorithm 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

16/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Off-policy -step Sarsan

Recall the relative probability of a trajectory under the target and behaviour policies, which we
now generalize as

Then a simple off-policy -step TD can be computed as

Similarly, -step Sarsa becomes

ρ t:t+n =def
 .

k=t

∏
min(t+n,T−1)

b(A ∣S)k k

π(A ∣S)k k

n

V (S) ←t V (S) +t αρ G − V (S) .t:t+n−1 [t:t+n t]

n

Q(S ,A) ←t t Q(S ,A) +t t αρ G − Q(S ,A) .t+1:t+n [t:t+n t t]

17/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Off-policy -step Sarsan

Off-policy n-step Sarsa for estimating Q ⇡ q∗ or qπ

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s 2 S, a 2 A
Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A
Initialize π to be greedy with respect to Q, or as a fixed given policy
Algorithm parameters: step size α 2 (0, 1], a positive integer n
All store and access operations (for St, At, and Rt) can take their index mod n+ 1

Loop for each episode:
Initialize and store S0 6= terminal
Select and store an action A0 ⇠ b(·|S0)
T 1

Loop for t = 0, 1, 2, . . . :
| If t < T , then:
| Take action At

| Observe and store the next reward as Rt+1 and the next state as St+1
| If St+1 is terminal, then:
| T t+ 1
| else:
| Select and store an action At+1 ⇠ b(·|St+1)
| τ t n+ 1 (τ is the time whose estimate is being updated)
| If τ  0:

| ρ
Qmin(τ+n−1,T−1)

i=τ+1
π(Ai|Si)
b(Ai|Si)

(ρτ+1:t+n−1)

| G
Pmin(τ+n,T)

i=τ+1 γ
i−τ−1Ri

| If τ + n < T , then: G G+ γ
nQ(Sτ+n, Aτ+n) (Gτ :τ+n)

| Q(Sτ , Aτ) Q(Sτ , Aτ) + αρ [GQ(Sτ , Aτ)]
| If π is being learned, then ensure that π(·|Sτ) is greedy wrt Q
Until τ = T  1

Algorithm 7.3 of "Reinforcement Learning: An Introduction, Second Edition".

18/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Off-policy -step Without Importance Samplingn

ρ

ρ

ρ

ρ

ρ

ρ

ρ

4-step

Sarsa

4-step

Tree backup

4-step

Expected Sarsa

Figure 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

Q-learning and Expected Sarsa can learn off-policy without importance sampling.

To generalize to -step off-policy method, we must compute expectations over actions in each

step of -step update. However, we have not obtained a return for the non-sampled actions.

Luckily, we can estimate their values by using the current action-value function.

n

n

19/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Off-policy -step Without Importance Samplingn
St, At

At+1

Rt+1

St+1

St+2

Rt+2

At+2
Rt+3

St+3

the 3-step

tree-backup

update

Example in
Section 7.5 of

"Reinforcement
Learning: An
Introduction,

Second Edition".

We now derive the -step reward, starting from one-step:

For two-step, we get:

Therefore, we can generalize to:

n

G t:t+1 =def
R +t+1 π(a∣S)Q(S , a).∑

a
t+1 t+1

G t:t+2 =def
R +t+1 γ π(a∣S)Q(S , a) +∑

a =A  t+1
t+1 t+1 γπ(A ∣S)G .t+1 t+1 t+1:t+2

G t:t+n =def
R +t+1 γ π(a∣S)Q(S , a) +∑

a =A  t+1
t+1 t+1 γπ(A ∣S)G .t+1 t+1 t+1:t+n

20/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Off-policy -step Without Importance Samplingn

n-step Tree Backup for estimating Q ⇡ q⇤ or qπ

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A
Initialize π to be greedy with respect to Q, or as a fixed given policy
Algorithm parameters: step size α 2 (0, 1], a positive integer n
All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store S0 6= terminal
Choose an action A0 arbitrarily as a function of S0; Store A0
T 1

Loop for t = 0, 1, 2, . . . :
| If t < T :
| Take action At; observe and store the next reward and state as Rt+1, St+1
| If St+1 is terminal:
| T t + 1
| else:
| Choose an action At+1 arbitrarily as a function of St+1; Store At+1

| τ t + 1 n (τ is the time whose estimate is being updated)
| If τ  0:
| If t + 1  T :
| G RT

| else
| G Rt+1 + γ

P
a
π(a|St+1)Q(St+1, a)

| Loop for k = min(t, T  1) down through τ + 1:
| G Rk + γ

P
a 6=Ak

π(a|Sk)Q(Sk, a) + γπ(Ak|Sk)G

| Q(Sτ , Aτ) Q(Sτ , Aτ) + α [GQ(Sτ , Aτ)]
| If π is being learned, then ensure that π(·|Sτ) is greedy wrt Q
Until τ = T  1

Algorithm 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

21/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Function Approximation

We will approximate value function and/or state-value function , choosing from a family of

functions parametrized by a weight vector .

We will denote the approximations as

Weights are usually shared among states. Therefore, we need to define state distribution

to allow an objective for finding the best function approximation.

The state distribution gives rise to a natural objective function called Mean Squared Value

Error, denoted :

v q

w ∈ Rd

(s,w),v̂

 (s, a,w).q̂

μ(s)

μ(s)
V E

(w)V E =def
 μ(s) v (s) − (s,w) .

s∈S

∑ [π v̂]2

22/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Function Approximation

For on-policy algorithms, is usually on-policy distribution. That is the stationary distribution

under for continuous tasks, and for the episodic case it is defined as

where is a probability that an episodes starts in state .

μ

π

η(s)

μ(s)

= h(s) + η(s) π(a∣s)p(s∣s , a),
s′

∑ ′

a

∑ ′ ′

= ,
 η(s)∑s′

′

η(s)

h(s) s

23/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Gradient and Semi-Gradient Methods

The functional approximation (i.e., the weight vector) is usually optimized using gradient

methods, for example as

As usual, the is estimated by a suitable sample. For example in Monte Carlo methods,

we use episodic return , and in temporal difference methods, we employ bootstrapping and

use

w

w t+1 ← w − α∇ v (S) − (S ,w)t 2
1

[π t v̂ t t]2

← w + α v (S) − (S ,w) ∇ (S ,w).t [π t v̂ t t] v̂ t t

v (S)π t

G t

R +t+1 γ (S ,w).v̂ t+1

24/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Monte Carlo Gradient Policy Evaluation

Gradient Monte Carlo Algorithm for Estimating v̂ ⇡ vπ

Input: the policy π to be evaluated
Input: a differentiable function v̂ : S⇥ Rd

! R

Algorithm parameter: step size α > 0
Initialize value-function weights w 2 Rd arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using π

Loop for each step of episode, t = 0, 1, . . . , T  1:
w w + α

⇥

Gt  v̂(St,w)
⇤

rv̂(St,w)

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".

25/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Linear Methods

A simple special case of function approximation are linear methods, where

The is a representation of state , which is a vector of the same size as . It is

sometimes called a feature vector.

The SGD update rule then becomes

(x(s),w)v̂ =def
x(s) w =T x(s) w .∑ i i

x(s) s w

w ←t+1 w +t α v (S) − (x(S),w) x(S).[π t v̂ t t] t

26/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

State Aggregation

Simple way of generating a feature vector is state aggregation, where several neighboring states
are grouped together.

For example, consider a 1000-state random walk, where transitions go uniformly randomly to
any of 100 neighboring states on the left or on the right. Using state aggregation, we can
partition the 1000 states into 10 groups of 100 states. Monte Carlo policy evaluation then
computes the following:

0

State

Value
scale

True
value vπ

Approximate
MC value v̂

State distribution
0.0017

0.0137

Distribution
scale

10001

0

-1

1

µ

Figure 9.1 of "Reinforcement Learning: An Introduction, Second Edition".

27/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Feature Construction for Linear Methods

Many methods developed in the past:

polynomials

Fourier basis

tile coding

radial basis functions

But of course, nowadays we use deep neural networks which construct a suitable feature vector
automatically as a latent variable (the last hidden layer).

28/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Tile Coding

Point in

state space

to be

represented

Tiling 1

Tiling 2

Tiling 3

Tiling 4
Continuous

2D state

space

Four active

tiles/features

overlap the point

and are used to

represent it

Figure 9.9 of "Reinforcement Learning: An Introduction, Second Edition".

If overlapping tiles are used, the learning rate is usually normalized as .t α/t

29/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Tile Coding

For example, on the 1000-state random walk example, the performance of tile coding surpasses
state aggregation:

.4

.3

.2

.1

0

averaged
over 30 runs

0 5000
Episodes

State aggregation
(one tiling)

Tile coding (50 tilings)

p

VE

Figure 9.10 of "Reinforcement Learning: An Introduction, Second Edition".

30/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

Asymmetrical Tile Coding

In higher dimensions, the tiles should have asymmetrical offsets, with a sequence of

 being a good choice.

Possible
generalizations
for uniformly
offset tilings

Possible
generalizations

for asymmetrically
offset tilings

Figure 9.11 of "Reinforcement Learning: An Introduction, Second Edition".

(1, 3, 5, … , 2d − 1)

31/31NPFL122, Lecture 4 Refresh Double Q -step Methods -step Sarsa Tree Backup Function Approximationn n

