
NPFL122, Lecture 3

Temporal Difference Methods,

Off-Policy Methods
Milan Straka

October 22, 2018

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Refresh – Policies and Value Functions

A policy computes a distribution of actions in a given state, i.e., corresponds to a

probability of performing an action in state .

To evaluate a quality of a policy, we define value function , or state-value function, as

An action-value function for a policy is defined analogously as

Optimal state-value function is defined as analogously optimal action-

value function is defined as

Any policy with is called an optimal policy.

π π(a∣s)
a s

v (s)π

v (s)π =def E G S = s =π [t∣ t] E γ R S = s .π [∑
k=0

∞
k

t+k+1∣
∣
∣

t]

π

q (s, a)π =def E G S = s,A = a =π [t∣ t t] E γ R S = s,A = a .π [∑
k=0

∞
k

t+k+1∣
∣
∣

t t]

v (s)∗ =def max v (s),π π

q (s, a)∗ =def max q (s, a).π π

π ∗ v =π ∗ v ∗

2/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Refresh – Value Iteration

Optimal value function can be computed by repetitive application of Bellman optimality
equation:

v (s)0

v (s)k+1

← 0

← E R + γv (S) S = s,A = a = Bv .
a

max [t+1 k t+1 ∣ t t] k

3/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Refresh – Policy Iteration Algorithm

Policy iteration consists of repeatedly performing policy evaluation and policy improvement:

The result is a sequence of monotonically improving policies . Note that when , also

, which means Bellman optimality equation is fulfilled and both and are optimal.

Considering that there is only a finite number of policies, the optimal policy and optimal value
function can be computed in finite time (contrary to value iteration, where the convergence is
only asymptotic).

Note that when evaluation policy , we usually start with , which is assumed to be a

good approximation to .

π 0 ⟶
E

v π 0 ⟶
I

π 1 ⟶
E

v π 1 ⟶
I

π 2 ⟶
E

v π 2 ⟶
I

… ⟶
I

π ∗ ⟶
E

v .π ∗

π i π =′ π

v =π′ v π v π π

π k+1 v π k

v π k+1

4/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Refresh – Generalized Policy Iteration

Generalized Policy Evaluation is a general idea of interleaving policy evaluation and policy
improvement at various granularity.

evaluation

improvement

π  greedy(V)

Vπ

V  vπ

v∗π∗

Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

v∗,π∗

π
= greed

y(v)

v,π

v
=

v
π

Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

If both processes stabilize, we know we have obtained optimal policy.

5/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Refresh – -soft Policiesε

A policy is called -soft, if

We call a policy -greedy, if one action has maximum probability of .

The policy improvement theorem can be proved also for class of -soft policies, and using

-greedy policy in policy improvement step, policy iteration has same convergence properties.

(We can embed the -soft behaviour “inside” the environment and prove equivalence.)

ε

π(a∣s) ≥ .
∣A(s)∣

ε

ε 1 − ε + ∣A(s)∣
ε

ε

ε

ε

6/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Refresh – Monte Carlo for -soft Policiesε

On-policy every-visit Monte Carlo for -soft Policies

Algorithm parameter: small

Initialize arbitrarily (usually to 0), for all

Initialize to 0, for all

Repeat forever (for each episode):

Generate an episode , by generating actions as follows:

With probability , generate a random uniform action

Otherwise, set

For each :

ε

ε > 0

Q(s, a) ∈ R s ∈ S, a ∈ A

C(s, a) ∈ Z s ∈ S, a ∈ A

S ,A ,R , … ,S ,A ,R 0 0 1 T−1 T−1 T

ε

A t =def arg max Q(S , a)a t

G ← 0
t = T − 1,T − 2, … , 0

G ← γG + R T+1

C(S ,A) ←t t C(S ,A) +t t 1
Q(S ,A) ←t t Q(S ,A) +t t (G −

C(S ,A)t t

1 Q(S ,A))t t

7/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Action-values and Afterstates

X

O X

X

O + XO +X

X

Figure from section 6.8 of "Reinforcement Learning: An Introduction,
Second Edition".

The reason we estimate action-value function is that the policy is defined as

and the latter form might be impossible to evaluate if we do not have the model of the
environment.

However, if the environment is known, it might be better
to estimate returns only for states, and there can be
substantially less states than state-action pairs.

q

π(s) q (s, a)=def

a
arg max π

= p(s , r∣s, a) r + γv (s)
a

arg max∑
s ,r′

′ [π
′]

8/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

TD Methods

Temporal-difference methods estimate action-value returns using one iteration of Bellman
equation instead of complete episode return.

Compared to Monte Carlo method with constant learning rate , which performs

the simplest temporal-difference method computes the following:

α

v(S) ←t v(S) +t α G − v(S) ,[t t]

v(S) ←t v(S) +t α R + γv(S) − v(S) ,[t+1 t+1 t]

9/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

TD Methods

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30

reach car, raining 5 35 40

exiting highway 20 15 35

2ndary road, behind truck 30 10 40

entering home street 40 3 43

arrive home 43 0 43

Example 6.1 of "Reinforcement Learning: An Introduction, Second Edition".

road

30

35

40

45

Predicted

total

travel

time

leaving

office

exiting

highway

2ndary home arrive

Situation

actual outcome

reach

car street home

actual

outcome

Situation

30

35

40

45

road

leaving

office

exiting

highway

2ndary home arrivereach

car street home

Figure 6.1 of "Reinforcement Learning: An Introduction, Second Edition".

10/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

TD and MC Comparison

As with Monte Carlo methods, for a fixed policy , TD methods converge to .

On stochastic tasks, TD methods usually converge to faster than constant- MC methods.

A B C D E
100000

start

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

True

values

Estimated

value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

α=.01

α=.1

α=.02

α=.03

α=.04

α=.15

α=.05

Empirical RMS error,

averaged over states

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

π v π

v π α

11/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Optimality of MC and TD Methods

A B

r = 1

100%

75%

25%

r = 0

r = 0

Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

A, 0,B, 0 B, 1

B, 1 B, 1

B, 1 B, 1

B, 1 B, 0

Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

For state B, 6 out of 8 times return from B was 1 and 0 otherwise. Therefore, .

[TD] For state A, in all cases it transfered to B. Therefore, could be .

[MC] For state A, in all cases it generated return 0. Therefore, could be .

MC minimizes error on training data, TD minimizes MLE error for the Markov process.

v(B) = 3/4

v(A) 3/4
v(A) 0

12/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Sarsa

A straightforward application to the temporal-difference policy evaluation is Sarsa algorithm,
which after generating computes

Sarsa (on-policy TD control) for estimating Q ≈ q⇤

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialize Q(s, a), for all s ∈ S , a ∈ A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., ε-greedy)
Loop for each step of episode:

Take action A, observe R, S0

Choose A0 from S0 using policy derived from Q (e.g., ε-greedy)
Q(S,A)← Q(S,A) + α

⇥

R+ γQ(S0, A0)−Q(S,A)
⇤

S ← S0; A← A0;
until S is terminal

Modification of Algorithm 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

S ,A ,R ,S ,A t t t+1 t+1 t+1

q(S ,A) ←t t q(S ,A) +t t α R + γq(S ,A) − q(S ,A) .[t+1 t+1 t+1 t t]

13/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Sarsa

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

170

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Ep
is
od

es

Example 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

MC methods cannot be easily used, because an episode might not terminate if current policy
caused the agent to stay in the same state.

14/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Q-learning

Q-learning was an important early breakthrough in reinforcement learning (Watkins, 1989).

Q-learning (off-policy TD control) for estimating π ≈ π⇤

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialize Q(s, a), for all s ∈ S , a ∈ A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., ε-greedy)
Take action A, observe R, S0

Q(S,A)← Q(S,A) + α
⇥

R+ γmaxaQ(S
0, a)−Q(S,A)

⇤

S ← S0

until S is terminal

Modification of Algorithm 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

q(S ,A) ←t t q(S ,A) +t t α R + γ q(S , a) − q(S ,A) .[t+1
a

max t+1 t t]

15/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Q-learning versus Sarsa

S GT h e C l i f f

R

R = -1

Safer path

Optimal path

R = -100

(! !

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

Sarsa

Q-learning

Sum of
rewards
during
episode

Episodes

-25

-50

-75

-100

0 100 200 300 400 500

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

16/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

On-policy and Off-policy Methods

So far, all methods were on-policy. The same policy was used both for generating episodes and
as a target of value function.

However, while the policy for generating episodes needs to be more exploratory, the target
policy should capture optimal behaviour.

Generally, we can consider two policies:

behaviour policy, usually , is used to generate behaviour and can be more exploratory

target policy, usually , is the policy being learned (ideally the optimal one)

When the behaviour and target policies differ, we talk about off-policy learning.

b

π

17/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

On-policy and Off-policy Methods

The off-policy methods are usually more complicated and slower to converge, but are able to
process data generated by different policy than the target one.

The advantages are:

more exploratory behaviour;

ability to process expert trajectories.

18/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Off-policy Prediction

Consider prediction problem for off-policy case.

In order to use episodes from to estimate values for , we require that every action taken by

 is also taken by , i.e.,

Many off-policy methods utilize importance sampling, a general technique for estimating
expected values of one distribution given samples from another distribution.

b π

π b

π(a∣s) > 0 ⇒ b(a∣s) > 0.

19/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Importance Sampling

Assume that and are two distributions.

Let be the samples of and the corresponding samples of

Our goal is to estimate

We can therefore compute

with being a relative probability of under the two distributions.

b π

x i b y i

E [f(x)].x∼b

E [f(x)] =x∼π π(x)f(x).
x

∑

 f(x)
x i

∑
b(x)i

π(x)i
i

π(x)/b(x) x

20/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Off-policy Prediction

Given an initial state and an episode , the probability of this episode

under a policy is

Therefore, the relative probability of a trajectory under the target and behaviour policies is

Therefore, if is a return of episode generated according to , we can estimate

S t A ,S ,A , … ,S t t+1 t+1 T

π

 π(A ∣S)p(S ∣S ,A).
k=t

∏
T−1

k k k+1 k k

ρ t =
def

 =
 b(A ∣S)p(S ∣S ,A)∏k=t

T−1
k k k+1 k k

 π(A ∣S)p(S ∣S ,A)∏k=t
T−1

k k k+1 k k
 .

k=t

∏
T−1

b(A ∣S)k k

π(A ∣S)k k

G t b

v (S) =π t E [ρ G].b t t

21/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Off-policy Monte Carlo Prediction

Let be a set of times when we visited state . Given episodes sampled according to , we

can estimate

Such simple average is called ordinary importance sampling. It is unbiased, but can have very
high variance.

An alternative is weighted importance sampling, where we compute weighted average as

Weighted importance sampling is biased (with bias asymptotically converging to zero), but
usually has smaller variance.

T (s) s b

v (s) =π .
∣T (s)∣

 ρ G ∑t∈T (s) t t

v (s) =π .
 ρ ∑t∈T (s) t

 ρ G ∑t∈T (s) t t

22/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Off-policy Monte Carlo Prediction

Ordinary

importance

sampling

Weighted importance sampling

Episodes (log scale)

0 10 100 1000 10,000

Mean

square

error

(average over

100 runs)

0

5

Figure 5.3 of "Reinforcement Learning: An Introduction, Second Edition".

Comparison of ordinary and weighted importance sampling on Blackjack. Given a state with
sum of player's cards 13 and a usable ace, we estimate target policy of sticking only with a sum
of 20 and 21, using uniform behaviour policy.

23/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Off-policy Monte Carlo Prediction

We can compute weighted importance sampling similarly to the incremental implementation of
Monte Carlo averaging.

Off-policy MC prediction (policy evaluation) for estimating Q ⇡ qπ

Input: an arbitrary target policy π

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) 2 R (arbitrarily)
C(s, a) 0

Loop forever (for each episode):
b any policy with coverage of π
Generate an episode following b: S0, A0, R1, . . . , ST−1, AT−1, RT

G 0
W 1
Loop for each step of episode, t = T1, T2, . . . , 0, while W 6= 0:

G γG+Rt+1

C(St, At) C(St, At) +W

Q(St, At) Q(St, At) +
W

C(St,At)
[GQ(St, At)]

W W
π(At|St)
b(At|St)

Algorithm 5.6 of "Reinforcement Learning: An Introduction, Second Edition".

24/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Off-policy Monte Carlo

Off-policy MC control, for estimating π ⇡ π∗

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) 2 R (arbitrarily)
C(s, a) 0
π(s) argmaxaQ(s, a) (with ties broken consistently)

Loop forever (for each episode):
b any soft policy
Generate an episode using b: S0, A0, R1, . . . , ST−1, AT−1, RT

G 0
W 1
Loop for each step of episode, t = T1, T2, . . . , 0:

G γG+Rt+1

C(St, At) C(St, At) +W

Q(St, At) Q(St, At) +
W

C(St,At)
[GQ(St, At)]

π(St) argmaxaQ(St, a) (with ties broken consistently)
If At 6= π(St) then exit inner Loop (proceed to next episode)
W W 1

b(At|St)

Algorithm 5.7 of "Reinforcement Learning: An Introduction, Second Edition".

25/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Expected Sarsa

The action is a source of variance, moving only in expectation.

We could improve the algorithm by considering all actions proportionally to their policy
probability, obtaining Expected Sarsa algorithm:

Compared to Sarsa, the expectation removes a source of variance and therefore usually performs
better. However, the complexity of the algorithm increases and becomes dependent on number
of actions .

A t+1

q(S ,A)t t ← q(S ,A) + α R + γE q(S , a) − q(S ,A)t t [t+1 π t+1 t t]

← q(S ,A) + α R + γ π(a∣S)q(S , a) − q(S ,A) .t t [t+1 ∑
a

t+1 t+1 t t]

∣A∣

26/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Expected Sarsa as Off-policy Algorithm

Note that Expected Sarsa is also an off-policy algorithm, allowing the behaviour policy and

target policy to differ.

Especially, if is a greedy policy with respect to current value function, Expected Sarsa

simplifies to Q-learning.

b

π

π

27/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

Expected Sarsa Example

S GT h e C l i f f

R

R = -1

Safer path

Optimal path

R = -100

(! !

Example 6.6 of "Reinforcement Learning: An
Introduction, Second Edition".

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−160

−140

−120

−100

−80

−60

−40

−20

0

n = 100, Sarsa

n = 100, Q−learning

n = 100, Expected Sarsa

n = 1E5, Sarsa

n = 1E5, Q−learning

n = 1E5, Expected Sarsa

Expected Sarsa

Sarsa
Q-learning

Asymptotic Performance

Interim Performance

Q-learning

Sum of rewards

per episode

α

10.1 0.2 0.4 0.6 0.80.3 0.5 0.7 0.9

0

-40

-80

-120

Figure 6.3 of "Reinforcement Learning: An Introduction, Second Edition".

Asymptotic performance is averaged over 100k episodes, interim performance over the first 100.

28/28NPFL122, Lecture 3 Refresh Afterstates TD Q-learning Off-policy Expected Sarsa

