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Refresh – Policies and Value Functions

A policy  computes a distribution of actions in a given state, i.e.,  corresponds to a

probability of performing an action  in state .

To evaluate a quality of a policy, we define value function , or state-value function, as

An action-value function for a policy  is defined analogously as

Optimal state-value function is defined as  analogously optimal action-

value function is defined as 

Any policy  with  is called an optimal policy.
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Refresh – Value Iteration

Optimal value function can be computed by repetitive application of Bellman optimality
equation:

  

v  (s)0

v  (s)k+1

← 0

←  E R  + γv  (S  ) S  = s,A  = a = Bv  .
a

max [ t+1 k t+1 ∣ t t ] k
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Refresh – Policy Iteration Algorithm

Policy iteration consists of repeatedly performing policy evaluation and policy improvement:

The result is a sequence of monotonically improving policies . Note that when , also 

, which means Bellman optimality equation is fulfilled and both  and  are optimal.

Considering that there is only a finite number of policies, the optimal policy and optimal value
function can be computed in finite time (contrary to value iteration, where the convergence is
only asymptotic).

Note that when evaluation policy , we usually start with , which is assumed to be a

good approximation to .
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Refresh – Generalized Policy Iteration

Generalized Policy Evaluation is a general idea of interleaving policy evaluation and policy
improvement at various granularity.

evaluation

improvement

π  greedy(V )

Vπ

V  vπ

v∗π∗

 

Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

v∗,π∗

π
= greed

y(v)

v,π

v
=

v
π

 

Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

If both processes stabilize, we know we have obtained optimal policy.
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Refresh – -soft Policiesε

A policy is called -soft, if

We call a policy -greedy, if one action has maximum probability of .

The policy improvement theorem can be proved also for class of -soft policies, and using 

-greedy policy in policy improvement step, policy iteration has same convergence properties.

(We can embed the -soft behaviour “inside” the environment and prove equivalence.)

ε
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Refresh – Monte Carlo for -soft Policiesε

On-policy every-visit Monte Carlo for -soft Policies

Algorithm parameter: small 

Initialize  arbitrarily (usually to 0), for all  

Initialize  to 0, for all 

Repeat forever (for each episode):

Generate an episode , by generating actions as follows:

With probability , generate a random uniform action

Otherwise, set 

For each :

ε

ε > 0

Q(s, a) ∈ R s ∈ S, a ∈ A

C(s, a) ∈ Z s ∈ S, a ∈ A

S  ,A  ,R  , … ,S  ,A  ,R  0 0 1 T−1 T−1 T

ε

A  t =def arg max  Q(S  , a)a t

G ← 0
t = T − 1,T − 2, … , 0

G ← γG + R  T+1

C(S ,A  ) ←t t C(S  ,A  ) +t t 1
Q(S  ,A  ) ←t t Q(S  ,A  ) +t t  (G −

C(S  ,A  )t t

1 Q(S  ,A  ))t t
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Action-values and Afterstates

X

O X

X

O + XO +X

X  

Figure from section 6.8 of "Reinforcement Learning: An Introduction,
Second Edition".

The reason we estimate action-value function  is that the policy is defined as

and the latter form might be impossible to evaluate if we do not have the model of the
environment.

However, if the environment is known, it might be better
to estimate returns only for states, and there can be
substantially less states than state-action pairs.

q

  

π(s)  q  (s, a)=def

a
arg max π

=   p(s , r∣s, a) r + γv  (s )
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s ,r′

′ [ π
′ ]
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TD Methods

Temporal-difference methods estimate action-value returns using one iteration of Bellman
equation instead of complete episode return.

Compared to Monte Carlo method with constant learning rate , which performs

the simplest temporal-difference method computes the following:

α

v(S  ) ←t v(S  ) +t α G  − v(S  ) ,[ t t ]

v(S  ) ←t v(S  ) +t α R  + γv(S  ) − v(S  ) ,[ t+1 t+1 t ]
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TD Methods

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30

reach car, raining 5 35 40

exiting highway 20 15 35

2ndary road, behind truck 30 10 40

entering home street 40 3 43

arrive home 43 0 43

 

Example 6.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Figure 6.1 of "Reinforcement Learning: An Introduction, Second Edition".
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TD and MC Comparison

As with Monte Carlo methods, for a fixed policy , TD methods converge to .

On stochastic tasks, TD methods usually converge to  faster than constant-  MC methods.

A B C D E
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Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

π v  π

v  π α
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Optimality of MC and TD Methods
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Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

A, 0,B, 0 B, 1

B, 1 B, 1

B, 1 B, 1

B, 1 B, 0

 

Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

For state B, 6 out of 8 times return from B was 1 and 0 otherwise. Therefore, .

[TD] For state A, in all cases it transfered to B. Therefore,  could be .

[MC] For state A, in all cases it generated return 0. Therefore,  could be .

MC minimizes error on training data, TD minimizes MLE error for the Markov process.

v(B) = 3/4

v(A) 3/4
v(A) 0
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Sarsa

A straightforward application to the temporal-difference policy evaluation is Sarsa algorithm,
which after generating  computes

Sarsa (on-policy TD control) for estimating Q ≈ q⇤

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialize Q(s, a), for all s ∈ S , a ∈ A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., ε-greedy)
Loop for each step of episode:

Take action A, observe R, S0

Choose A0 from S0 using policy derived from Q (e.g., ε-greedy)
Q(S,A)← Q(S,A) + α

⇥

R+ γQ(S0, A0)−Q(S,A)
⇤

S ← S0; A← A0;
until S is terminal

 

Modification of Algorithm 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

S  ,A  ,R  ,S  ,A  t t t+1 t+1 t+1

q(S  ,A  ) ←t t q(S  ,A  ) +t t α R  + γq(S  ,A  ) − q(S  ,A  ) .[ t+1 t+1 t+1 t t ]
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Sarsa
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Example 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

MC methods cannot be easily used, because an episode might not terminate if current policy
caused the agent to stay in the same state.
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Q-learning

Q-learning was an important early breakthrough in reinforcement learning (Watkins, 1989).

Q-learning (off-policy TD control) for estimating π ≈ π⇤

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialize Q(s, a), for all s ∈ S , a ∈ A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., ε-greedy)
Take action A, observe R, S0

Q(S,A)← Q(S,A) + α
⇥

R+ γmaxaQ(S
0, a)−Q(S,A)

⇤

S ← S0

until S is terminal

 

Modification of Algorithm 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

q(S  ,A  ) ←t t q(S  ,A  ) +t t α R  + γ  q(S  , a) − q(S  ,A  ) .[ t+1
a

max t+1 t t ]
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Q-learning versus Sarsa
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Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

Sarsa

Q-learning

Sum of
rewards
during
episode

Episodes

-25

-50

-75

-100

0 100 200 300 400 500

 

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".
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On-policy and Off-policy Methods

So far, all methods were on-policy. The same policy was used both for generating episodes and
as a target of value function.

However, while the policy for generating episodes needs to be more exploratory, the target
policy should capture optimal behaviour.

Generally, we can consider two policies:

behaviour policy, usually , is used to generate behaviour and can be more exploratory

target policy, usually , is the policy being learned (ideally the optimal one)

When the behaviour and target policies differ, we talk about off-policy learning.

b

π
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On-policy and Off-policy Methods

The off-policy methods are usually more complicated and slower to converge, but are able to
process data generated by different policy than the target one.

The advantages are:

more exploratory behaviour;

ability to process expert trajectories.
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Off-policy Prediction

Consider prediction problem for off-policy case.

In order to use episodes from  to estimate values for , we require that every action taken by 

 is also taken by , i.e.,

Many off-policy methods utilize importance sampling, a general technique for estimating
expected values of one distribution given samples from another distribution.

b π

π b

π(a∣s) > 0 ⇒ b(a∣s) > 0.
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Importance Sampling

Assume that  and  are two distributions.

Let  be the samples of  and  the corresponding samples of

Our goal is to estimate

We can therefore compute

with  being a relative probability of  under the two distributions.

b π

x  i b y  i

E  [f(x)].x∼b

E  [f(x)] =x∼π  π(x)f(x).
x

∑

  f(x  )
x  i

∑
b(x  )i

π(x  )i
i

π(x)/b(x) x
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Off-policy Prediction

Given an initial state  and an episode , the probability of this episode

under a policy  is

Therefore, the relative probability of a trajectory under the target and behaviour policies is

Therefore, if  is a return of episode generated according to , we can estimate

S  t A  ,S  ,A  , … ,S  t t+1 t+1 T

π

 π(A  ∣S  )p(S  ∣S  ,A  ).
k=t

∏
T−1

k k k+1 k k

ρ  t =
def

 =
 b(A  ∣S  )p(S  ∣S  ,A  )∏k=t

T−1
k k k+1 k k

 π(A  ∣S  )p(S  ∣S  ,A  )∏k=t
T−1

k k k+1 k k
  .

k=t

∏
T−1

b(A  ∣S  )k k

π(A  ∣S  )k k

G  t b

v  (S  ) =π t E  [ρ  G  ].b t t
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Off-policy Monte Carlo Prediction

Let  be a set of times when we visited state . Given episodes sampled according to , we

can estimate

Such simple average is called ordinary importance sampling. It is unbiased, but can have very
high variance.

An alternative is weighted importance sampling, where we compute weighted average as

Weighted importance sampling is biased (with bias asymptotically converging to zero), but
usually has smaller variance.

T (s) s b

v  (s) =π  .
∣T (s)∣

 ρ  G  ∑t∈T (s) t t

v  (s) =π  .
 ρ  ∑t∈T (s) t

 ρ  G  ∑t∈T (s) t t
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Off-policy Monte Carlo Prediction

Ordinary
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sampling

Weighted importance sampling

Episodes (log scale)
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0

5  

Figure 5.3 of "Reinforcement Learning: An Introduction, Second Edition".

Comparison of ordinary and weighted importance sampling on Blackjack. Given a state with
sum of player's cards 13 and a usable ace, we estimate target policy of sticking only with a sum
of 20 and 21, using uniform behaviour policy.
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Off-policy Monte Carlo Prediction

We can compute weighted importance sampling similarly to the incremental implementation of
Monte Carlo averaging.

Off-policy MC prediction (policy evaluation) for estimating Q ⇡ qπ

Input: an arbitrary target policy π

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) 2 R (arbitrarily)
C(s, a) 0

Loop forever (for each episode):
b any policy with coverage of π
Generate an episode following b: S0, A0, R1, . . . , ST−1, AT−1, RT

G 0
W  1
Loop for each step of episode, t = T1, T2, . . . , 0, while W 6= 0:

G γG+Rt+1

C(St, At) C(St, At) +W

Q(St, At) Q(St, At) +
W

C(St,At)
[GQ(St, At)]

W  W
π(At|St)
b(At|St)

 

Algorithm 5.6 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Monte Carlo

Off-policy MC control, for estimating π ⇡ π∗

Initialize, for all s 2 S, a 2 A(s):
Q(s, a) 2 R (arbitrarily)
C(s, a) 0
π(s) argmaxaQ(s, a) (with ties broken consistently)

Loop forever (for each episode):
b any soft policy
Generate an episode using b: S0, A0, R1, . . . , ST−1, AT−1, RT

G 0
W  1
Loop for each step of episode, t = T1, T2, . . . , 0:

G γG+Rt+1

C(St, At) C(St, At) +W

Q(St, At) Q(St, At) +
W

C(St,At)
[GQ(St, At)]

π(St) argmaxaQ(St, a) (with ties broken consistently)
If At 6= π(St) then exit inner Loop (proceed to next episode)
W  W 1

b(At|St)

 

Algorithm 5.7 of "Reinforcement Learning: An Introduction, Second Edition".
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Expected Sarsa

The action  is a source of variance, moving only in expectation.

We could improve the algorithm by considering all actions proportionally to their policy
probability, obtaining Expected Sarsa algorithm:

Compared to Sarsa, the expectation removes a source of variance and therefore usually performs
better. However, the complexity of the algorithm increases and becomes dependent on number
of actions .

A  t+1

  

q(S  ,A  )t t ← q(S  ,A  ) + α R  + γE  q(S  , a) − q(S  ,A  )t t [ t+1 π t+1 t t ]

← q(S  ,A  ) + α R  + γ  π(a∣S  )q(S  , a) − q(S  ,A  ) .t t [ t+1 ∑
a

t+1 t+1 t t ]

∣A∣
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Expected Sarsa as Off-policy Algorithm

Note that Expected Sarsa is also an off-policy algorithm, allowing the behaviour policy  and

target policy  to differ.

Especially, if  is a greedy policy with respect to current value function, Expected Sarsa

simplifies to Q-learning.

b

π

π
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Expected Sarsa Example
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Example 6.6 of "Reinforcement Learning: An
Introduction, Second Edition".
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Figure 6.3 of "Reinforcement Learning: An Introduction, Second Edition".

Asymptotic performance is averaged over 100k episodes, interim performance over the first 100.
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