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Develop goal-seeking agent trained using reward signal.

® Optimal control in 1950s — Richard Bellman

® Trial and error learning — since 1850s
© Law and effect — Edward Thorndike, 1911

O Shannon, Minsky, Clark&Farley, .. — 1950s and 1960s
O Tsetlin, Holland, Klopf — 1970s
O Sutton, Barto — since 1980s

® Arthur Samuel — first implementation of temporal difference methods for playing checkers

Notable successes
® Gerry Tesauro — 1992, human-level Backgammon playing program trained solely by self-play
¢ |IBM Watson in Jeopardy — 2011
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Recent successes

® Human-level video game playing (DQN) — 2013 (2015 Nature), Mnih. et al, Deepmind
O 29 games out of 49 comparable or better to professional game players

6 8 days on GPU
O human-normalized mean: 121.9%, median: 47.5% on 57 games

® A3C - 2016, Mnih. et al
O 4 days on 16-threaded CPU

O human-normalized mean: 623.0%, median: 112.6% on 57 games

® Rainbow — 2017
© human-normalized median: 153%

® |mpala — Feb 2018
O one network and set of parameters to rule them all

O human-normalized mean: 176.9%, median: 59.7% on 57 games

® PopArt-Impala — Sep 2018
O human-normalized median: 110.7% on 57 games
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Recent successes

® AlphaGo
O Mar 2016 — beat 9-dan professional player Lee Sedol

® AlphaGo Master — Dec 2016
O beat 60 professionals
O beat Ke Jie in May 2017

® AlphaGo Zero — 2017
O trained only using self-play

O surpassed all previous version after 40 days of training
® AlphaZero — Dec 2017
O self-play only
O defeated AlphaGo Zero after 34 hours of training (21 million games)
O impressive chess and shogi performance after 9h and 12h, respectively
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Recent successes

® Dota2 — Aug 2017
O won 1vl matches against a professional player

¢ MERLIN — Mar 2018
O unsupervised representation of states using external memory
O partial observations
O beat human in unknown maze navigation

° FTW — Jul 2018
O beat professional players in two-player-team Capture the flag FPS

O solely by self-play
O trained on 450k games
® each 5 minutes, 4500 agent steps (15 per second)

® OpenAl Five — Aug 2018
O won 5v5 best-of-three match against professional team

o 256 GPUs, 128k CPUs
® 180 years of experience per day
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History of Reinforcement Learning

Recent successes
® |mproved translation quality in 2016

® Discovering discrete latent structures

e TARDIS - Jan 2017
O allow using discrete external memory
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Multi-armed Bandits Uz
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Multi-armed Bandits Uz
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Figure 2.1 of "Reinforcement Learning: An Introduction, Second Edition".
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We start by selecting action A;, which is the index of the arm to use, and we get a reward of
R1. We then repeat the process by selecting actions As, As, ..

Let g, (a) be the real value of an action a:

q:(a) = E[R;|A; = a].

Denoting Q¢(a) our estimated value of action a at time ¢ (before taking trial t), we would like
Q:(a) to converge to gi(a). A natural way to estimate Q¢(a) is

+ sum of rewards when action a is taken

Qi(a) =

number of times action a was taken

Following the definition of Q:(a), we could choose a greedy action A; as

Ai(a) = argmax Q;(a).

a
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Exploitation versus Exploration
Choosing a greedy action is exploitation of current estimates. We however also need to explore
the space of actions to improve our estimates.

An e-greedy method follows the greedy action with probability 1 — &, and chooses a uniformly

random action with probability €.
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e-greedy Method
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Figure 2.2 of "Reinforcement Learning: An Introduction, Second Edition".
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e-greedy Method

Incremental Implementation
Let (),,.1 be an estimate using n rewards Ry,..., R,.

NPFL122, Lecture 1 History

Qn—l—l

Multi-armed Bandits

1
iy

n 4

1=1

1 n—1<2
:ﬁ(Rn_l_n—liZ:l:Ri)

1

1
:;(R'n"l'nQn Qn

1

:Qn+E(Rn_Qn)

UCB

Gradient

Comparison

U=

12/22



e-greedy Method Algorithm Uzt

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) + 0
N(a) <0

Loop forever:
yon { argmax, Q(a) with probability 1 —e  (breaking ties randomly)
a random action with probability ¢
R < bandit(A)
N(A)« N(A)+1
Q(4) + Q(A) + xigy [R— Q(4)]

Algorithm 2.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Analogously to the solution obtained for a stationary problem, we consider

Qn—l—l — Qn =+ a(an - Qn)
Converges to the true action values if

oo oo

_ 2
E o, =00 and E o, < 00.
n=1

n=1

Biased method, because
Quir = (1—a)"Qr + Y a1l — )" 'R,
i=1

The bias can be utilized to support exploration at the start of the episode by setting the initial
values to more than the expected value of the optimal solution.
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Optimistic Initial Values and Fixed Learning Rate Ut
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Figure 2.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Using same epsilon for all actions in e-greedy method seems inefficient. One possible

improvement is to select action according to upper confidence bound (instead of choosing a
random action with probability €):

def Int

A = a,rginax Q:(a) + c N,(a)

The updates are then performed as before (e.g., using averaging, or fixed learning rate «).
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Actions with little average reward are probably selected too often.

Instead of simple e-greedy approach, we might try selecting an action as little as possible, but
still enough to converge.

Assuming random variables X; bounded by [0,1] and X = Zfil X, (Chernoff-)Hoeffding's
inequality states that

P(X —E[X] > 6) <e 2.

Our goal is to choose 9 such that for every action,

P(Qu(a) - q.(a) > 6) < (1)

t

We can achieve the required inequality (with o = 2) by setting

5> /(Imt)/Ni(a).
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Asymptotical Optimality of UCB VRt

We define regret as a difference of maximum of what we could get (i.e., repeatedly using action
with maximum expectation) and what a strategy vyields, i.e.,

'regretN =N max g« (a ZE

It can be shown that regret of UCB is asymptotically optimal, see Lai and Robbins (1985),
Asymptotically Efficient Adaptive Allocation Rules.
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Upper Confidence Bound Results Uz
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Figure 2.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Let Hi(a) be a numerical preference for an action a at time t.

We could choose actions according to softmax distribution:
th(a,)

- >y et

Usually, all Hy(a) are set to zero, which corresponds to random uniform initial policy.

m(A: = a) = softmax(a)

Using SGD and MLE loss, we can derive the following algorithm:

Hy1(a) < Hy(a) + aRi([a = A — 7(a)).
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Gradient Bandit Algorithms Uz
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Figure 2.5: Average performance of the gradient bandit algorithm with and without a reward
baseline on the 10-armed testbed when the ¢.(a) are chosen to be near +4 rather than near zero.

Figure 2.5 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 1 History Multi-armed Bandits e-greedy Non-stationary Problems ucCB Gradient Comparison 21/22



Method Comparison Uz
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Figure 2.6 of "Reinforcement Learning: An Introduction, Second Edition".
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