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History of Reinforcement Learning

Develop goal-seeking agent trained using reward signal.

Optimal control in 1950s – Richard Bellman

Trial and error learning – since 1850s
Law and effect – Edward Thorndike, 1911
Shannon, Minsky, Clark&Farley, … – 1950s and 1960s
Tsetlin, Holland, Klopf – 1970s
Sutton, Barto – since 1980s

Arthur Samuel – first implementation of temporal difference methods for playing checkers

Notable successes
Gerry Tesauro – 1992, human-level Backgammon playing program trained solely by self-play

IBM Watson in Jeopardy – 2011
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History of Reinforcement Learning

Recent successes
Human-level video game playing (DQN) – 2013 (2015 Nature), Mnih. et al, Deepmind

29 games out of 49 comparable or better to professional game players
8 days on GPU
human-normalized mean: 121.9%, median: 47.5% on 57 games

A3C – 2016, Mnih. et al
4 days on 16-threaded CPU
human-normalized mean: 623.0%, median: 112.6% on 57 games

Rainbow – 2017
human-normalized median: 153%

Impala – Feb 2018
one network and set of parameters to rule them all
human-normalized mean: 176.9%, median: 59.7% on 57 games

PopArt-Impala – Sep 2018
human-normalized median: 110.7% on 57 games
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History of Reinforcement Learning

Recent successes
AlphaGo

Mar 2016 – beat 9-dan professional player Lee Sedol

AlphaGo Master – Dec 2016
beat 60 professionals
beat Ke Jie in May 2017

AlphaGo Zero – 2017
trained only using self-play
surpassed all previous version after 40 days of training

AlphaZero – Dec 2017
self-play only
defeated AlphaGo Zero after 34 hours of training (21 million games)
impressive chess and shogi performance after 9h and 12h, respectively
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History of Reinforcement Learning

Recent successes
Dota2 – Aug 2017

won 1v1 matches against a professional player

MERLIN – Mar 2018
unsupervised representation of states using external memory
partial observations
beat human in unknown maze navigation

FTW – Jul 2018
beat professional players in two-player-team Capture the flag FPS
solely by self-play
trained on 450k games

each 5 minutes, 4500 agent steps (15 per second)

OpenAI Five – Aug 2018
won 5v5 best-of-three match against professional team
256 GPUs, 128k CPUs

180 years of experience per day
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History of Reinforcement Learning

Recent successes
Improved translation quality in 2016

Discovering discrete latent structures

TARDIS – Jan 2017
allow using discrete external memory

…
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Multi-armed Bandits

 

http://www.infoslotmachine.com/img/one-armed-bandit.jpg
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Multi-armed Bandits

 

Figure 2.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Multi-armed Bandits

We start by selecting action , which is the index of the arm to use, and we get a reward of 

. We then repeat the process by selecting actions , , …

Let  be the real value of an action :

Denoting  our estimated value of action  at time  (before taking trial ), we would like 

 to converge to . A natural way to estimate  is

Following the definition of , we could choose a greedy action  as

A  1

R  1 A  2 A  3

q  (a)∗ a

q  (a) =∗ E[R  ∣A  =t t a].

Q  (a)t a t t

Q  (a)t q  (a)∗ Q  (a)t

Q  (a)t =def
 .

number of times action a was taken
sum of rewards when action a is taken

Q  (a)t A  t

A (a)t =def
 Q  (a).

a
arg max t
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-greedy Methodε

Exploitation versus Exploration
Choosing a greedy action is exploitation of current estimates. We however also need to explore
the space of actions to improve our estimates.

An -greedy method follows the greedy action with probability , and chooses a uniformly

random action with probability .

ε 1 − ε

ε
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-greedy Methodε
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Figure 2.2 of "Reinforcement Learning: An Introduction, Second Edition".
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-greedy Methodε

Incremental Implementation
Let  be an estimate using  rewards .Q  n+1 n R  , … ,R  1 n

  

Q  n+1 =   R  

n

1

i=1

∑
n

i

=  (R  +   R  )
n

1
n

n − 1
n − 1

i=1

∑
n−1

i

=  (R  + (n − 1)Q  )
n

1
n n

=  (R  + nQ  − Q  )
n

1
n n n

= Q  +  (R  − Q  )n
n

1
n n
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-greedy Method Algorithmε

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a)← 0
N(a)← 0

Loop forever:

A←

⇢

argmaxaQ(a) with probability 1− ε (breaking ties randomly)
a random action with probability ε

R← bandit(A)
N(A)← N(A) + 1
Q(A)← Q(A) + 1

N(A)

⇥

R−Q(A)
⇤

 

Algorithm 2.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Fixed Learning Rate

Analogously to the solution obtained for a stationary problem, we consider

Converges to the true action values if

Biased method, because

The bias can be utilized to support exploration at the start of the episode by setting the initial
values to more than the expected value of the optimal solution.

Q  =n+1 Q  +n α(R  −n Q  ).n

 α  =
n=1

∑
∞

n ∞    and      α  <
n=1

∑
∞

n
2 ∞.

Q  =n+1 (1 − α) Q  +n
1  α(1 −

i=1

∑
n

α) R  .n−i
i
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Optimistic Initial Values and Fixed Learning Rate
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Figure 2.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Upper Confidence Bound

Using same epsilon for all actions in -greedy method seems inefficient. One possible

improvement is to select action according to upper confidence bound (instead of choosing a
random action with probability ):

The updates are then performed as before (e.g., using averaging, or fixed learning rate ).

ε

ε

A  t =def
 Q  (a) + c  .

a
arg max [ t  

N  (a)t

ln t
]

α
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Motivation Behind Upper Confidence Bound

Actions with little average reward are probably selected too often.

Instead of simple -greedy approach, we might try selecting an action as little as possible, but

still enough to converge.

Assuming random variables  bounded by  and , (Chernoff-)Hoeffding's

inequality states that

Our goal is to choose  such that for every action,

We can achieve the required inequality (with ) by setting

ε

X  i [0, 1] =X̄  X  ∑i=1
N

i

P ( −X̄ E[ ] ≥X̄ δ) ≤ e .−2nδ2

δ

P (Q  (a) −t q  (a) ≥∗ δ) ≤  .(
t

1
)

α

α = 2

δ ≥  .(ln t)/N  (a)t
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Asymptotical Optimality of UCB

We define regret as a difference of maximum of what we could get (i.e., repeatedly using action
with maximum expectation) and what a strategy yields, i.e.,

It can be shown that regret of UCB is asymptotically optimal, see Lai and Robbins (1985),
Asymptotically Efficient Adaptive Allocation Rules.

regret  N =def
N  q  (a) −

a
max ∗  E[R  ].

i=1

∑
N

i
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Upper Confidence Bound Results
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Figure 2.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Gradient Bandit Algorithms

Let  be a numerical preference for an action  at time .

We could choose actions according to softmax distribution:

Usually, all  are set to zero, which corresponds to random uniform initial policy.

Using SGD and MLE loss, we can derive the following algorithm:

H  (a)t a t

π(A  =t a) =def softmax(a) =  .
 e∑b

H  (b)t

eH  (a)t

H  (a)1

H  (a) ←t+1 H  (a) +t αR  ([a =t A  ] −t π(a)).
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Gradient Bandit Algorithms
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Figure 2.5: Average performance of the gradient bandit algorithm with and without a reward
baseline on the 10-armed testbed when the q∗(a) are chosen to be near +4 rather than near zero.

 

Figure 2.5 of "Reinforcement Learning: An Introduction, Second Edition".

21/22NPFL122, Lecture 1 History Multi-armed Bandits -greedy Non-stationary Problems UCB Gradient Comparisonε



Method Comparison
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Figure 2.6 of "Reinforcement Learning: An Introduction, Second Edition".
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