Temporal Difference Methods, Off-Policy Methods

Milan Straka

October 22, 2018
A policy π computes a distribution of actions in a given state, i.e., $\pi(a | s)$ corresponds to a probability of performing an action a in state s.

To evaluate a quality of a policy, we define value function $v_\pi(s)$, or state-value function, as

$$v_\pi(s) \overset{\text{def}}{=} \mathbb{E}_\pi \left[G_t | S_t = s \right] = \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right].$$

An action-value function for a policy π is defined analogously as

$$q_\pi(s, a) \overset{\text{def}}{=} \mathbb{E}_\pi \left[G_t | S_t = s, A_t = a \right] = \mathbb{E}_\pi \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right].$$

Optimal state-value function is defined as $v_*(s) \overset{\text{def}}{=} \max_{\pi} v_\pi(s)$, analogously optimal action-value function is defined as $q_*(s, a) \overset{\text{def}}{=} \max_{\pi} q_\pi(s, a)$.

Any policy π_* with $v_{\pi_*} = v_*$ is called an optimal policy.
Optimal value function can be computed by repetitive application of Bellman optimality equation:

\[v_0(s) \leftarrow 0 \]
\[v_{k+1}(s) \leftarrow \max_a \mathbb{E} [R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a] = B v_k. \]
Policy iteration consists of repeatedly performing policy evaluation and policy improvement:

\[\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} v_{\pi_2} \xrightarrow{I} \ldots \xrightarrow{I} \pi^* \xrightarrow{E} v_{\pi^*}. \]

The result is a sequence of monotonically improving policies \(\pi_i \). Note that when \(\pi' = \pi \), also \(v_{\pi'} = v_{\pi} \), which means Bellman optimality equation is fulfilled and both \(v_{\pi} \) and \(\pi \) are optimal.

Considering that there is only a finite number of policies, the optimal policy and optimal value function can be computed in finite time (contrary to value iteration, where the convergence is only asymptotic).

Note that when evaluation policy \(\pi_{k+1} \), we usually start with \(v_{\pi_k} \), which is assumed to be a good approximation to \(v_{\pi_{k+1}} \).
Generalized Policy Evaluation is a general idea of interleaving policy evaluation and policy improvement at various granularity.

If both processes stabilize, we know we have obtained optimal policy.
A policy is called ε-soft, if

$$\pi(a|s) \geq \frac{\varepsilon}{|A(s)|}.$$

We call a policy ε-greedy, if one action has maximum probability of $1 - \varepsilon + \frac{\varepsilon}{|A(s)|}$.

The policy improvement theorem can be proved also for class of ε-soft policies, and using ε-greedy policy in policy improvement step, policy iteration has same convergence properties. (We can embed the ε-soft behaviour “inside” the environment and prove equivalence.)
On-policy every-visit Monte Carlo for ε-soft Policies

Algorithm parameter: small $\varepsilon > 0$

Initialize $Q(s, a) \in \mathbb{R}$ arbitrarily (usually to 0), for all $s \in S, a \in A$

Initialize $C(s, a) \in \mathbb{Z}$ to 0, for all $s \in S, a \in A$

Repeat forever (for each episode):

- Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, by generating actions as follows:
 - With probability ε, generate a random uniform action
 - Otherwise, set $A_t \overset{\text{def}}{=} \arg \max_a Q(S_t, a)$

- $G \leftarrow 0$
- For each $t = T - 1, T - 2, \ldots, 0$:
 - $G \leftarrow \gamma G + R_{T+1}$
 - $C(S_t, A_t) \leftarrow C(S_t, A_t) + 1$
 - $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{C(S_t, A_t)} (G - Q(S_t, A_t))$
The reason we estimate action-value function q is that the policy is defined as

$$\pi(s) \overset{\text{def}}{=} \arg \max_a q_\pi(s, a)$$

$$= \arg \max_a \sum_{s', r} p(s', r | s, a) [r + \gamma v_\pi(s')]$$

and the latter form might be impossible to evaluate if we do not have the model of the environment.

However, if the environment is known, it might be better to estimate returns only for states, and there can be substantially less states than state-action pairs.
Temporal-difference methods estimate action-value returns using one iteration of Bellman equation instead of complete episode return.

Compared to Monte Carlo method with constant learning rate α, which performs

$$v(S_t) \leftarrow v(S_t) + \alpha [G_t - v(S_t)],$$

the simplest temporal-difference method computes the following:

$$v(S_t) \leftarrow v(S_t) + \alpha [R_{t+1} + \gamma v(S_{t+1}) - v(S_t)],$$
TD Methods

<table>
<thead>
<tr>
<th>State</th>
<th>Elapsed Time (minutes)</th>
<th>Predicted Time to Go</th>
<th>Predicted Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>leaving office, friday at 6</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>reach car, raining</td>
<td>5</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>exiting highway</td>
<td>20</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>2ndary road, behind truck</td>
<td>30</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>entering home street</td>
<td>40</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>arrive home</td>
<td>43</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>

![Graph showing travel time](image1.png)

Figure 6.1 of “Reinforcement Learning: An Introduction, Second Edition”.
TD and MC Comparison

As with Monte Carlo methods, for a fixed policy \(\pi \), TD methods converge to \(v_\pi \).

On stochastic tasks, TD methods usually converge to \(v_\pi \) faster than constant-\(\alpha \) MC methods.

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".
Optimality of MC and TD Methods

For state B, 6 out of 8 times return from B was 1 and 0 otherwise. Therefore, $v(B) = 3/4$.

- [TD] For state A, in all cases it transferred to B. Therefore, $v(A)$ could be $3/4$.
- [MC] For state A, in all cases it generated return 0. Therefore, $v(A)$ could be 0.

MC minimizes error on training data, TD minimizes MLE error for the Markov process.
A straightforward application to the temporal-difference policy evaluation is Sarsa algorithm, which after generating $S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}$ computes

$$q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha [R_{t+1} + \gamma q(S_{t+1}, A_{t+1}) - q(S_t, A_t)].$$

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

- Algorithm parameters: step size $\alpha \in (0, 1]$, small $\epsilon > 0$
- Initialize $Q(s, a)$, for all $s \in S, a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$
- Loop for each episode:
 - Initialize S
 - Choose A from S using policy derived from Q (e.g., ϵ-greedy)
- Loop for each step of episode:
 - Take action A, observe R, S'
 - Choose A' from S' using policy derived from Q (e.g., ϵ-greedy)
 - $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$
 - $S \leftarrow S'; A \leftarrow A'$
- until S is terminal

Modification of Algorithm 6.4 of "Reinforcement Learning: An Introduction, Second Edition".
MC methods cannot be easily used, because an episode might not terminate if current policy caused the agent to stay in the same state.
Q-learning was an important early breakthrough in reinforcement learning (Watkins, 1989).

\[q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a q(S_{t+1}, a) - q(S_t, A_t) \right]. \]

Q-learning (off-policy TD control) for estimating \(\pi \approx \pi_* \)

- Algorithm parameters: step size \(\alpha \in (0, 1] \), small \(\varepsilon > 0 \)
- Initialize \(Q(s, a) \), for all \(s \in S, a \in A(s) \), arbitrarily except that \(Q(\text{terminal}, \cdot) = 0 \)

Loop for each episode:
- Initialize \(S \)
- Loop for each step of episode:
 - Choose \(A \) from \(S \) using policy derived from \(Q \) (e.g., \(\varepsilon \)-greedy)
 - Take action \(A \), observe \(R, S' \)
 - \(Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)] \)
 - \(S \leftarrow S' \)
- until \(S \) is terminal

Q-learning versus Sarsa

Safer path
Optimal path

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

Sarsa
Q-learning

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".
So far, all methods were *on-policy*. The same policy was used both for generating episodes and as a target of value function.

However, while the policy for generating episodes needs to be more exploratory, the target policy should capture optimal behaviour.

Generally, we can consider two policies:

- *behaviour* policy, usually b, is used to generate behaviour and can be more exploratory
- *target* policy, usually π, is the policy being learned (ideally the optimal one)

When the behaviour and target policies differ, we talk about *off-policy* learning.
On-policy and Off-policy Methods

The off-policy methods are usually more complicated and slower to converge, but are able to process data generated by different policy than the target one.

The advantages are:

- more exploratory behaviour;
- ability to process expert trajectories.
Consider prediction problem for off-policy case. In order to use episodes from b to estimate values for π, we require that every action taken by π is also taken by b, i.e.,

$$\pi(a|s) > 0 \Rightarrow b(a|s) > 0.$$

Many off-policy methods utilize *importance sampling*, a general technique for estimating expected values of one distribution given samples from another distribution.
Importance Sampling

Assume that b and π are two distributions.

Let x_i be the samples of b and y_i the corresponding samples of π.

Our goal is to estimate

$$\mathbb{E}_{x \sim b}[f(x)].$$

We can therefore compute

$$\mathbb{E}_{x \sim \pi}[f(x)] = \sum_x \pi(x)f(x).$$

with $\pi(x)/b(x)$ being a relative probability of x under the two distributions.
Given an initial state S_t and an episode $A_t, S_{t+1}, A_{t+1}, \ldots, S_T$, the probability of this episode under a policy π is

$$
\prod_{k=t}^{T-1}\pi(A_k|S_k)p(S_{k+1}|S_k, A_k).
$$

Therefore, the relative probability of a trajectory under the target and behaviour policies is

$$
\rho_t \overset{\text{def}}{=} \frac{\prod_{k=t}^{T-1}\pi(A_k|S_k)p(S_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1}b(A_k|S_k)p(S_{k+1}|S_k, A_k)} = \prod_{k=t}^{T-1}\frac{\pi(A_k|S_k)}{b(A_k|S_k)}.
$$

Therefore, if G_t is a return of episode generated according to b, we can estimate

$$
\nu_{\pi}(S_t) = \mathbb{E}_b[\rho_t G_t].
$$
Off-policy Monte Carlo Prediction

Let $\mathcal{T}(s)$ be a set of times when we visited state s. Given episodes sampled according to b, we can estimate

$$v_\pi(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_t G_t}{|\mathcal{T}(s)|}.$$

Such simple average is called *ordinary importance sampling*. It is unbiased, but can have very high variance.

An alternative is *weighted importance sampling*, where we compute weighted average as

$$v_\pi(s) = \frac{\sum_{t \in \mathcal{T}(s)} \rho_t G_t}{\sum_{t \in \mathcal{T}(s)} \rho_t}.$$

Weighted importance sampling is biased (with bias asymptotically converging to zero), but usually has smaller variance.
Off-policy Monte Carlo Prediction

Comparison of ordinary and weighted importance sampling on Blackjack. Given a state with sum of player's cards 13 and a usable ace, we estimate target policy of sticking only with a sum of 20 and 21, using uniform behaviour policy.
Off-policy Monte Carlo Prediction

We can compute weighted importance sampling similarly to the incremental implementation of Monte Carlo averaging.

Off-policy MC prediction (policy evaluation) for estimating $Q \approx q_\pi$

<table>
<thead>
<tr>
<th>Input: an arbitrary target policy π</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize, for all $s \in S$, $a \in A(s)$:</td>
</tr>
<tr>
<td>$Q(s, a) \in \mathbb{R}$ (arbitrarily)</td>
</tr>
<tr>
<td>$C(s, a) \leftarrow 0$</td>
</tr>
</tbody>
</table>

Loop forever (for each episode):

$b \leftarrow$ any policy with coverage of π

Generate an episode following b: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$

$G \leftarrow 0$

$W \leftarrow 1$

Loop for each step of episode, $t = T-1, T-2, \ldots, 0$, while $W \neq 0$:

$G \leftarrow \gamma G + R_{t+1}$

$C(S_t, A_t) \leftarrow C(S_t, A_t) + W$

$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$

$W \leftarrow W \frac{\pi(A_t|S_t)}{b(A_t|S_t)}$

Algorithm 5.6 of "Reinforcement Learning: An Introduction, Second Edition".
Off-policy Monte Carlo

Off-policy MC control, for estimating $\pi \approx \pi_*$

<table>
<thead>
<tr>
<th>Initialize, for all $s \in S, a \in A(s)$:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q(s, a) \in \mathbb{R}$ (arbitrarily)</td>
</tr>
<tr>
<td>$C(s, a) \leftarrow 0$</td>
</tr>
<tr>
<td>$\pi(s) \leftarrow \arg\max_a Q(s, a)$ (with ties broken consistently)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loop forever (for each episode):</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \leftarrow$ any soft policy</td>
</tr>
<tr>
<td>Generate an episode using b: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$</td>
</tr>
<tr>
<td>$G \leftarrow 0$</td>
</tr>
<tr>
<td>$W \leftarrow 1$</td>
</tr>
<tr>
<td>Loop for each step of episode, $t = T-1, T-2, \ldots, 0$:</td>
</tr>
<tr>
<td>$G \leftarrow \gamma G + R_{t+1}$</td>
</tr>
<tr>
<td>$C(S_t, A_t) \leftarrow C(S_t, A_t) + W$</td>
</tr>
<tr>
<td>$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$</td>
</tr>
<tr>
<td>$\pi(S_t) \leftarrow \arg\max_a Q(S_t, a)$ (with ties broken consistently)</td>
</tr>
<tr>
<td>If $A_t \neq \pi(S_t)$ then exit inner Loop (proceed to next episode)</td>
</tr>
<tr>
<td>$W \leftarrow W \frac{1}{b(A_t</td>
</tr>
</tbody>
</table>

Algorithm 5.7 of "Reinforcement Learning: An Introduction, Second Edition".
Expected Sarsa

The action A_{t+1} is a source of variance, moving only *in expectation*.

We could improve the algorithm by considering all actions proportionally to their policy probability, obtaining Expected Sarsa algorithm:

$$q(S_t, A_t) \leftarrow q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \mathbb{E}_\pi q(S_{t+1}, a) - q(S_t, A_t) \right]$$

$$\leftarrow q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \sum_a \pi(a|S_{t+1}) q(S_{t+1}, a) - q(S_t, A_t) \right].$$

Compared to Sarsa, the expectation removes a source of variance and therefore usually performs better. However, the complexity of the algorithm increases and becomes dependent on number of actions $|A|$.
Note that Expected Sarsa is also an off-policy algorithm, allowing the behaviour policy b and target policy π to differ.

Especially, if π is a greedy policy with respect to current value function, Expected Sarsa simplifies to Q-learning.
Expected Sarsa Example

Asymptotic performance is averaged over 100k episodes, interim performance over the first 100.