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WaveNet

Our goal is to model speech, using a convolutional auto-regressive model

 

Figure 2 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499

P (x) =  P (x  ∣x  , … ,x ).
t

∏ t t−1 1
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WaveNet

However, to achieve larger receptive field, we utilize dilated (or atrous) convolutions:

 

Figure 3 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499
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Dilated Versus Regular Versus Strided Convolutions

Regular Convolution Strided Convolution

 

https://github.com/vdumoulin/conv_arithmetic

 

https://github.com/vdumoulin/conv_arithmetic

Dilated Convolution Transposed Strided Convolution

 

https://github.com/vdumoulin/conv_arithmetic

 

https://github.com/vdumoulin/conv_arithmetic
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WaveNet – Output Distribution

Output Distribution
WaveNet generates audio with 16kHz frequency and 16-bit samples.

However, classification into  classes would not be efficient. Instead, WaveNet adopts the 

-law transformation, which passes the input samples in  range through the -law

encoding

and the resulting  range is linearly quantized into 256 buckets.

The model therefore predicts each samples using classification into 256 classes, and then uses
the inverse of the above transformation on the model predictions.

 

65 536
μ [−1, 1] μ

sign(x)  ,
log(1 + 255)

log(1 + 255∣x∣)

[−1, 1]
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WaveNet – Architecture

 

Figure 4 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499

The outputs of the dilated convolutions are passed through the gated activation unit:

z = tanh(W  ∗f x) ⊙ σ(W  ∗g x).
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WaveNet

Global Conditioning
Global conditioning is performed by a single latent representation , changing the gated

activation function to

Local Conditioning
For local conditioning, we are given a time series , possibly with a lower sampling frequency.

We first use transposed convolutions  to match resolution and then compute

analogously to global conditioning

h

z = tanh(W  ∗f x+ V  h) ⊙f σ(W  ∗g x+ V  h).g

h

y = f(h)

z = tanh(W  ∗f x+ V  ∗f y) ⊙ σ(W  ∗g x+ V  ∗g y).
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WaveNet

The original paper did not mention hyperparameters, but later it was revealed that:

30 layers were used
grouped into 3 dilation stacks with 10 layers each
in a dilation stack, dilation rate increases by a factor of 2, starting with rate 1 and
reaching maximum dilation of 512

filter size of a dilated convolution is 2 (and extended to 3 in Parallel WaveNet)

residual connection has dimension 512

gating layer uses 256+256 hidden units

the  convolutions in the output step produce 256 filters

trained for  steps using Adam with a fixed learning rate of 2e-4

1 × 1

1 000 000
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WaveNet

 

Figure 5 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499
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Gated Activations in Transformers

Similar gated activations seem to work the best in Transformers, in the FFN module.

Activation Name Formula

ReLU

GELU

Swish

There are several variants of the new gated activations:

Activation Name Formula

GLU (Gated Linear Unit)

ReGLU

GEGLU

SwiGLU

FFN(x;W  ,W  )1 2

max(0,x) max(0,xW  )W  1 2

xΦ(x) GELU(xW  )W  1 2

xσ(x) Swish(xW  )W  1 2

FFN(x;W ,V ,W  )2

σ(xW + b) ⊙ (xV + c) (σ(xW ) ⊙ xV )W  2

max(0,xW + b) ⊙ (xV + c) (max(0,xW ) ⊙ xV )W  2

GELU(xW + b) ⊙ (xV + c) (GELU(xW ) ⊙ xV )W  2

Swish(xW + b) ⊙ (xV + c) (Swish(xW ) ⊙ xV )W  2
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Gated Activations in Transformers

 

Table 2 of "GLU Variants Improve Transformer", https://arxiv.org/abs/2002.05202

 

Table 4 of "GLU Variants Improve Transformer",
https://arxiv.org/abs/2002.05202

 

Table 1 of "Do Transformer Modifications Transfer Across Implementations and Applications?", https://arxiv.org/abs/2102.11972
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Parallel WaveNet

 

https://commons.wikimedia.org/wiki/File:
Logisticpdfunction.svg

Parallel WaveNet is an improvement of the original WaveNet by the same authors.

First, the output distribution was changed from 256 -law values to a Mixture of Logistic

(suggested in another paper – PixelCNN++, but reused in other architectures since):

The logistic distribution is a distribution with a  as cumulative

density function (where the mean and scale is parametrized by  and

). Therefore, we can write

where we replace  and  in the edge cases by  and .

In Parallel WaveNet teacher, 10 mixture components are used.

μ

x ∼  π  Logistic(μ  , s  ).
i

∑ i i i

σ

μ

s

P (x∣π,μ, s) =  π  [σ(  ) −
i

∑ i
s  i

x+ 0.5 − μ  i
σ(  )],

s  i

x− 0.5 − μ  i

−0.5 0.5 −∞ ∞
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Parallel WaveNet

Auto-regressive (sequential) inference is extremely slow in WaveNet.

Instead, we model  as  for a random 

drawn from a logistic distribution . Therefore, using the reparametrization trick,

Usually, one iteration of the algorithm does not produce good enough results – consequently,
4 iterations were used by the authors. In further iterations,

After  iterations,  is a logistic distribution with location  and scale :

where we have denoted  as  for convenience.

P (x  )t P (x  ∣z  ) =t <t Logistic (x  ;μ (z  ), s (z  ))t
1

<t
1

<t z

Logistic(0,1)

x  =t
1 μ (z  ) +1

<t z  ⋅t s (z  ).1
<t

x  =t
i μ (x  ) +i

<t
i−1 x  ⋅t

i−1 s (x  ).i
<t
i−1

N P (x  ∣z  )t
N

<t μtot stot

μ  =t
tot

 μ (x  ) ⋅
i=1

∑
N

i
<t
i−1 (  s (x  ))  and  s  =∏

j>i

N
j

<t
j−1

t
tot

 s (x  ),
i=1

∏
N

i
<t
i−1

z x0

13/49NPFL114, Lecture 14 WaveNet GLUs ParallelWaveNet Tacotron NTM DNC MANN



Parallel WaveNet

The consequences of changing the model to

are:

During inference, the prediction can be computed in parallel, because  depends only on 

, not on .

However, we cannot perform training in parallel. If we try maximizing the log-likelihood of
an input sequence , we need to find out which  sequence generates it.

The  can be computed using .

However,  depends on only on  and , but also on ; generally,  depends on 

 and also on all , and can be computed only sequentially.

Therefore, WaveNet can perform parallel training and sequential inference, while the proposed
model can perform parallel inference but sequential training.

  

x  t
1

x  t
i

= μ (z  ) + z  ⋅ s (z  )1
<t t

1
<t

= μ (x  ) + x  ⋅ s (x  )i
<t
i−1

t
i−1 i

<t
i−1

x  t
i

x  <t
i−1 x  <t

i

x1 z

z  1 x  1
1

z  2 x  1
1 x  2

1 z  1 z  t

x1 z  <t
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Probability Density Distillation

The authors propose to train the network by a probability density distillation using a teacher
WaveNet (producing a mixture of logistic with 10 components) with KL-divergence as a loss.

 

Figure 2 of "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433
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Probability Density Distillation

Therefore, instead of computing  from some gold , we

sample a random ;

generate the output ;

use the teacher WaveNet model to estimate the log-likelihood of ;

update the student to match the log-likelihood of the teacher.

Denoting the teacher distribution as  and the student distribution as , the loss is

Therefore, we do not only minimize cross-entropy, but we also try to keep the entropy of the
student as high as possible – it is indeed crucial not to match just the mode of the teacher.

Consider a teacher generating white noise, where every sample comes from  – in

this case, the cross-entropy loss of a constant , complete silence, would be maximal.

In a sense, probability density distillation is similar to GANs. However, the teacher is kept fixed,
and the student does not attempt to fool it but to match its distribution instead.

z x  g

z

x

x

P  T P  S

D  (P  ∣∣P  ) =KL S T H(P  ,P  ) −S T H(P  ).S

N (0, 1)
0
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Probability Density Distillation Details

Because the entropy of a logistic distribution  is , the entropy term 

 can be rewritten as follows:

Therefore, this term can be computed without having to generate .

Logistic(μ, s) log s+ 2
H(P  )S

  

H(P  )S = E   − log p  (x  ∣z  )z∼Logistic(0,1) [
t=1

∑
T

S t <t ]

= E   log s(z  , θ) + 2T .z∼Logistic(0,1) [
t=1

∑
T

<t ]

x
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Probability Density Distillation Details

However, the cross-entropy term  requires sampling from  to estimate:H(P  ,P  )S T P  S

=H(P  ,P  )S T  −P  (x) logP  (x)∫
x

S T

=   −P  (x) logP  (x  ∣x  )
t=1

∑
T

∫
x

S T t <t

=   −P  (x  )P  (x  ∣x  )P  (x  ∣x  ) logP  (x  ∣x  )
t=1

∑
T

∫
x

S <t S t <t S >t ≤t T t <t

=  E  [  −P  (x  ∣x  ) logP (x ∣x ) ]
t=1

∑
T

P (x )S <t ∫
x  t

S t <t T t <t

1

 P  (x  ∣x  )∫
x  >t

S >t ≤t

=  E  H(P  (x  ∣x  ),P  (x  ∣x  )).
t=1

∑
T

P (x )S <t S t <t T t <t
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Probability Density Distillation Details

We can therefore estimate  by:

drawing a single sample  from the student  [a Logistic( )],

compute all  from the teacher in parallel [mixture of logistic distributions],

and finally evaluate  by sampling multiple different  from

the .

The authors state that this unbiased estimator has a much lower variance than naively
evaluating a single sequence sample under the teacher using the original formulation.

Finally, analogously to the normal distribution, the logistic distribution offers the
reparametrization trick. Therefore, we can differentiate  with respect to both 

 and  (while the categorical distribution is differentiable only with respect to ).

H(P  ,P  ) =S T  E H(P  (x  ∣x  ),P  (x  ∣x  ))
t=1

∑
T

P  (x  )S <t S t <t T t <t

H(P  ,P  )S T

x P  S μ , stot tot

P  (x  ∣x  )T t <t

H(P  (x  ∣x  ),P  (x  ∣x  ))S t <t T t <t x  t

P  (x  ∣x  )S t <t

logP  (x  ∣x  )T t <t

x  t x  <t x  <t
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Parallel WaveNet

With the 4 iterations, the Parallel WaveNet generates over 500k samples per second, compared
to ~170 samples per second of a regular WaveNet – more than a 1000 times speedup.

 

Table 1 of "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433
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Parallel WaveNet – Additional Losses

To generate high-quality audio, the probability density distillation is not entirely sufficient.
The authors therefore introduce additional losses:

power loss: ensures the power in different frequency bands is on average similar
between the generated speech and human speech. For a conditioned training data 

and WaveNet student , the loss is

perceptual loss: apart from the power in frequency bands, we can use a pre-trained
classifier to extract features from generated and human speech and add a loss measuring
their difference. The authors propose the loss as squared Frobenius norm of differences
between Gram matrices (uncentered covariance matrices) of features of a WaveNet-like
classifier predicting phones from raw audio.
contrastive loss: to make the model respect the conditioning instead of generating outputs
with high likelihood independent on the conditioning, the authors propose a contrastive
distillation loss (  is used in the paper):

(x, c)
g

 STFT(g(z, c)) − STFT(x)  .
2

γ = 0.3

D  (P  (c  )∣∣P  (c  ))−KL S 1 T 1 γD  (P  (c  )∣∣P  (c  )).KL S 1 T 2
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Parallel WaveNet – Additional Losses

 

Table 3 of "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433
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Tacotron 2

Tacotron 2 model presents end-to-end speech synthesis directly from text. It consists of two
components trained separately:

a seq2seq model processing input characters and generating mel spectrograms;
a Parallel WaveNet generating the speech from Mel spectrograms.

 

Figure 1 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884
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Tacotron 2

The Mel spectrograms are computed using STFT (short-time Fourier transform).

The authors propose a frame size of 50ms, 12.5ms frame hop, and a Hann window.

STFT magnitudes are transformed into 80-channel Mel scale spanning 175Hz to 7.6kHz,
followed by a log dynamic range compression (clipping input values to at least 0.01).

To make sequential processing of input characters easier, Tacotron 2 utilizes location-sensitive
attention, which is an extension of the additive attention. While the additive (Bahdanau)
attention computes

the location-sensitive attention also inputs the previous time step attention weights into the
current attention computation:

In detail, the previous attention weights are processed by a 1-D convolution with kernel :

α  =i Attend(s  ,h),     α  =i−1 ij softmax (v tanh(V h  +⊤
j Ws  +i−1 b)),

α  =i Attend(s  ,h,α  ).i−1 i−1

F

α  =ij softmax (v tanh(V h  +⊤
j Ws  +i−1 (F ∗α  )  +i−1 j b)).
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Tacotron 2

 

Table 1 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884
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Tacotron 2

 

Figure 2 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884

You can listen to samples at https://google.github.io/tacotron/publications/tacotron2/

26/49NPFL114, Lecture 14 WaveNet GLUs ParallelWaveNet Tacotron NTM DNC MANN

https://google.github.io/tacotron/publications/tacotron2/


Tacotron 2

 

Table 2 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram
Predictions", https://arxiv.org/abs/1712.05884

 

 

Table 3 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram
Predictions", https://arxiv.org/abs/1712.05884

 

 

Table 4 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884
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Neural Turing Machines

So far, all input information was stored either directly in network weights, or in a state of a
recurrent network.

However, mammal brains seem to operate with a working memory – a capacity for short-term
storage of information and its rule-based manipulation.

We can therefore try to introduce an external memory to a neural network. The memory 

will be a matrix, where rows correspond to memory cells.

M
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Neural Turing Machines

The network will control the memory using a controller which reads from the memory and
writes to is. Although the original paper also considered a feed-forward (non-recurrent)
controller, usually the controller is a recurrent LSTM network.

 

Figure 1 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Neural Turing Machine

Reading
To read the memory in a differentiable way, the controller at time  emits a read distribution 

over memory locations, and the returned read vector  is then

Writing
Writing is performed in two steps – an erase followed by an add: the controller at time  emits

a write distribution  over memory locations, together with an erase vector  and an add

vector . The memory is then updated as

t w  t

r  t

r  =t  w  (i) ⋅
i

∑ t M  (i).t

t

w  t e  t

a  t

M  (i) =t M (i)[1 −t−1 w  (i)e  ] +t t w  (i)a  .t t
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Neural Turing Machine

The addressing mechanism is designed to allow both

content addressing, and
location addressing.

 

Figure 2 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Neural Turing Machine

Content Addressing
Content addressing starts by the controller emitting the key vector , which is compared to all

memory locations , generating a distribution using a  with temperature .

The  measure is usually the cosine similarity

k  t

M  (i)t softmax β  t

w  (i) =t
c

 exp(β  ⋅ distance(k  ,M  (j))∑j t t t

exp(β  ⋅ distance(k  ,M  (i))t t t

distance

distance(a, b) = .
∣∣a∣∣ ⋅ ∣∣b∣∣
a bT
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Neural Turing Machine

Location-Based Addressing
To allow iterative access to memory, the controller might decide to reuse the memory location
from the previous timestep. Specifically, the controller emits an interpolation gate  and sets

Then, the current weighting may be shifted, i.e., the controller might decide to “rotate” the
weights by a small integer. For a given range (the simplest case are only shifts ), the

network emits a  distribution over the shifts, and the weights are then defined using a

circular convolution

Finally, not to lose precision over time, the controller emits a sharpening factor , and the final

memory location weights are 

g  t

w  =t
g

g  w  +t t
c (1 − g  )w  .t t−1

{−1, 0, 1}
softmax

 (i) =w~t  w  (j)s  (i −
j

∑ t
g

t j).

γ  t

w  (i) =t  (i) /   (j) .w~t γ  t ∑j w
~
t

γ  t
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Neural Turing Machine

Overall Execution
Even if not specified in the original paper, following the DNC paper, the LSTM controller can
be implemented as a (potentially deep) LSTM. Assuming  read heads and one write head, the

input is  and  read vectors  from the previous time step, the output of the

controller are vectors , and the final output is . The  is

a concatenation of

R

x  t R r  , … , r  t−1
1

t−1
R

(ν  , ξ  )t t y  =t ν  +t W  [r  , … , r  ]r t
1

t
R ξ  t

k  , β  , g  , s  , γ  ,k  , β  , g  , s  , γ  , … ,k  , β  , g  , s  , γ  , e  ,a  .t
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Neural Turing Machines

Copy Task
Repeat the same sequence as given on input. Trained with sequences of length up to 20.

 

Figure 3 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Neural Turing Machines

 

Figure 4 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Neural Turing Machines

 

Figure 5 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Neural Turing Machines

 

Figure 6 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Neural Turing Machines

Associative Recall
In associative recall, a sequence is given on input, consisting of subsequences of length 3. Then
a randomly chosen subsequence is presented on input and the goal is to produce the following
subsequence.
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Neural Turing Machines

 

Figure 11 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Neural Turing Machines

 

Figure 12 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Differentiable Neural Computer

NTM was later extended to a Differentiable Neural Computer.

 

Figure 1 of "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101
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Differentiable Neural Computer

The DNC contains multiple read heads and one write head.

The controller is a deep LSTM network, with input at time  being the current input  and 

read vectors  from previous time step. The output of the controller are vectors 

, and the final output is . The  is a concatenation of

parameters for read and write heads (keys, gates, sharpening parameters, …).

In DNC, the usage of every memory location is tracked, which enables performing dynamic
allocation – at each time step, a cell with least usage can be allocated.

Furthermore, for every memory location, we track which memory location was written to
previously and subsequently, allowing to recover sequences in the order in which it was written,
independently on the real indices used.

The write weighting is defined as a weighted combination of the allocation weighting and write
content weighting, and read weighting is computed as a weighted combination of read content
weighting, previous write weighting, and subsequent write weighting.

t x  t R

r  , … , r  t−1
1

t−1
R

(ν  , ξ  )t t y  =t ν  +t W  [r  , … , r  ]r t
1

t
R ξ  t
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Differentiable Neural Computer

 

Figure 2 of "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101
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Differentiable Neural Computer

 

Figure 3 of "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101
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Memory-augmented Neural Networks

External memory can be also utilized for learning to learn. Consider a network, which should
learn classification into a user-defined hierarchy by observing ideally a small number of samples.

Apart from finetuning the model and storing the information in the weights, an alternative is to
store the samples in external memory. Therefore, the model learns how to store the data and
access it efficiently, which allows it to learn without changing its weights.

 

Figure 1 of "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065
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Memory-augmented NNs

 

Page 3 of "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065

 

Page 4 of "One-shot learning with Memory-Augmented Neural
Networks", https://arxiv.org/abs/1605.06065
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Memory-augmented NNs

 

Figure 2 of "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065
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Memory-augmented NNs

 

Table 1 of "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065

 

Table 2 of "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065
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