
NPFL114, Lecture 8

CRF, CTC, Word2Vec

Milan Straka

April 3, 2023

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Structured Prediction

Structured Prediction

2/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Structured Prediction

Consider generating a sequence of given input .

Predicting each sequence element independently models the distribution .

However, there may be dependencies among the themselves, which is difficult to capture by

independent element classification.

y , … , y ∈1 N Y N x , … ,x 1 N

P (y ∣X)i

y i

3/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Maximum Entropy Markov Models

We might model the dependencies by assuming that the output sequence is a Markov chain,
and model it as

Each label would be predicted by a softmax from the hidden state and the previous label.

The decoding can be then performed by a dynamic programming algorithm.

P (y ∣X, y).i i−1

4/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Maximum Entropy Markov Models

However, MEMMs suffer from a so-called label bias problem. Because the probability is
factorized, each is a distribution and must sum to one.

Imagine there was a label error during prediction. In the next step, the model might “realize”
that the previous label has very low probability of being followed by any label – however, it
cannot express this by setting the probability of all following labels to a low value, it has to
“conserve the mass”.

P (y ∣X, y)i i−1

5/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Conditional Random Fields

Let be a graph such that is indexed by vertices of . Then is a

conditional random field, if the random variables conditioned on obey the Markov

property with respect to the graph, i.e.,

In plain speech, if you consider probabilities conditional on , all the dependencies among

are captured by the edges of the graph .

By the fundamental theorem of random fields (the Hammersley–Clifford theorem), the density of
a conditional random field can be factorized over the cliques (complete subgraphs) of the graph

:

G = (V ,E) y G (X,y)
y X

P(y ∣X, {y ∣ ∀j =i j  i}) = P(y ∣X, {y ∣ ∀j :i j (i, j) ∈ E}).

X y

G

G

P (y∣X) = P (y ∣X).
clique C of G

∏ C

6/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Linear-Chain Conditional Random Fields (CRF)

Most often, we assume that dependencies of , conditioned on , form a chain.

Then the cliques are nodes and edges, and we can factorize the probability as:

y X

P (y∣X) ∝ exp (logP (y ∣X) +
i=1

∑
N

i logP (y , y ∣X)).
i=2

∑
N

i i−1

7/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Linear-Chain Conditional Random Fields (CRF)

Linear-chain Conditional Random Field, usually abbreviated only to CRF, acts as an output
layer. It can be considered an extension of softmax – instead of a sequence of independent
softmaxes, it is a sentence-level softmax, with additional weights for neighboring sequence
elements.

We start by defining a score of a label sequence as

and define the probability of a label sequence using :

For cross-entropy (and also to avoid underflow), we need the logarithm of the probability:

y

s(X,y; θ,A) = f(y ∣X; θ) +1 (A +∑
i=2

N

y ,y i−1 i
f(y ∣X; θ)),i

y softmax

p(y∣X) = softmax (s(X, z)) .z∈Y N
y

log p(y∣X) = s(X,y) − logsumexp (s(X, z)), wherez∈Y N

logsumexp (f(x)) = log (e).x ∑x
f (x)

8/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Linear-Chain Conditional Random Fields (CRF)

Computation
We can compute efficiently using dynamic programming. We denote the

logarithmic probability of all -element sequences with the last label being .

The core idea is the following:

For efficient implementation, we use the fact that

p(y∣X) α (k)t

t y k

α (k) =t f(y =t k∣X; θ) + logsumexp (α (j) +j∈Y t−1 A).j,k

log(a + b) = log a + log(1 + e), solog b−log a

logsumexp (f(x)) = max (f(x))+ log(e).x x ∑x
f (x)−max (f (x))x

9/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Conditional Random Fields (CRF)

Inputs: Network computing , which is a logit (unnormalized log-probability)

of output sequence label being at time .

Inputs: Transition matrix .

Inputs: Input sequence of length , gold labeling .

Outputs: Value of .

Time Complexity: .

For :

For

If :

Return

f(y =t k∣X; θ)
k t

A ∈ RY ×Y

X N g ∈ Y N

log p(g∣X)
O(N ⋅ Y)2

t = 1, … ,N
k = 1, … ,Y :
α (k) ←t f(y =t k∣X; θ)
t > 1
α (k) ←t α (k) +t logsumexp (α (j) +j=1

Y
t−1 A)j,k

 f(y =∑t=1
N

t g ∣X; θ) +t A −∑t=2
N

g ,g t−1 t
logsumexp (α (k))k=1

Y
N

10/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Conditional Random Fields (CRF)

Figure 1 of "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270

Decoding
We can perform decoding optimally, by using the same algorithm, only replacing

with , and tracking where the maximum was attained.

Applications
The CRF output layer is useful
for span labeling tasks, like

named entity recognition,
dialog slot filling.

It can be also useful for image
segmentation.

logsumexp
max

11/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Connectionist Temporal Classification

Let us again consider generating a sequence of given input , but this

time , and there is no explicit alignment of and in the gold data.

Figure 7.1 of "Supervised Sequence Labelling with Recurrent Neural Networks" dissertation by Alex Graves

y , … , y 1 M x , … ,x 1 N

M ≤ N x y

12/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Connectionist Temporal Classification

We enlarge the set of the output labels by a – (blank), and perform a classification for every
input element to produce an extended labeling (in contrast to the original regular labeling).
We then post-process it by the following rules (denoted as):

1. We collapse multiple neighboring occurrences of the same symbol into one.
2. We remove the blank –.

Because the explicit alignment of inputs and labels is not known, we consider all possible
alignments.

Denoting the probability of label at time as , we define

B

l t p l
t

α (s)t =def
 p .

extended
labelings π:
B(π)=y 1:t 1:s

∑
i=1

∏
t

π i

i

13/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

CRF and CTC Comparison

In CRF, we normalize the whole sentences, therefore we need to compute unnormalized
probabilities for all the (exponentially many) sentences. Decoding can be performed optimally.

In CTC, we normalize per each label. However, because we do not have explicit alignment, we
compute probability of a labeling by summing probabilities of (generally exponentially many)
extended labelings.

14/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Connectionist Temporal Classification

Computation
When aligning an extended labeling to a regular one, we need to consider whether the extended
labeling ends by a blank or not. We therefore define

and compute as .

α (s)−
t

α (s)∗
t

 p =def

extended
labelings π:

B(π)=y ,π =−1:t 1:s t

∑
i=1

∏
t

π i

i

 p =def

extended
labelings π:

B(π)=y ,π =−1:t 1:s t

∑
i=1

∏
t

π i

i

α (s)t α (s) +−
t α (s)∗

t

15/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Connectionist Temporal Classification

Figure 7.3 of "Supervised Sequence Labelling with Recurrent
Neural Networks" dissertation by Alex Graves

Computation – Initialization
We initialize as follows:

all other to zeros

Computation – Induction Step
We then proceed recurrently according to:

We can write the update as .

α1

α (0) ←−
1 p −

1

α (1) ←∗
1 p y 1

1

α1

α (s) ←−
t p (α (s) +−

t
∗
t−1 α (s))−

t−1

α (s) ←∗
t

 {
p (α (s) + α (s− 1) + α (s− 1)), if y = y y s

t
∗
t−1

−
t−1

∗
t−1

s  s−1

p (α (s) + α (s− 1) +), if y = y y s

t
∗
t−1

−
t−1 α (s− 1)∗

t−1
s s−1

p (α (s) +y s

t
∗
t−1 α (s−−

t−1 1) + [y =s  y] ⋅s−1 α (s−∗
t−1 1))

16/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

CTC Decoding

Unlike CRF, nobody knows how to perform decoding optimally in polynomial time.

The key observation is that while an optimal extended labeling can be extended into an optimal
labeling of a greater length, the same does not apply to a regular labeling. The problem is that
regular labeling corresponds to many extended labelings, which are modified each in a different
way during an extension of the regular labeling.

Figure 7.5 of "Supervised Sequence Labelling with Recurrent Neural Networks" dissertation by Alex Graves

17/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

CTC Decoding

Beam Search
To perform a beam search, we keep best regular (non-extended) labelings. Specifically, for

each regular labeling we keep both and , which are probabilities of all (modulo

beam search) extended labelings of length which produce the regular labeling ; we therefore

keep regular labelings with the highest .

To compute the best regular labelings for a longer prefix of extended labelings, for each regular
labeling in the beam we consider the following cases:

adding a blank symbol, i.e., contributing to both from and ;

adding a non-blank symbol, i.e., contributing to from and contributing to a

possibly different from .

Finally, we merge the resulting candidates according to their regular labeling, and keep only the

 best.

k

y α (y)−
t α (y)∗

t

t y

k α (y) +−
t α (y)∗

t

α (y)−
t+1 α (y)−

t α (y)∗
t

α (•)∗
t+1 α (y)−

t

α (•)∗
t+1 α (y)∗

t

k

18/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Unsupervised Word Embeddings

The embeddings can be trained for each task separately.

However, a method of precomputing word embeddings have been proposed, based on
distributional hypothesis:

Words that are used in the same contexts tend to have similar meanings.

The distributional hypothesis is usually attributed to Firth (1957):

You shall know a word by a company it keeps.

19/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Word2Vec

Mikolov et al. (2013) proposed two very simple architectures for precomputing word
embeddings, together with a C multi-threaded implementation word2vec.

20/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Word2Vec

Table 8 of "Efficient Estimation of Word Representations in Vector Space", https://arxiv.org/abs/1301.3781

21/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Word2Vec – SkipGram Model

Considering input word and output , the Skip-gram model defines

After training, the final embeddings are the rows of the matrix.

w i w o

p(w ∣w)o i =def
 .

e∑w
V W w i

⊤
w

eV W w i

⊤
w o

V
22/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Word2Vec – Hierarchical Softmax

Instead of a large softmax, we construct a binary tree over the words, with a sigmoid classifier
for each node.

If word corresponds to a path , we definew n ,n , … ,n 1 2 L

p (w∣w)HS i =def
 σ([+1 if n is right child else -1] ⋅

j=1

∏
L−1

j+1 V W).w i

⊤
n j

23/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Word2Vec – Negative Sampling

Instead of a large softmax, we could train individual sigmoids for all words.

We could also only sample several negative examples. This gives rise to the following negative
sampling objective (instead of just summing all the sigmoidal losses):

The usual value of negative samples is 5, but it can be even 2 for extremely large corpora.

Each expectation in the loss is estimated using a single sample.

For , both uniform and unigram distribution work, but

outperforms them significantly (this fact has been reported in several papers by different
authors).

l (w ,w)NEG o i =def − log σ(V W) −w i

⊤
w o

 E log (1 −
j=1

∑
k

w ∼P (w)j
σ(V W)).w i

⊤
w j

k

P (w) U(w)

U(w)3/4

24/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Recurrent Character-level WEs

Table 2 of "Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation", https://arxiv.org/abs/1508.02096

25/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Convolutional Character-level WEs

Table 6 of "Character-Aware Neural Language Models", https://arxiv.org/abs/1508.06615

26/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Character N-grams

Another simple idea appeared simultaneously in three nearly simultaneous publications as
Charagram, Subword Information or SubGram.

A word embedding is a sum of the word embedding plus embeddings of its character n-grams.
Such embedding can be pretrained using same algorithms as word2vec.

The implementation can be

dictionary based: only some number of frequent character n-grams is kept;
hash-based: character n-grams are hashed into buckets (usually is used).K K ∼ 106

27/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

https://arxiv.org/abs/1607.02789
https://arxiv.org/abs/1607.04606
http://link.springer.com/chapter/10.1007/978-3-319-45510-5_21

Charagram WEs

Table 7 of "Enriching Word Vectors with Subword Information", https://arxiv.org/abs/1607.04606

28/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

Charagram WEs

Figure 2 of "Enriching Word Vectors with Subword Information", https://arxiv.org/abs/1607.04606

29/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

FastText

The word2vec enriched with subword embeddings is implemented in publicly available
fastText library https://fasttext.cc/.

Pre-trained embeddings for 157 languages (including Czech) trained on Wikipedia and
CommonCrawl are also available at https://fasttext.cc/docs/en/crawl-vectors.html.

30/30NPFL114, Lecture 8 CRF CTC CTCDecoding Word2Vec CLEs Subword Embeddings

https://fasttext.cc/
https://fasttext.cc/docs/en/crawl-vectors.html

