
NPFL114, Lecture 7

Recurrent Neural Networks

Milan Straka

March 27, 2023

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Recurrent Neural Networks

Recurrent Neural Networks

2/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Recurrent Neural Networks

Single RNN cell

Unrolled RNN cells

3/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Basic RNN Cell

Given an input and previous state , the new state is computed as

One of the simplest possibilities (called SimpleRNN in TensorFlow) is

x(t) h(t−1)

h =(t) f(h ,x ; θ).(t−1) (t)

h =(t) tanh(Uh +(t−1) V x +(t) b).
4/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Basic RNN Cell

Basic RNN cells suffer a lot from vanishing/exploding gradients (the so-called challenge of
long-term dependencies).

If we simplify the recurrence of states to just a linear approximation

we get .

If has an eigenvalue decomposition of , we get that

The main problem is that the same function is iteratively applied many times.

Several more complex RNN cell variants have been proposed, which alleviate this issue to some
degree, namely LSTM and GRU.

h ≈(t) Uh ,(t−1)

h ≈(t) U ht (0)

U U = QΛQ−1

h ≈(t) QΛ Q h .t −1 (0)

5/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

Hochreiter & Schmidhuber (1997) suggested that to enforce constant error flow, we would like

They propose to achieve that by a constant error carrousel.

f =′ 1.

6/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

They also propose an input and output gates which control the flow of information into and
out of the carrousel (memory cell).c t

i t

o t

c t

h t

← σ(W x + V h + b)i
t

i
t−1

i

← σ(W x + V h + b)o
t

o
t−1

o

← c + i ⊙ tanh(W x + V h + b)t−1 t
y

t
y

t−1
y

← o ⊙ tanh(c)t t

7/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

Later in Gers, Schmidhuber & Cummins (1999) a possibility to forget information from
memory cell was added.

Note that since 2015, following the paper

R. Jozefowicz et al.: An Empirical Exploration of Recurrent Network Architectures

the forget gate bias is usually initialized to 1, so that the forget gate is closer to 1 and the

gradients can easily flow through multiple timesteps. (However, I think a value like 3 might be
even better, because , .)

c t

i t

f t

o t

c t

h t

← σ(W x + V h + b)i
t

i
t−1

i

← σ(W x + V h + b)f
t

f
t−1

f

← σ(W x + V h + b)o
t

o
t−1

o

← f ⊙ c + i ⊙ tanh(W x + V h + b)t t−1 t
y

t
y

t−1
y

← o ⊙ tanh(c)t t

bf

σ(1) ≈ 0.731 σ(3) ≈ 0.953
8/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png

9/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png

10/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-C-line.png

11/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-i.png

12/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-f.png

13/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-C.png

14/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Long Short-Term Memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-o.png

15/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Gated Recurrent Unit

Gated recurrent unit (GRU) was proposed by Cho et al. (2014) as a simplification of LSTM.
The main differences are

no memory cell,
forgetting and updating tied together.

r t

u t

 ĥt

h t

← σ(W x + V h + b)r
t

r
t−1

r

← σ(W x + V h + b)u
t

u
t−1

u

← tanh(W x + V (r ⊙ h) + b)h
t

h
t t−1

h

← u ⊙ h + (1 − u) ⊙ t t−1 t ĥt

16/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Gated Recurrent Unit

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png

17/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

GRU and LSTM Differences

The main differences between GRU and LSTM:

GRU uses fewer parameters and less computation.
six matrices , instead of eight

GRU are easier to work with, because the state is just one tensor, while it is a pair of
tensors for LSTM.

In most tasks, LSTM and GRU give very similar results.

However, there are some tasks, on which LSTM achieves (much) better results than GRU.
For a demonstration of difference in the expressive power of LSTM and GRU (caused by
the coupling of the forget and update gate), see the paper

G. Weiss et al.: On the Practical Computational Power of Finite Precision RNNs for
Language Recognition https://arxiv.org/abs/1805.04908

For a difference between LSTM and GRU on a real-word task, see for example
T. Dozat et al.: Deep Biaffine Attention for Neural Dependency Parsing
https://arxiv.org/abs/1611.01734

W V

18/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

https://arxiv.org/abs/1805.04908
https://arxiv.org/abs/1611.01734

SimpleRNN, GRU, and LSTM Initialization

Recall that when we approximate , assuming the eigenvalue decomposition of

, we get

This motivated a specific initialization scheme for the matrix – this so-called recurrent

kernel (the concatenation of all the , , , matrices) is initialized with a randomly

generated orthogonal matrix.

This orthogonal initialization is used for all RNN cells in TensorFlow (via the
recurrent_initializer='orthogonal' parameter of SimpleRNN, GRU, and LSTM).

h ≈(t) Uh(t−1)

U = QΛQ−1

h ≈(t) QΛ Q h .t −1 (0)

U

V i V f V o V y

19/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Highway Networks

Highway Networks

20/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Highway Networks

For input , fully connected layer computes

Highway networks add residual connection with gating:

Usually, the gating is defined as

Note that the resulting update is very similar to a GRU cell with removed; for a fully

connected layer it is exactly it, apart from copying

instead of .

Analogously to LSTM, the transform gate bias should be initialized to a negative number.

x

y ← H(x,W).H

y ← H(x,W) ⊙H T (x,W) +T x⊙ (1 − T (x,W)).T

T (x,W) ←T σ(W x+T b).T

h t

H(x,W) =H tanh(W x+H b)H x

h t−1

b T

21/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Highway Networks on MNIST

Figure 1 of "Training Very Deep Networks", https://arxiv.org/abs/1507.06228

22/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Highway Networks

Figure 2 of "Training Very Deep Networks", https://arxiv.org/abs/1507.06228

23/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Highway Networks

Figure 4 of "Training Very Deep Networks", https://arxiv.org/abs/1507.06228

24/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Regularizing RNNs

Dropout
Using dropout on hidden states interferes with long-term dependencies.

However, using dropout on the inputs and outputs works well and is used frequently.
In case residual connections are present, the output dropout needs to be applied before
adding the residual connection.

Several techniques were designed to allow using dropout on hidden states.
Variational Dropout
Recurrent Dropout
Zoneout

25/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Regularizing RNNs

Variational Dropout

Figure 1 of "A Theoretically Grounded Application of Dropout in Recurrent Neural Networks", https://arxiv.org/abs/1512.05287.pdf

To implement variational dropout on inputs in TensorFlow, use noise_shape of
tf.keras.layers.Dropout to force the same mask across time-steps. The variational
dropout on the hidden states can be implemented using recurrent_dropout argument of
tf.keras.layers.{LSTM,GRU,SimpleRNN}{,Cell}.

26/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Regularizing RNNs

Figure 1 of "Recurrent Batch Normalization", https://arxiv.org/abs/1603.09025

Recurrent Dropout
Dropout only candidate states (i.e., values added to the memory cell in LSTM and previous
state in GRU), independently in every time-step.

Zoneout
Randomly preserve hidden activations instead of dropping them.

Batch Normalization
Very fragile and sensitive to proper initialization – there
were papers with negative results (Dario Amodei et al,
2015: Deep Speech 2 or Cesar Laurent et al, 2016:
Batch Normalized Recurrent Neural Networks) until
people managed to make it work (Tim Cooijmans et al,
2016: Recurrent Batch Normalization; specifically,
initializing did the trick).γ = 0.1

27/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Regularizing RNNs

Batch Normalization
Neuron value is normalized across the minibatch, and in case of CNN also across all positions.

Layer Normalization
Neuron value is normalized across the layer.

Figure 2 of "Group Normalization", https://arxiv.org/abs/1803.08494

28/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Layer Normalization

Consider a hidden value . Layer normalization (both during training and during

inference) is performed as follows.

Inputs: An example , with default value 0.001

Parameters: initialized to , initialized to

Outputs: Normalized example

x ∈ RD

x ∈ RD ε ∈ R
β ∈ RD 0 γ ∈ RD 1

y

μ ← x

D
1 ∑i=1

D
i

σ ←2
 (x −D

1 ∑i=1
D

i μ)2

←x̂ (x− μ)/ σ + ε2

y ← γ ⊙ +x̂ β

29/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Regularizing RNNs

Layer Normalization
Much more stable than batch normalization for RNN regularization.

Figure 2 of "Layer Normalization", https://arxiv.org/abs/1607.06450

30/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Layer Normalization

In an important recent architecture (namely Transformer), many fully connected layers are used,
with a residual connection and a layer normalization.

This could be considered an alternative to highway networks, i.e., a suitable residual connection
for fully connected layers. Note the architecture can be considered as a variant of a mobile
inverted bottleneck convolution block.1 × 1

31/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Basic RNN Architectures and Tasks

Sequence Element Representation
Create output for individual elements, for example for classification of the individual elements.

Sequence Representation
Generate a single output for the whole sequence (either the last output or the last state).

32/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Basic RNN Architectures and Tasks

Sequence Prediction
During training, predict next sequence element.

During inference, use predicted elements as further inputs.

33/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Multilayer RNNs

We might stack several layers of recurrent neural networks. Usually using two or three layers
gives better results than just one.

34/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Multilayer RNNs

In case of multiple layers, residual connections usually improve results. Because dimensionality
has to be the same, they are usually applied from the second layer.

35/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Bidirectional RNN

To consider both the left and right contexts, a bidirectional RNN can be used, which consists
of parallel application of a forward RNN and a backward RNN.

The outputs of both directions can be either added or concatenated. Even if adding them
does not seem very intuitive, it does not increase dimensionality and therefore allows residual
connections to be used in case of multilayer bidirectional RNN.

36/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Word Embeddings

We might represent words using one-hot encoding, considering all words to be independent of
each other.

However, words are not independent – some are more similar than others.

Ideally, we would like some kind of similarity in the space of the word representations.

Distributed Representation
The idea behind distributed representation is that objects can be represented using a set of
common underlying factors.

We therefore represent words as fixed-size embeddings into space, with the vector elements

playing role of the common underlying factors.

These embeddings are initialized randomly and trained together with the rest of the network.

Rd

37/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Word Embeddings

The word embedding layer is in fact just a fully connected layer on top of one-hot encoding.
However, it is not implemented in that way.

Instead, the so-called embedding layer is used, which is much more efficient. When a matrix is
multiplied by an one-hot encoded vector (all but one zeros and exactly one 1), the row
corresponding to that 1 is selected, so the embedding layer can be implemented only as a simple
lookup.

In TensorFlow, the embedding layer is available as

tf.keras.layers.Embedding(input_dim, output_dim)

38/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Word Embeddings

Even if the embedding layer is just a fully connected layer on top of one-hot encoding, it is
important that this layer is shared across the whole network.

39/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Word Embeddings for Unknown Words

Figure 1 of "Finding Function in Form: Compositional Character Models for
Open Vocabulary Word Representation", https://arxiv.org/abs/1508.02096

Recurrent Character-level WEs
In order to handle words not seen during training, we
could find a way to generate a representation from the
word characters.

A possible way to compose the representation from
individual characters is to use RNNs – we embed
characters to get character representation, and then use
an RNN to produce the representation of a whole
sequence of characters.

Usually, both forward and backward directions are used,
and the resulting representations are
concatenated/added.

40/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Word Embeddings for Unknown Words

Figure 1 of "Character-Aware Neural Language Models",
https://arxiv.org/abs/1508.06615

Convolutional Character-level WEs
Alternatively, 1D convolutions might be used.

Assume we use a 1D convolution with kernel size 3. It produces
a representation for every input word trigram, but we need a
representation of the whole word. To that end, we use global
max-pooling – using it has an interpretable meaning, where the
kernel is a pattern and the activation after the maximum is a
level of a highest match of the pattern anywhere in the word.

Kernels of varying sizes are usually used (because it makes sense
to have patterns for unigrams, bigrams, trigrams, …) – for
example, 25 filters for every kernel size might be

used.

Lastly, authors employed a highway layer after the convolutions,
improving the results (compared to not using any layer or using a
fully connected one).

(1, 2, 3, 4, 5)

41/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Examples of Recurrent Character-level WEs

Table 2 of "Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation", https://arxiv.org/abs/1508.02096

42/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Examples of Convolutional Character-level WEs

Table 6 of "Character-Aware Neural Language Models", https://arxiv.org/abs/1508.06615

43/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

Character-level WE Implementation

Training
Generate unique words per batch.

Process the unique words in the batch.

Copy the resulting embeddings suitably in the batch.

Inference
We can cache character-level word embeddings during inference.

44/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

NLP Processing with CLEs

Figure 1 of "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270

45/45NPFL114, Lecture 7 RNN LSTM GRU HighwayNetworks RNNRegularization RNNArchitectures WE CLE

