NPFL114, Lecture 6

Object Detection

Milan Straka

i March 20, 2023

EUROPEAN UNION European Structural and Investment Fund Operational Programme Research, Development and Education Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Beyond Image Classification

NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FPN FocalLoss

RetinaNet

EfficientDet GroupNorm

m

Beyond Image Classification

Ú_F≩L

• Object detection (including location)

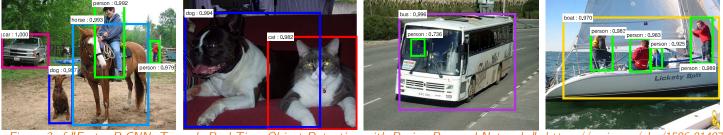


Figure 3 of "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497

• Image segmentation

Figure 2 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

• Human pose estimation

Figure 7 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

FastR-CNN FasterR-CNN

MaskR-CNN

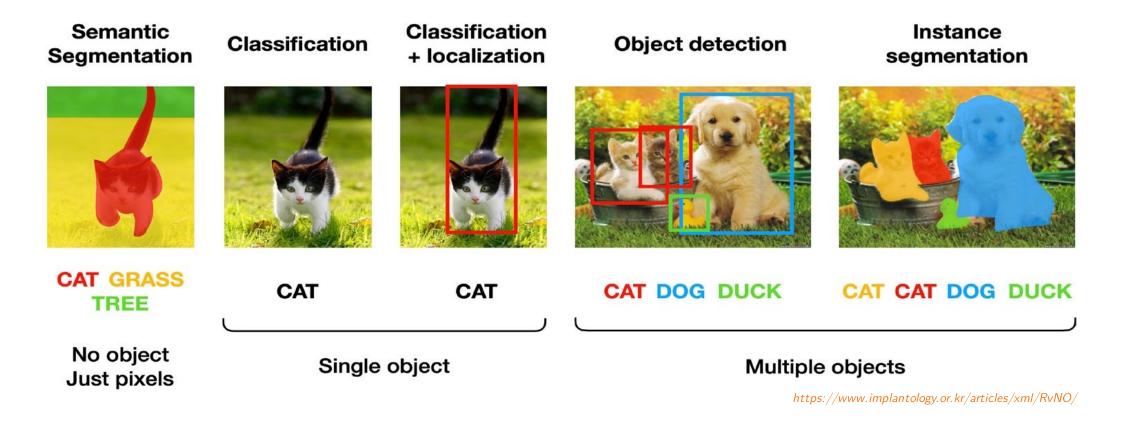
FPN FocalLoss

RetinaNet

GroupNorm

EfficientDet

Beyond Image Classification



NPFL114, Lecture 6

FastR-CNN FasterR-CNN

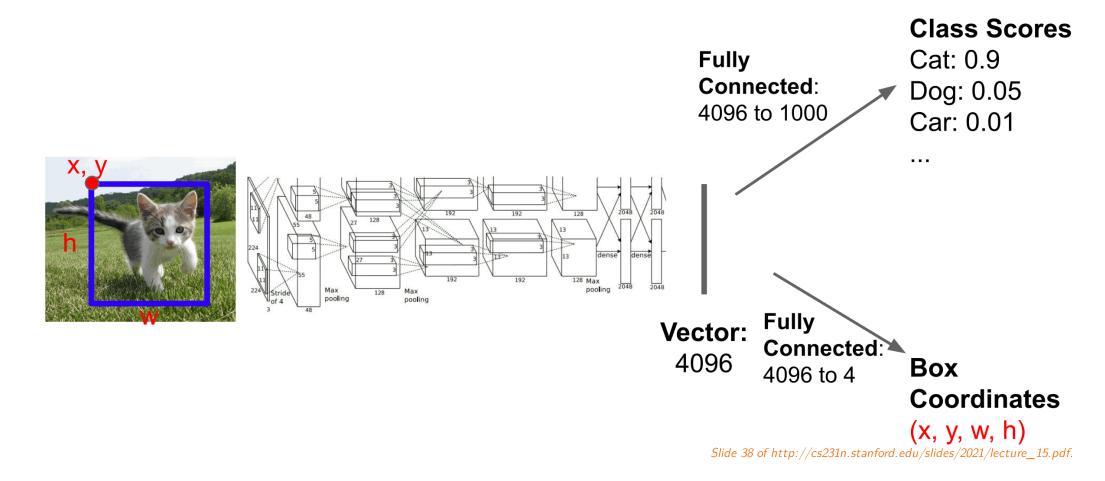
MaskR-CNN

FPN FocalLoss

RetinaNet

EfficientDet GroupNorm

Object Localization



We can perform object localization by jointly predicting the bounding box coordinates using regression.

MaskR-CNN

FPN FocalLoss

NPFL114, Lecture 6

FastR-CNN FasterR-CNN MaskR-CNN

FPN Fo

GroupNorm

R-CNN

To be able to recognize and localize *several* objects, assume we were given multiple interesting regions of the image, called **regions of interest** (RoI). For each of them, we decide:

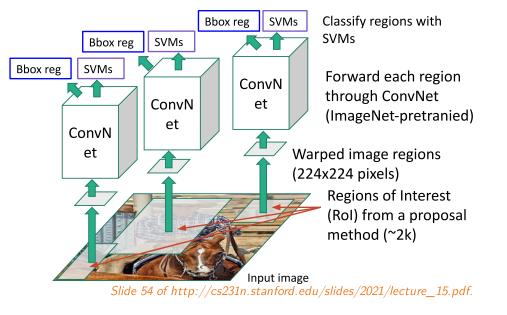
- whether it contains an object;
- the location of the object relative to the Rol.

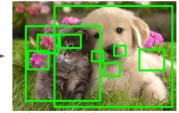
In R-CNN, we start with a network pre-trained on ImageNet (VGG-16 is used in the original paper), and we use it to process *every Rol*, rescaling every one of them to the size of 224×224 .

For every Rol, two sibling heads are added:

- classification head predicts either background or one of K object types (K + 1 in total),
- *bounding box regression head* predicts 4 bounding box parameters relative to Rol.

Slide 48 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.





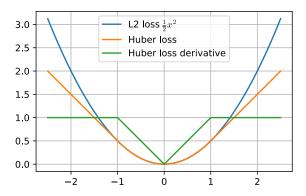
R-CNN – Bounding Boxes

A bounding box is parametrized as follows. Let x_r, y_r, w_r, h_r be center coordinates and width and height of the RoI respectively, and let x, y, w, h be parameters of the bounding box. We represent the bounding box relative to the RoI as follows:

$$egin{aligned} t_x &= (x-x_r)/w_r, \quad t_y &= (y-y_r)/h_r, \ t_w &= \log(w/w_r), \quad t_h &= \log(h/h_r). \end{aligned}$$

In Fast R-CNN, the smooth_{L_1} loss, or **Huber loss**, is employed for bounding box parameters:

$$\mathrm{smooth}_{L_1}(x) = egin{cases} 0.5x^2 & \mathrm{if} \ |x| < 1, \ |x| - 0.5 & \mathrm{otherwise.} \end{cases}$$



The complete loss is then ($\lambda = 1$ is used in the Fast R-CNN paper)

$$L(\hat{c},\hat{t},c,t) = L_{ ext{cls}}(\hat{c},c) + \lambda \cdot [c \geq 1] \cdot \sum_{i \in \{ ext{x}, ext{y}, ext{w}, ext{h}\}} ext{smooth}_{L_1}(\hat{t}_i - t_i).$$

NPFL114, Lecture 6

FasterR-CNN MaskR-CNN

FastR-CNN

-CNN FPN

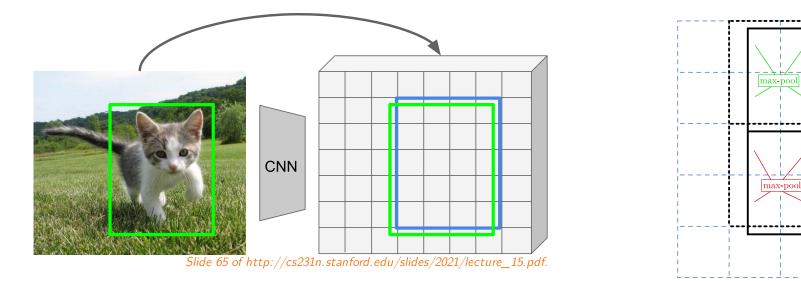
FocalLoss

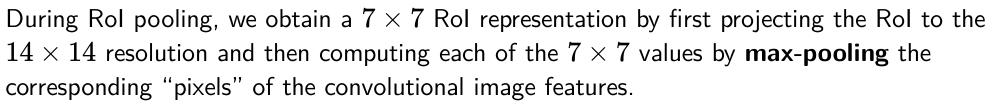
RetinaNet

Fast R-CNN Architecture

The R-CNN is slow, because it needs to process every Rol by the convolutional backbone. To speed it up, we might want to first process the whole image by the backbone and only then extract a fixed-size representation for every Rol.

We achieve that using **Rol pooling**, replacing the last max-pool $14 \times 14 \rightarrow 7 \times 7$ VGG layer.





NPFL114, Lecture 6

FasterR-CNN MaskR-CNN

FastR-CNN

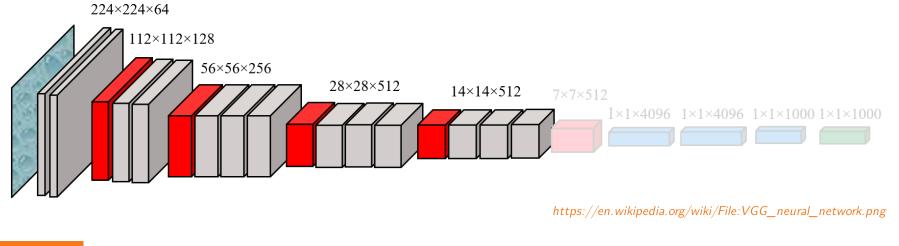
FPN FocalLoss

max-pool

RoI Representation

https://commons.wikimedia.org/wiki/File:Tišnov,_Hajánky,_garážová_ozdoba_(6597).jpg

224×224×3



NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FPN FocalLoss

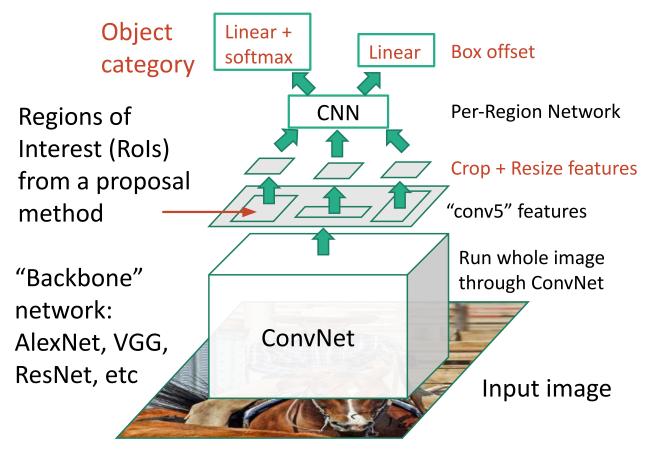
s RetinaNet

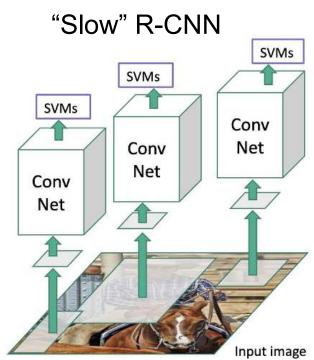
EfficientDet

GroupNorm

Fast R-CNN and R-CNN Comparison

Fast R-CNN





Slide 61 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.

NPFL114, Lecture 6

MaskR-CNN

FocalLoss

FPN

RetinaNet

EfficientDet G

GroupNorm

Fast R-CNN Architecture

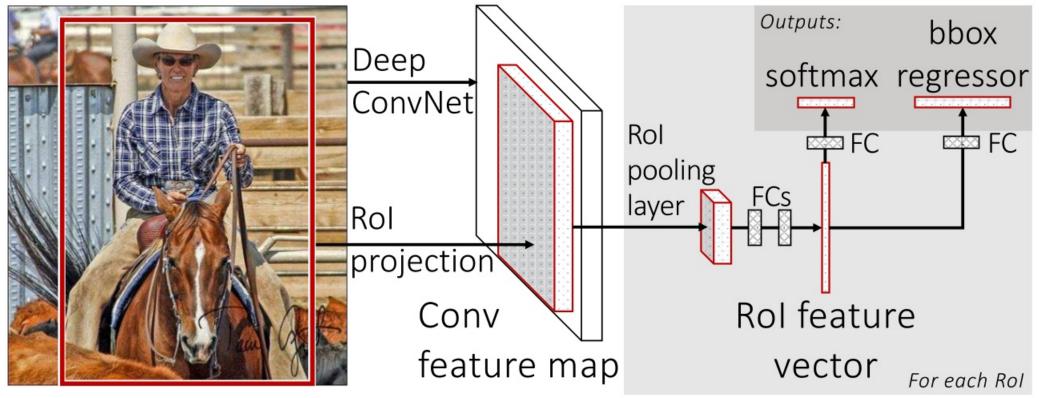


Figure 1 of "Fast R-CNN", https://arxiv.org/abs/1504.08083

NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FPN FocalLoss

RetinaNet

let EfficientDet

GroupNorm

Ú F_AL

Intersection over Union

For two bounding boxes (or two masks) the *intersection over union* (*IoU*) is a ratio of the intersection of the boxes (or masks) and the union of the boxes (or masks).

Choosing Rols for Training

During training, we use 2 images with 64 Rols each. The Rols are selected so that 25% have intersection over union (IoU) overlap with ground-truth boxes at least 0.5; the others are chosen to have the IoU in range [0.1, 0.5), the so-called *hard examples*.

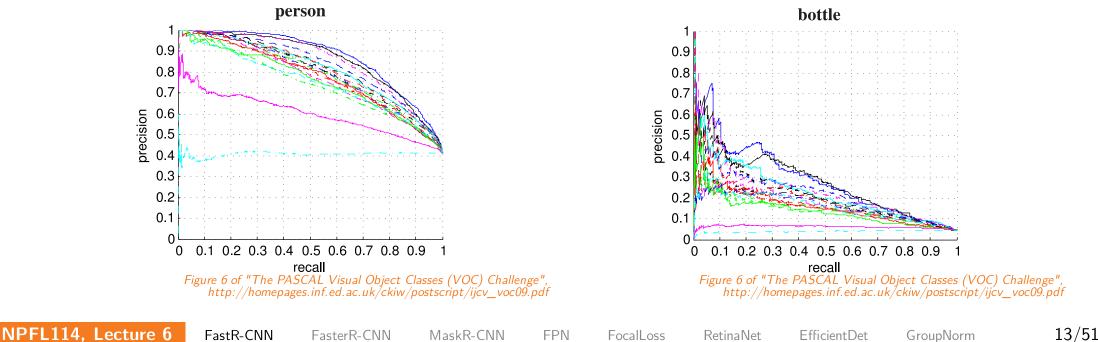
Running Inference

During inference, we utilize all Rols, but a single object can be found in several of them. To choose the most salient prediction, we perform **non-maximum suppression** – we ignore predictions which have an overlap with a higher scoring prediction of the *same class*, where the overlap is computed using IoU (0.3 threshold is used in the paper). Higher scoring predictions is the ones with higher probability from the *classification head*.

Average Precision

Evaluation is performed using Average Precision (AP or AP_{50}).

We assume all bounding boxes (or masks) produced by a system have confidence values which can be used to rank them. Then, for a single class, we take the boxes (or masks) in the order of the ranks and generate precision/recall curve, considering a bounding box correct if it has IoU at least 50% with any ground-truth box.



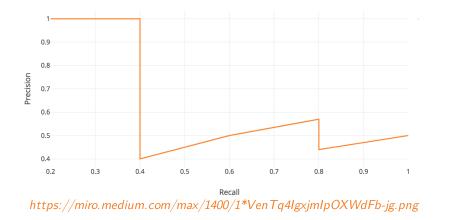
FocalLoss

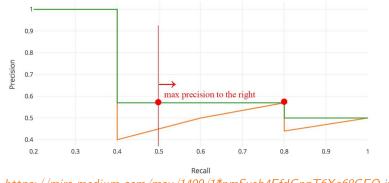
RetinaNet

Object Detection Evaluation – Average Precision

Ú F_ÅL

The general idea of AP is to compute the area under the precision/recall curve.



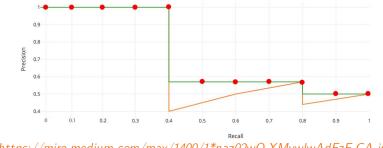


https://miro.medium.com/max/1400/1*pmSxeb4EfdGnzT6Xa68GEQ.jpeg

We start by interpolating the precision/recall curve, so that it is always nonincreasing.

Finally, the average precision for a single class is an average of precision at recall $0.0, 0.1, 0.2, \ldots, 1.0$.

The final AP is a mean of average precision of all classes.



EfficientDet

FastR-CNN FasterR-CNN

MaskR-CNN

FPN FocalLoss

RetinaNet

GroupNorm

Object Detection Evaluation – Average Precision

For the COCO dataset, the AP is computed slightly differently. First, it is an average over 101 recall points $0.00, 0.01, 0.02, \ldots, 1.00$.

In the original metric, IoU of 50% is enough to consider a prediction valid. We can generalize the definition to AP_t , where an object prediction is considered valid if IoU is at least t%.

The main COCO metric, denoted just AP, is the mean of $AP_{50}, AP_{55}, AP_{60}, \ldots, AP_{95}$.

Metric	Description							
AP	Mean of $AP_{50}, AP_{55}, AP_{60}, AP_{65}, \dots, AP_{95}$							
AP_{50}	AP at IoU 50%							
AP_{75}	AP at IoU 75%							
AP_S	AP for small objects: $area < 32^2$							
AP_M	AP for medium objects: $32^2 < area < 96^2$							
AP_L	AP for large objects: $96^2 < area$							
L114, Lecture 6	FastR-CNN FastR-CNN FPN FocalLoss RetinaNet EfficientDet GroupNorm I							

NPFL114, Lecture 6

Even if Fast R-CNN is much faster then R-CNN, it can still be improved, considering that the most problematic and time consuming part is generating the Rols.

Faster R-CNN extends Fast R-CNN by including a **region proposal network (RPN)**, whose goal is to generate the Rols automatically.

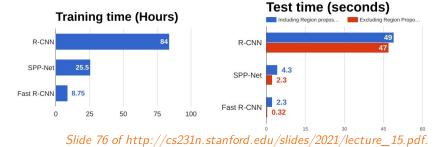
The regional proposal networks produces the so-called **region proposals**, which then play the role of Rols in the rest of the pipeline (i.e., the Fast R-CNN).

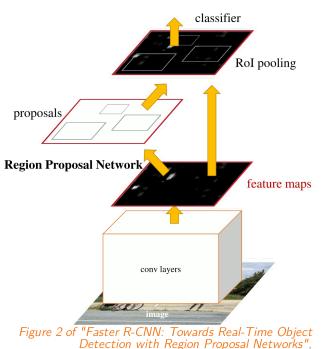
FasterR-CNN

FastR-CNN

The region proposals are generated similarly to how predictions are generated in Fast R-CNN. We start with several **anchors** and from each anchor we generate either a single region proposal or nothing.

MaskR-CNN





FocalLoss

FPN

RetinaNet

GroupNorm

EfficientDet

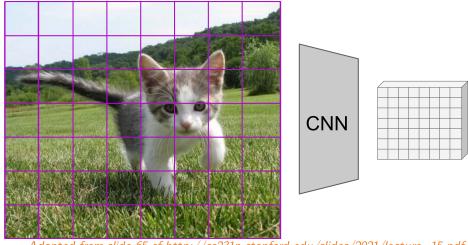
https://arxiv.org/abs/1506.01497

16/51

Ú_F≩L

Faster R-CNN – Anchors

If we consider the 14×14 VGG backbone output, each "pixel" corresponds to a region of size 16×16 in the original image.



Adapted from slide 65 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.

We can therefore interpret each value in the 14×14 output as a representation of a part of the image *centered* in the corresponding image region, and try predicting a region proposal from **every one** of them.

We call the dense grid of image regions from which we are predicting the proposals the **anchors**. They have fixed size, and in practice we use *several* anchors per position.

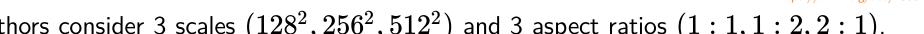
ocalLoss Ret

For every anchor, we classify it in two classes (background, object) and also predict the region proposal bounding box relatively to the anchor, exactly as in (Fast) R-CNN.

2A scores

We perform the classification and the bounding box regression by first running *cls* layer a 3 imes 3 convolution followed by ReLU on the 14×14 VGG output, and then attaching the two heads. Assuming there are A anchors on every position:

- the classification head generates 2A outputs, performing softmax on every 2 of them;
- the regression head generates 4Aregion proposal coordinates.



conv feature map Figure 3 of "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks",

EfficientDet

https://arxiv.org/abs/1506.01497

A anchor boxes

The authors consider 3 scales $(128^2, 256^2, 512^2)$ and 3 aspect ratios (1:1, 1:2, 2:1).

NPFL114, Lecture 6

MaskR-CNN

FPN Focall oss

256-d

sliding window

4A coordinates

intermediate layer

reg layer

During training, we generate

- positive training examples for every anchor that has the highest IoU with a ground-truth box;
- furthermore, a positive example is also any anchor with IoU at least 0.7 for any ground-truth box;
- negative training examples for every anchor that has IoU at most 0.3 with all ground-truth boxes;
- the positive and negative examples are generated with a ratio *up to* 1:1 (less, if there are not enough positive examples).

During inference, we consider all predicted non-background regions, run non-maximum suppression on them using a 0.7 IoU threshold, and then take N top-scored regions (i.e., the ones with the highest probability from the classification head) – the paper uses 300 proposals, compared to 2000 in the Fast R-CNN.

Table 3: Detection results on **PASCAL VOC 2007 test set**. The detector is Fast R-CNN and VGG-16. Training data: "07": VOC 2007 trainval, "07+12": union set of VOC 2007 trainval and VOC 2012 trainval. For RPN, the train-time proposals for Fast R-CNN are 2000. [†]: this number was reported in [2]; using the repository provided by this paper, this result is higher (68.1).

method	# proposals	data	mAP (%)
SS	2000	07	66.9 [†]
SS	2000	07+12	70.0
RPN+VGG, unshared	300	07	68.5
RPN+VGG, shared	300	07	69.9
RPN+VGG, shared	300	07+12	73.2
RPN+VGG, shared	300	COCO+07+12	78.8

Table 4: Detection results on **PASCAL VOC 2012 test set**. The detector is Fast R-CNN and VGG-16. Training data: "07": VOC 2007 trainval, "07++12": union set of VOC 2007 trainval+test and VOC 2012 trainval. For RPN, the train-time proposals for Fast R-CNN are 2000. [†]: http://host.robots.ox.ac.uk:8080/anonymous/HZJTQA.html. [‡]: http://host.robots.ox.ac.uk:8080/anonymous/YNPLXB.html. [§]: http://host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method	# proposals	data	mAP (%)
SS	2000	12	65.7
SS	2000	07++12	68.4
RPN+VGG, shared [†]	300	12	67.0
RPN+VGG, shared [‡]	300	07++12	70.4
RPN+VGG, shared [§]	300	COCO+07++12	75.9

Tables 3 and 4 of "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497

NPFL114, Lecture 6

Two-stage Detectors

The Faster R-CNN is a so-called **two-stage** detector, where the regions are refined twice – once in the region proposal network, and then in the final bounding box regressor.

Several **single-stage** detector architectures have been proposed, mainly because they are faster and smaller, but until circa 2017 the two-stage detectors achieved better results.

MaskR-CNN

FPN FocalLoss

Mask R-CNN

Straightforward extension of Faster R-CNN able to produce image segmentation (i.e., masks for every object).

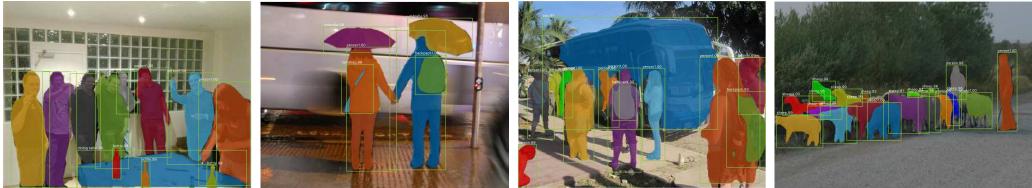


Figure 2 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

NPFL114, Lecture 6

FastR-CNN FasterR-CNN

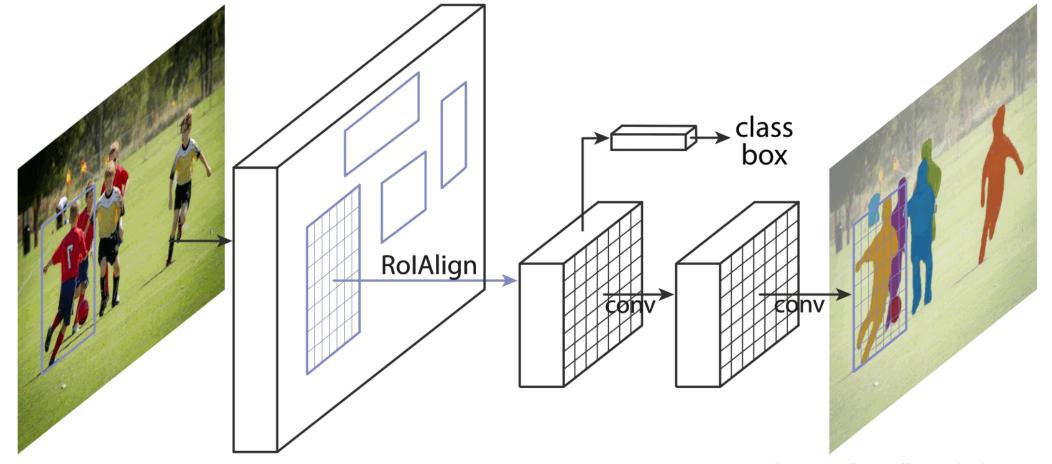
MaskR-CNN

FPN FocalLoss

RetinaNet

EfficientDet GroupNorm

Mask R-CNN – Architecture



NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FPN FocalLoss

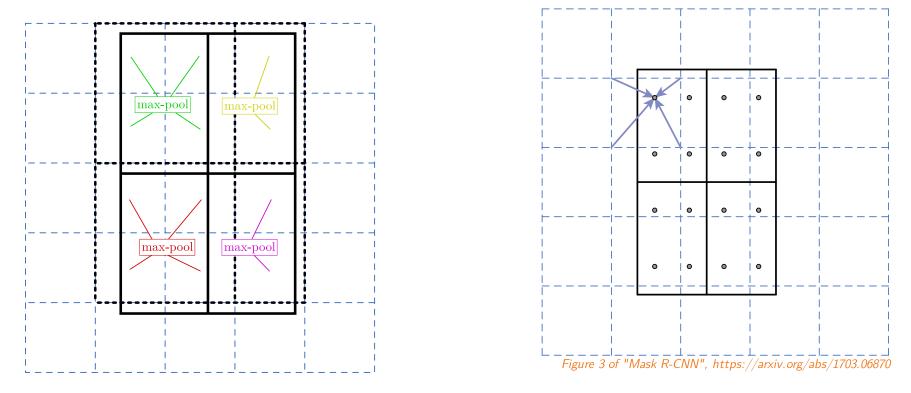
RetinaNet

EfficientDet

GroupNorm

Mask R-CNN – RolAlign

More precise alignment is required for the Rol in order to predict the masks. Instead of quantization and max-pooling in Rol pooling, **RolAlign** uses bilinear interpolation of features at four regularly sampled locations in each Rol bin and averages them.



TensorFlow provides tf.image.crop_and_resize capable of implementing RolAlign.

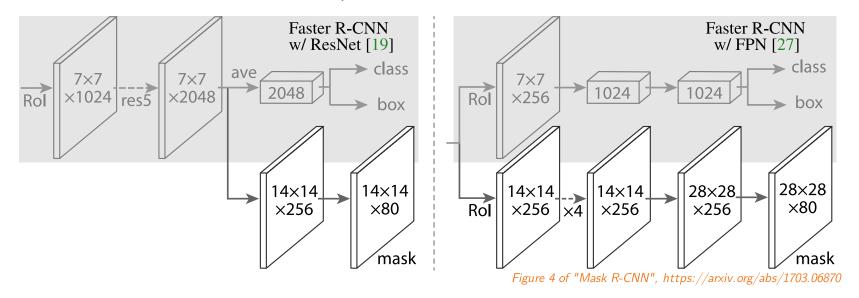
NPFL114, Lecture 6

FPN FocalLoss

Mask R-CNN

Masks are predicted in a third branch of the object detector.

- Higher resolution of the mask is usually needed (at least 14×14 , or even more).
- The masks are predicted for each class separately.
- The masks are predicted using convolutions instead of fully connected layers (the upscaling convolutions are 2×2 with stride 2).



Improvements from Nov 2021: all convs (except for the output layer) are followed by BN, the *class&bbox* head uses 4 convs instead of 2 MLPs, RPN contains two convs instead of one.

NPFL114, Lecture 6

FastR-CNN

FasterR-CNN MaskR-CNN

FPN FocalLoss

RetinaNet

EfficientDet

GroupNorm

Ú	FAL

net-depth-features	AP	AP_{50}	AP_{75}
ResNet-50-C4	30.3	51.2	31.5
ResNet-101-C4	32.7	54.2	34.3
ResNet-50-FPN	33.6	55.2	35.3
ResNet-101-FPN	35.4	57.3	37.5
ResNeXt-101-FPN	36.7	59.5	38.9

	AP	AP_{50}	AP_{75}
softmax	24.8	44.1	25.1
sigmoid	30.3	51.2	31.5
	+5.5	+7.1	+6.4

	align?	bilinear?	agg.	AP	AP_{50}	AP ₇₅
RoIPool [12]			max	26.9	48.8	26.4
RoIWarp [10]		\checkmark	max	27.2	49.2	27.1
<i>Korwarp</i> [10]		\checkmark	ave	27.1	48.9	27.1
RoIAlign	\checkmark	\checkmark	max	30.2	51.0	31.8
KolAligh	✓	\checkmark	ave	30.3	51.2	31.5

(a) **Backbone Architecture**: Better backbones bring expected gains: deeper networks do better, FPN outperforms C4 features, and ResNeXt improves on ResNet. (b) **Multinomial vs. Independent Masks** (ResNet-50-C4): *Decoupling* via perclass binary masks (sigmoid) gives large gains over multinomial masks (softmax). (c) **RoIAlign** (ResNet-50-C4): Mask results with various RoI layers. Our RoIAlign layer improves AP by \sim 3 points and AP₇₅ by \sim 5 points. Using proper alignment is the only factor that contributes to the large gap between RoI layers.

	AP	AP_{50}	AP_{75}	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}
RoIPool	23.6	46.5	21.6	28.2	52.7	26.9
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5

mask branch AP AP_{50} AP_{75} MLP fc: $1024 \rightarrow 1024 \rightarrow 80.28^2$ 31.5 53.7 32.8 MLP fc: $1024 \rightarrow 1024 \rightarrow 1024 \rightarrow 80.28^2$ 31.5 54.0 32.6 conv: $256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 80$ FCN 33.6 55.2 35.3

(d) **RoIAlign** (ResNet-50-C5, *stride 32*): Mask-level and box-level AP using *large-stride* features. Misalignments are more severe than with stride-16 features (Table 2c), resulting in big accuracy gaps.

(e) **Mask Branch** (ResNet-50-FPN): Fully convolutional networks (FCN) *vs.* multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs improve results as they take advantage of explicitly encoding spatial layout.

EfficientDet

Table 2. Ablations. We train on trainval35k, test on minival, and report mask AP unless otherwise noted.

Table 2 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

FastR-CNN FasterR-CNN MaskF

MaskR-CNN FPN

N FocalLoss

GroupNorm

Mask R-CNN – Human Pose Estimation

Figure 7 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

- Testing applicability of Mask R-CNN architecture.
- Keypoints (e.g., left shoulder, right elbow, ...) are detected as independent one-hot masks of size 56×56 with softmax output function.

	AP ^{kp}	AP_{50}^{kp}	AP_{75}^{kp}	$\operatorname{AP}_M^{\operatorname{kp}}$	AP_L^{kp}
CMU-Pose+++ [6]	61.8	84.9	67.5	57.1	68.2
G-RMI [32] [†]	62.4	84.0	68.5	59.1	68.1
Mask R-CNN, keypoint-only	62.7	87.0	68.4	57.4	71.1
Mask R-CNN, keypoint & mask		87.3			71.4

FPN

Table 4 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

NPFL114, Lecture 6

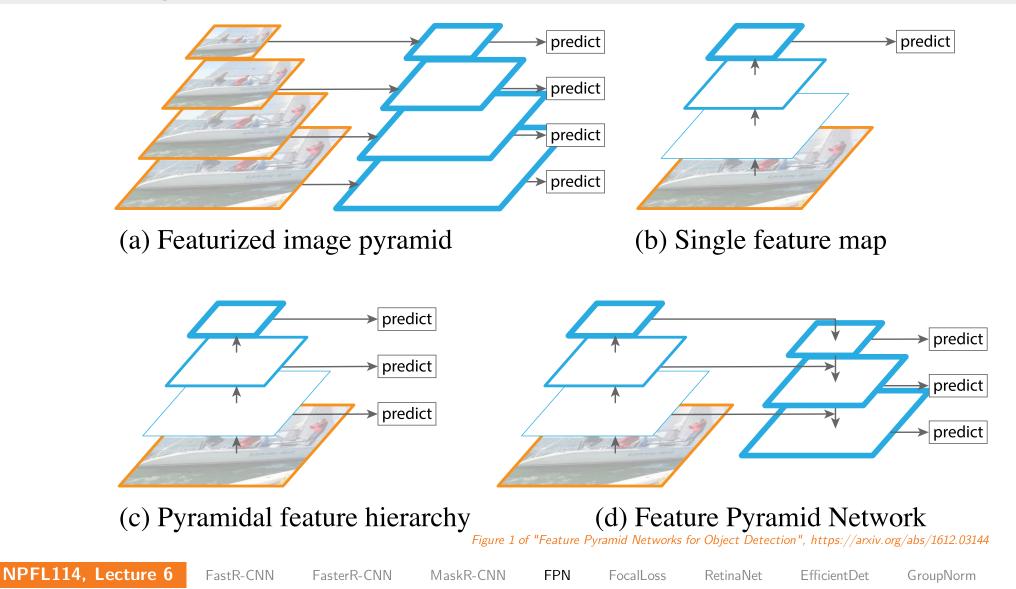
FastR-CNN FasterR-CNN

MaskR-CNN

FocalLoss

RetinaNet

GroupNorm



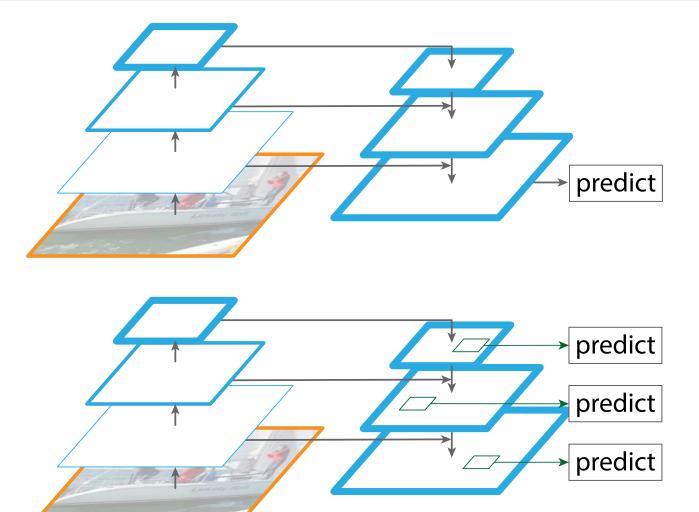
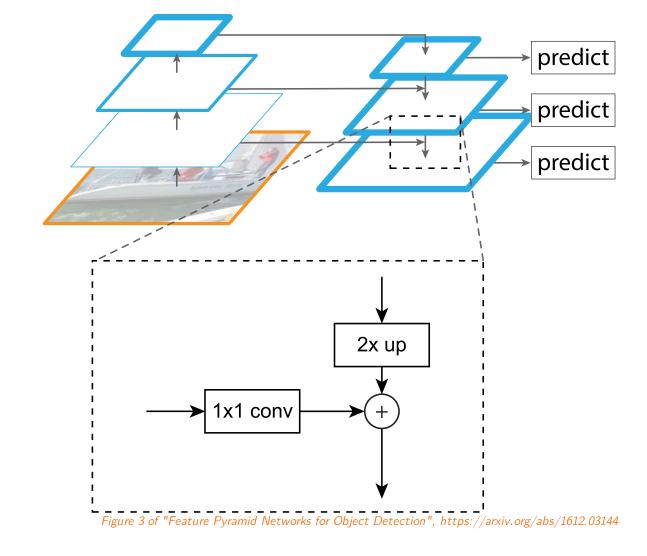


Figure 2 of "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144

NPFL114, Lecture 6

FastR-CNN FasterR-CNN MaskR-CNN **FPN** FocalLoss RetinaNet EfficientDet GroupNorm



NPFL114, Lecture 6

FastR-CNN FasterR-CNN MaskR-CNN FPN FocalLoss RetinaNet EfficientDet GroupNorm 30 /

Ú_F≩L

We employ FPN as a backbone in Faster R-CNN.

Assuming ResNet-like network with 224×224 input, we denote C_2, C_3, \ldots, C_5 the image features of the last convolutional layer of size $56 \times 56, 28 \times 28, \ldots, 7 \times 7$ (i.e., C_i indicates a downscaling of 2^i). The FPN representations incorporating the smaller resolution features are denoted as P_2, \ldots, P_5 , each consisting of 256 channels; the classification heads are shared.

In both the RPN and the Fast R-CNN, authors utilize the P_2, \ldots, P_5 representations, considering single-size anchors for every P_i (of size $32^2, 64^2, 128^2, 256^2$, respectively). However, three aspect ratios (1:1, 1:2, 2:1) are still used.

				image		te	st-de	v			te	st-st	d	
method		backbone	competition	pyramid	$AP_{@.5}$	AP	AP_s	AP_m	AP_l	AP _{@.5}	AP	AP_s	AP_m	AP_l
ours, Faster R-CNN on	FPN	ResNet-101	-		59.1	36.2	18.2	39.0	48.2	58.5	35.8	17.5	38.7	47.8
Competition-winning st	ingle-m	odel results follow:		•										
G-RMI [†]		Inception-ResNet	2016		-	34.7	-	-	-	-	-	-	-	-
AttractioNet [‡] [10]		VGG16 + Wide ResNet [§]	2016	\checkmark	53.4	35.7	15.6	38.0	52.7	52.9	35.3	14.7	37.6	51.9
Faster R-CNN +++ [16	5]	ResNet-101	2015	\checkmark	55.7	34.9	15.6	38.7	50.9	-	-	-	-	-
Multipath [40] (on miniv	val)	VGG-16	2015		49.6	31.5	-	-	-	-	-	-	-	-
ION [‡] [2]		VGG-16	2015		53.4	31.2	12.8	32.9	45.2	52.9	30.7	11.8	32.8	44.8
				-	Table 4 of "I	Feature l	Pyramid	Vetworks	for Objec	t Detection	", https:	//arxiv.c	org/abs/10	512.03144
PFL114, Lecture 6	FastR-C	NN FasterR-CNN	MaskR-CN	IN FI	PN F	ocalLoss	s F	RetinaNet	E	fficientDet	Gi	roupNor	m	31/

Focal Loss

For single-stage object detection architectures, *class imbalance* has been identified as the main issue preventing obtaining performance comparable to two-stage detectors. In a single-stage detector, there can be tens of thousands of anchors, with only dozens of useful training examples.

Cross-entropy loss is computed as

 $\mathcal{L}_{ ext{cross-entropy}} = -\log p_{ ext{model}}(y|x).$

Focal-loss (loss focused on hard examples) is proposed as

$$\mathcal{L}_{ ext{focal-loss}} = -(1-p_{ ext{model}}(y|x))^{\gamma} \cdot \log p_{ ext{model}}(y|x)$$

https://commons.wikimedia.org/wiki/File:Tišnov,_Hajánky,_garážová_ozdoba_(6597).jpg

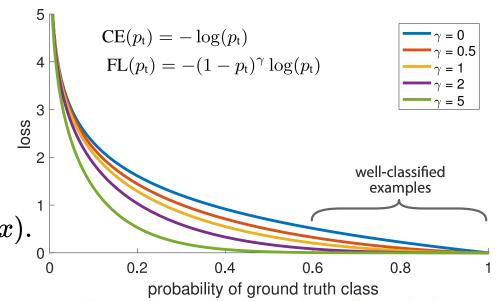


Figure 1 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002

NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FPN FocalLoss

ss RetinaNet

EfficientDet GroupNorm

Focal Loss

For $\gamma = 0$, focal loss is equal to cross-entropy loss.

Authors reported that $\gamma=2$ worked best for them for training a single-stage detector.

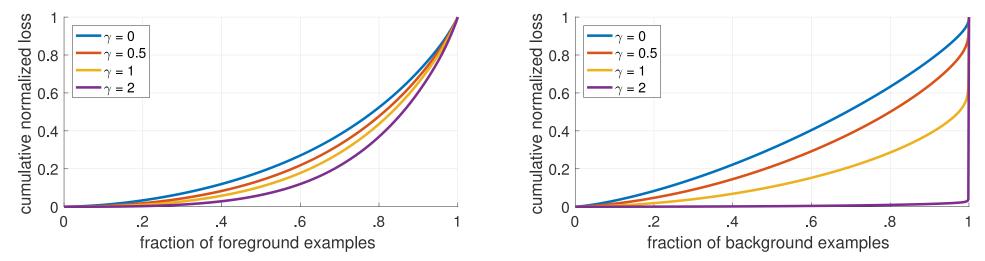


Figure 4. Cumulative distribution functions of the normalized loss for positive and negative samples for different values of γ for a *converged* model. The effect of changing γ on the distribution of the loss for positive examples is minor. For negatives, however, increasing γ heavily concentrates the loss on hard examples, focusing nearly all attention away from easy negatives.

Figure 4 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002

Focal Loss and Class Imbalance

Ú_F≩L

Focal loss is connected to another solution to class imbalance – we might introduce weighting factor $\alpha \in (0, 1)$ for one class and $1 - \alpha$ for the other class, arriving at

 $-lpha_y \cdot \log p_{ ext{model}}(y|x).$

The weight α might be set to the inverse class frequency or treated as a hyperparameter.

Even if weighting focuses more on low-frequent class, it does not distinguish between easy and hard examples, contrary to focal loss.

In practice, the focal loss is usually used together with class weighting:

$$-lpha_y \cdot (1-p_{ ext{model}}(y|x))^\gamma \cdot \log p_{ ext{model}}(y|x).$$

For example, authors report that lpha=0.25 (weight of the rare class) works best with $\gamma=2$.

NPFL114, Lecture 6

FastR-CNN FasterR-CNN MaskR-CNN

FPN FocalLoss

EfficientDet GroupNorm

RetinaNet

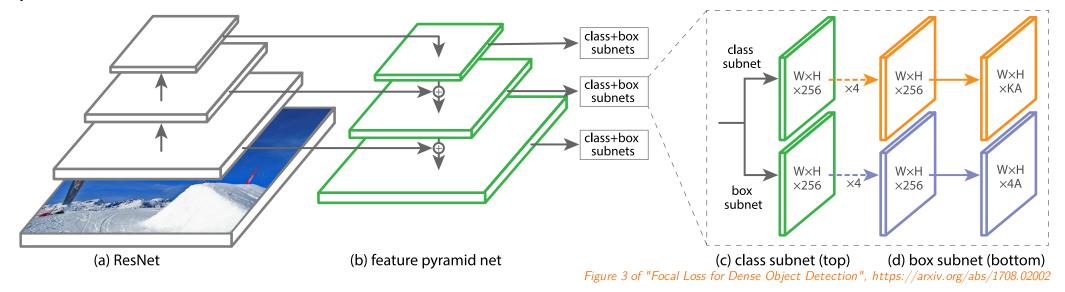
RetinaNet is a single-stage detector, using feature pyramid network architecture. Built on top of ResNet architecture, the feature pyramid contains levels P_3 through P_7 , with each P_l having 256 channels and resolution 2^l times lower than the input. On each pyramid level P_l , we consider 9 anchors for every position, with 3 different aspect ratios (1, 1:2, 2:1) and with 3 different sizes $(\{2^0, 2^{1/3}, 2^{2/3}\} \cdot 4 \cdot 2^l)^2$.

Note that ResNet provides only C_3 to C_5 features. C_6 is computed using a 3×3 convolution with stride 2 on C_5 , and C_7 is obtained by applying ReLU followed by another 3×3 stride-2 convolution. The C_6 and C_7 are included to improve large object detection.

RetinaNet – Architecture

^ÚF_AL

The classification head and the boundary regression heads are fully convolutional and do not share parameters (but classification heads are shared across levels, and so are the boundary regression heads), generating $anchors \cdot classes$ sigmoids and anchors bounding boxes per position.



NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FPN FocalLoss

RetinaNet

EfficientDet

GroupNorm

RetinaNet

During training, anchors are assigned to ground-truth object boxes if IoU is at least 0.5; to background if IoU with any ground-truth region is at most 0.4 (the rest of anchors is ignored during training). The classification head is trained using focal loss with $\gamma = 2$ and $\alpha = 0.25$ (but according to the paper, all values of γ in [0.5, 5] range work well); the boundary regression head is trained using smooth_{L1} loss as in Fast(er) R-CNN.

During inference, at most 1000 objects with at least 5% probability from all pyramid levels are considered, and all of them are combined using non-maximum suppression with a threshold of 0.5. Fixed-size training and testing is used, with sizes 400, 500, ..., 800 pixels.

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	_ 38 г				
Two-stage methods								- 00		1	-	- RetinaNet-50
Faster R-CNN+++ [16]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9	36 -			G 🚽	RetinaNet-101 AP time
Faster R-CNN w FPN [20]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2				[A] YOLOv2 [†]	[27] 21.6 25
Faster R-CNN by G-RMI [17]	Inception-ResNet-v2 [34]	34.7	55.5	36.7	13.5	38.1	52.0	d 34 -		F	[B] SSD321 [2 [C] DSSD321	[9] 28.0 85
Faster R-CNN w TDM [32]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1	O 32 -	<u>۴</u>		[D] R-FCN [‡] [[E] SSD513 [2	22] 31.2 125
One-stage methods								-8	_ E		[F] DSSD513 [G] FPN FRC	
YOLOv2 [27]	DarkNet-19 [27]	21.6	44.0	19.2	5.0	22.4	35.5	30 -	D		RetinaNet-50 RetinaNet-10	
SSD513 [22, 9]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8	28 - B	С		RetinaNet-10	1-800 37.8 198 [‡] Extrapolated time
DSSD513 [9]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1					
RetinaNet (ours)	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2	50	100	150	200	250
RetinaNet (ours)	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2	F		iference til al Loss for		ject Detection",
	Table 2 of "Focal Loss fo	r Dense C	bject Dete	ection", ht	tps://arxi	v.org/abs/	1708.0200	2				/abs/1708.02002

FPN

NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FocalLoss

RetinaNet

EfficientDet

GroupNorm

RetinaNet – Ablations

Ablations use ResNet-50-FPN backbone trained and tested with 600-pixel images.

α	AF	P A	P_{50}	AP_{75}		γ	α	ŀ	ĄР	AP_{50}	AP_{75}		#sc	#ar	A	P A	P_{50}	AP	75
.10	0.0) ().0	0.0	-	0	.75	3	1.1	49.4	33.0	-	1	1	30.	.3 4	9.0	31	.8
.25	10.	8 1	6.0	11.7		0.1	.75	3	1.4	49.9	33.1		2	1	31.	.9 5	0.0	34	0.0
.50	30.	2 4	6.7	32.8		0.2	.75	3	1.9	50.7	33.4		3	1	31.	.8 4	9.4	33	.7
.75	31.	1 4	9.4	33.0		0.5	.50	3	2.9	51.7	35.2		1	3	32.	.4 5	52.3	33	.9
.90	30.	8 4	9.7	32.3		1.0	.25	3	3.7	52.0	36.2		2	3	34.	.2 5	3.1	36	.5
.99	28.	7 4	7.4	29.9		2.0	.25	3	4.0	52.5	36.5		3	3	34.	.0 5	52.5	36	.5
.999	25.	1 4	1.7	26.1		5.0	.25	3	2.2	49.6	34.8		4	3	33.	.8 5	52.1	36	.2
(a) Vary	v ing a	α for C	E loss ($(\gamma = 0)$		(b) V	aryin	$\mathbf{g} \gamma$	for FL	(w. opt	imal α)		(c) Va	ryin	g anch	or scal	es and	asp	ects
metho	od	batch size	nms thr	AP	AP ₅₀	A	P ₇₅		depth	scale	AP	AP ₅₀	AP_{75}	5	AP_S	AP_M	AP		time
OHEN	M	128	.7	31.1	47.2	3	3.2		50	400	30.5	47.8	32.7		11.2	33.8	46.	1	64
OHEN	M	256	.7	31.8	48.8	3	3.9		50	500	32.5	50.9	34.8		13.9	35.8	46.	7	72
OHEN	M	512	.7	30.6	47.0	3	2.6		50	600	34.3	53.2	36.9		16.2	37.4	47.	4	98
OHEN	M	128	.5	32.8	50.3	3	5.1		50	700	35.1	54.2	37.7		18.0	39.3	46.	4	121
OHEN	M	256	.5	31.0	47.4	3	3.0		50	800	35.7	55.0	38.5		18.9	38.9	46.	3	153
OHEN	M	512	.5	27.6	42.0	2	.9.2		101	400	31.9	49.5	34.1		11.6	35.8	48.	5	81
OHEM	1:3	128	.5	31.1	47.2	3	3.2		101	500	34.4	53.1	36.8		14.7	38.5	49.	1	90
OHEM	1:3	256	.5	28.3	42.4	3	0.3		101	600	36.0	55.2	38.7		17.4	39.6	49.	7	122
OHEM	1:3	512	.5	24.0	35.5	2	25.8		101	700	37.1	56.6	39.8		19.1	40.6	49.	4	154
FL		n/a	n/a	36.0	54.9	3	8.7		101	800	37.8	57.5	40.8		20.2	41.1	49.	2	198

(d) **FL** *vs*. **OHEM** baselines (with ResNet-101-FPN)

(e) Accuracy/speed trade-off RetinaNet (on test-dev) Table 1 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002

NPFL114, Lecture 6

MaskR-CNN

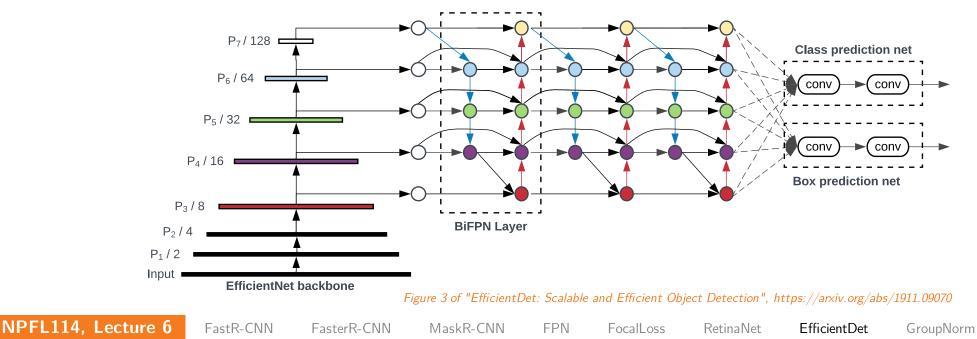
FPN FocalLoss

EfficientDet

EfficientDet – Architecture

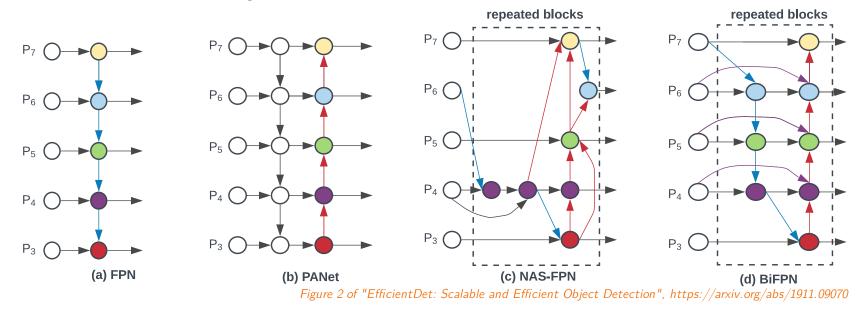
EfficientDet builds up on EfficientNet and delivered state-of-the-art performance in Nov 2019 with minimum time and space requirements (however, its performance has already been surpassed significantly). It is a single-scale detector similar to RetinaNet, which:

- uses EfficientNet as a backbone;
- employs compound scaling;
- uses a newly proposed BiFPN, "efficient bidirectional cross-scale connections and weighted feature fusion".



EfficientDet – BiFPN

In multi-scale fusion in FPN, information flows only from the pyramid levels with smaller resolution to the levels with higher resolution.



BiFPN consists of several rounds of bidirectional flows. Each bidirectional flow employs residual connections and does not include nodes that have only one input edge with no feature fusion. All operations are 3×3 separable convolutions with batch normalization and ReLU, upsampling is done by repeating rows and columns and downsampling by max-pooling.

EfficientDet – Weighted BiFPN

FastR-CNN

When combining features with different resolutions, it is common to resize them to the same resolution and sum them – therefore, all set of features are considered to be of the same importance. The authors however argue that features from different resolution contribute to the final result *unequally* and propose to combine them with trainable weighs.

• Softmax-based fusion: In each BiFPN node, we create a trainable weight w_i for every input I_i and the final combination (after resize, before a convolution) is

$$\sum_i rac{e^{w_i}}{\sum_j e^{w_j}} \mathsf{I}_i.$$

• Fast normalized fusion: Authors propose a simpler alternative of weighting:

$$\sum_i rac{\mathrm{ReLU}(w_i)}{arepsilon+\sum_j \mathrm{ReLU}(w_j)} \mathsf{I}_i.$$

It uses $\varepsilon = 0.0001$ for stability and is up to 30% faster on a GPU.

NPFL114, Lecture 6

FasterR-CNN MaskR-CNN

FPN FocalLoss

RetinaNet

GroupNorm

EfficientDet

EfficientDet – Compound Scaling

Similar to EfficientNet, authors propose to scale various dimensions of the network, using a single compound coefficient ϕ .

After performing a grid search:

- the width of BiFPN is scaled as $W_{BiFPN} = 64 \cdot 1.35^{\phi}$,
- the depth of BiFPN is scaled as $D_{BiFPN} = 3 + \phi$,
- the box/class predictor has the same width as BiFPN and depth $D_{class} = 3 + |\phi/3|$,
- input image resolution increases according to $R_{image} = 512 + 128 \cdot \phi.$

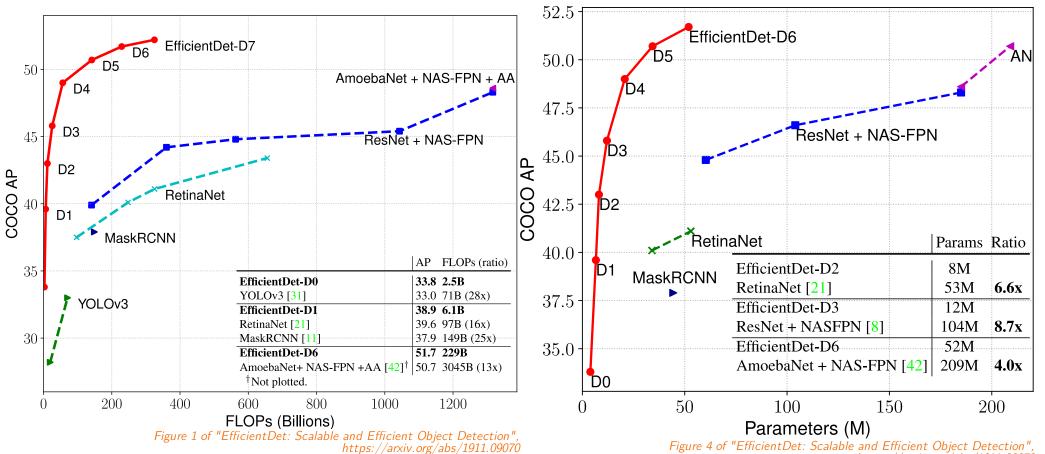
	Input	Backbone	BiFP	'N	Box/class
	size	Network	#channels	#layers	#layers
	R_{input}		W_{bifpn}	D_{bifpn}	D_{class}
$D0 \ (\phi = 0)$	512	B0	64	3	3
D1 ($\phi = 1$)	640	B1	88	4	3
D2 ($\phi = 2$)	768	B2	112	5	3
D3 ($\phi = 3$)	896	B3	160	6	4
D4 ($\phi = 4$)	1024	B 4	224	7	4
D5 ($\phi = 5$)	1280	B5	288	7	4
D6 ($\phi = 6$)	1280	B6	384	8	5
$\mathrm{D6}(\phi=7)$	1536	B6	384	8	5

Table 1 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070

NPFL114, Lecture 6

FastR-CNN FasterR-CNN MaskR-CNN FPN FocalLoss RetinaNet EfficientDet GroupNorm

EfficientDet – Results



https://arxiv.org/abs/1911.09070

NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FocalLoss

FPN

RetinaNet

EfficientDet

GroupNorm

EfficientDet – Results

	.	tet-de	v	val					Late	ncy
Model	AP	AP_{50}	AP_{75}	AP	Params	Ratio	FLOPs	Ratio	GPU_{ms}	CPU
EfficientDet-D0 (512)	33.8	52.2	35.8	33.5	3.9 M	1x	2.5B	1x	16	0.32
YOLOv3 [31]	33.0	57.9	34.4	-	-	-	71 B	28x	51†	-
EfficientDet-D1 (640)	39.6	58.6	42.3	39.1	6.6M	1x	6.1B	1x	20	0.74
RetinaNet-R50 (640) [21]	37.0	-	-	-	34M	6.7x	97B	16x	27	2.8
RetinaNet-R101 (640)[21]	37.9	-	-	-	53M	8.0x	127B	21x	34	3.6
EfficientDet-D2 (768)	43.0	62.3	46.2	42.5	8.1M	1x	11B	1x	24	1.2
RetinaNet-R50 (1024) [21]	40.1	-	-	-	34M	4.3x	248B	23x	51	7.5
RetinaNet-R101 (1024) [21]	41.1	-	-	-	53M	6.6x	326B	30x	65	9.7
ResNet-50 + NAS-FPN (640) [8]	39.9	-	-	-	60M	7.5x	141B	13x	41	4.1
EfficientDet-D3 (896)	45.8	65.0	49.3	45.9	12M	1x	25B	1x	42	2.5
ResNet-50 + NAS-FPN (1024) [8]	44.2	-	-	-	60M	5.1x	360B	15x	79	11
ResNet-50 + NAS-FPN (1280) [8]	44.8	-	-	-	60M	5.1x	563B	23x	119	17
ResNet-50 + NAS-FPN (1280@384)[8]	45.4	-	-	-	104M	8.7x	1043B	42x	173	27
EfficientDet-D4 (1024)	49.4	69.0	53.4	49.0	21M	1x	55B	1x	74	4.8
AmoebaNet+ NAS-FPN +AA(1280)[42]	-	-	-	48.6	185M	8.8x	1317B	24x	259	38
EfficientDet-D5 (1280)	50.7	70.2	54.7	50.5	34M	1x	135B	1x	141	11
EfficientDet-D6 (1280)	51.7	71.2	56.0	51.3	52M	1x	226B	1x	190	16
AmoebaNet+ NAS-FPN +AA(1536)[42]	-	-	-	50.7	209M	4.0x	3045B	13x	608	83
EfficientDet-D7 (1536)	52.2	71.4	56.3	51.8	52M	1x	325B	1x	262	24

We omit ensemble and test-time multi-scale results [27, 10].

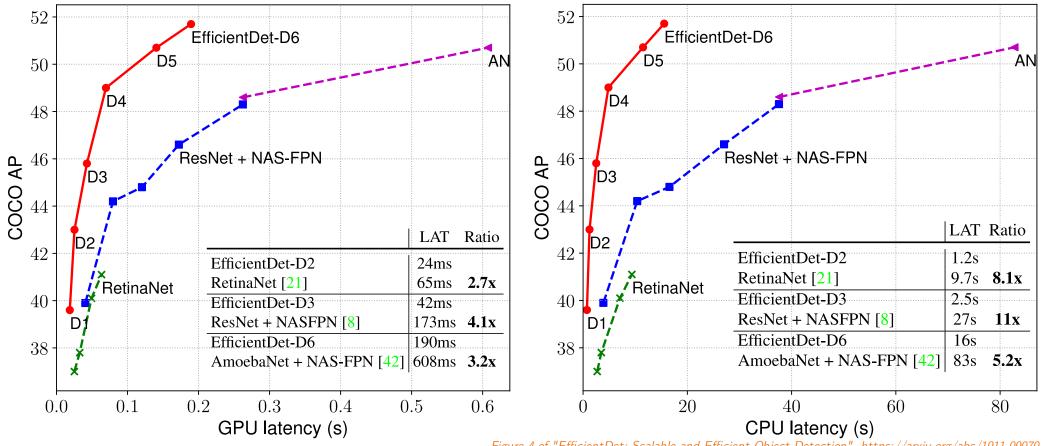
[†]Latency marked with [†] are from papers, and others are measured on the same machine with Titan V GPU.

Table 2 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070

RetinaNet

EfficientDet

EfficientDet – Inference Latencies



FPN

Figure 4 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070

NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FocalLoss

RetinaNet

EfficientDet GroupNorm

EfficientDet – Ablations

Given that EfficientDet employs both a powerful backbone and new BiFPN, authors quantify the improvement of the individual components.

	AP	Parameters	FLOPs
ResNet50 + FPN	37.0	34M	97B
EfficientNet-B3 + FPN	40.3	21M	75B
EfficientNet-B3 + BiFPN	44.4	12M	24B

Table 4 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070

The comparison with previously used cross-scale fusion architectures is also provided:

	AP	#Params ratio	#FLOPs ratio
Repeated top-down FPN	42.29	1.0x	1.0x
Repeated FPN+PANet	44.08	1.0x	1.0x
NAS-FPN	43.16	0.71x	0.72x
Fully-Connected FPN	43.06	1.24x	1.21x
BiFPN (w/o weighted)	43.94	0.88 x	0.67 x
BiFPN (w/ weighted)	44.39	0.88 x	0.68 x

Table 5 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070

NPFL114, Lecture 6

FastR-CNN

FasterR-CNN MaskR-CNN FPN Fe

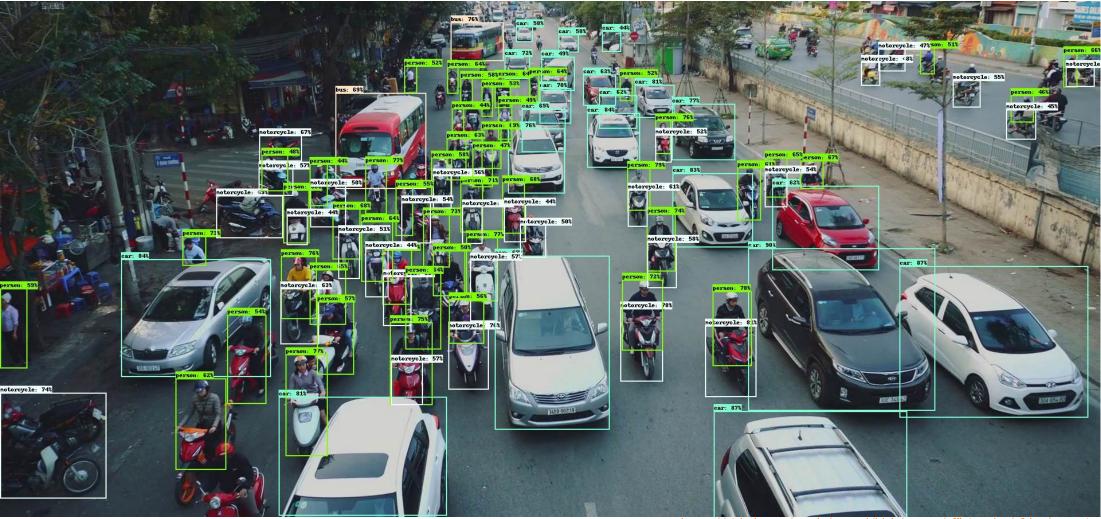
FocalLoss

EfficientDet

RetinaNet

GroupNorm

EfficientDet-D0 Example



https://github.com/google/automl/blob/master/efficientdet/g3doc/street.jpg

NPFL114, Lecture 6

FastR-CNN FasterR-CNN

MaskR-CNN

FPN Focall

FocalLoss RetinaNet

EfficientDet GroupNorm

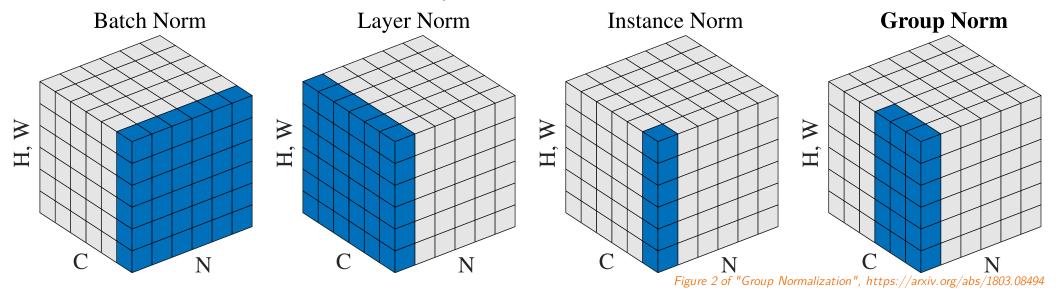
Ú FÂL

Batch Normalization

Neuron value is normalized across the minibatch, and in case of CNN also across all positions.

Layer Normalization

Neuron value is normalized across the layer.



FPN

MaskR-CNN

FocalLoss

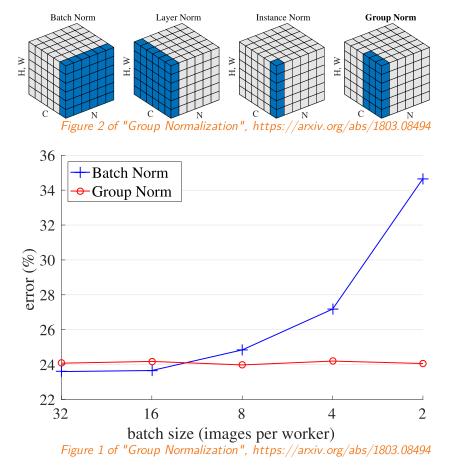
RetinaNet

et EfficientDet

GroupNorm

Group Normalization

Group Normalization is analogous to Layer normalization, but the channels are normalized in groups (by default, G = 32).



NPFL114, Lecture 6

FastR-CNN

MaskR-CNN

FasterR-CNN

FPN FocalLoss

RetinaNet EfficientDet

Group Normalization

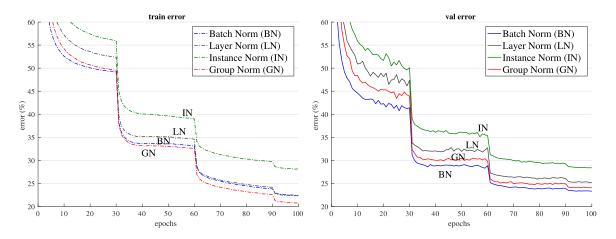


Figure 4. Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation error (right) vs. numbers of training epochs. The model is ResNet-50.

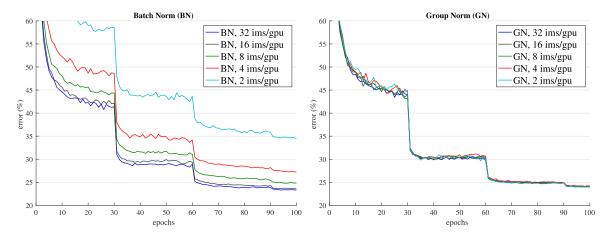


Figure 5. Sensitivity to batch sizes: ResNet-50's validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU. Figures 4 and 5 of "Group Normalization", https://arxiv.org/abs/1803.08494

NPFL114, Lecture 6

FastR-CNN FasterR-CNN MaskR-CNN FPN FocalLoss RetinaNet EfficientDet GroupNorm

Group Normalization

backbone	AP ^{bbox}	AP ₅₀ ^{bbox}	AP ₇₅ ^{bbox}	AP ^{mask}	AP ₅₀ ^{mask}	AP ₇₅ ^{mask}
BN^*	37.7	57.9	40.9	32.8	54.3	34.7
GN	38.8	59.2	42.2	33.6	55.9	35.4

Table 4. Detection and segmentation results in COCO, using Mask R-CNN with **ResNet-50 C4**. BN^{*} means BN is frozen.

backbone	box head	AP ^{bbox}	AP ₅₀ ^{bbox}	AP ₇₅ ^{bbox}	AP ^{mask}	AP ₅₀ ^{mask}	AP ₇₅ ^{mask}
BN^*	-	38.6	59.5	41.9	34.2	56.2	36.1
${\sf BN}^{*}$	GN	39.5	60.0	43.2	34.4	56.4	36.3
GN	GN	40.0	61.0	43.3	34.8	57.3	36.3

Table 5. Detection and segmentation results in COCO, using Mask R-CNN with ResNet-50 FPN and a 4conv1fc bounding box head. BN^* means BN is frozen.

Tables 4 and 5 of "Group Normalization", https://arxiv.org/abs/1803.08494