
NPFL114, Lecture 5

Convolutional Neural Networks II

Milan Straka

March 13, 2023

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Main Takeaways From Previous Lecture

Convolutions can provide
local interactions in spacial/temporal dimensions
shift invariance
much less parameters than a fully connected layer

Usually repeated convolutions are enough, no need for larger filter sizes.

When pooling is performed, double the number of channels (i.e., the first convolution
following the pooling layer will have twice as many output channels).

If your network is deep enough (the last hidden neurons have a large receptive fields), final
fully connected layers are not needed, and global average pooling is enough.

Batch normalization is a great regularization method for CNNs, allowing removal/decrease
of dropout and regularization.

Small weight decay (i.e., regularization) of usually 1e-4 is still useful for regularizing

convolutional kernels.

3 × 3

L2

L2

2/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet – 2015 (3.6% ILSVRC top-5 error)

Figure 1 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

3/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet – 2015 (3.6% ILSVRC top-5 error)

Figure 2 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

4/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet – 2015 (3.6% ILSVRC top-5 error)

Figure 5 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

5/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet – 2015 (3.6% ILSVRC top-5 error)

Table 1 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

6/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet – 2015 (3.6% ILSVRC top-5 error)

Figure 3 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

The residual connections cannot be applied
directly when number of channels increases.

The authors considered several alternatives, and
chose the one where in case of channels
increase a convolution + BN is used on

the projections to match the required number of
channels. The required spacial resolution is
achieved by using stride 2.

1 × 1

7/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet – 2015 (3.6% ILSVRC top-5 error)

Figure 4 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

8/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet – 2015 (3.6% ILSVRC top-5 error)

Figure 1 of "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913

9/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet – 2015 (3.6% ILSVRC top-5 error)

Training details:

batch normalizations after each convolution and before activation

SGD with batch size 256 and momentum of 0.9

learning rate starts with 0.1 and “is divided by 10 when the error plateaus”
600k training iterations are used (120 epochs, each containing 1.281M images)
according to one graph (and to their later paper) they decay at 25% and 50% of the
training, so after epochs 30 and 60

other concurrent papers also use exponential decay or 25%-50%-75%

no dropout, weight decay 0.0001

during training, an image is resized with its shorter side randomly sampled in the range

, and a random crop is used

during testing, 10-crop evaluation strategy is used
for the best results, the scores across multiple scales are averaged – the images are
resized so that their smaller size is in

[256, 480] 224 × 224

{224, 256, 384, 480, 640}

10/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet – 2015 (3.6% ILSVRC top-5 error)

Table 4 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

Table 5 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

The ResNet-34 B uses the convolution on residual connections with different number of

input and output channels; ResNet-34 C uses this convolution on all residual connections.
Variant B is used for ResNet-50/101/152.

1 × 1

11/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet Ablations – Shortcuts

The authors of ResNet published an ablation study several months after the original paper.

Figure 2 of "Identity Mappings in Deep Residual Networks",
https://arxiv.org/abs/1603.05027

Table 1 of "Identity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027

12/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet Ablations – Activations

Figure 4 of "Identity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027

Table 2 of "Identity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027

13/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNet Ablations – Pre-Activation Results

The pre-activation architecture was evaluated also on ImageNet, in a single-crop regime.

Table 5 of "Identity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027

14/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

WideNet

Figure 1 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

15/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

WideNet

Table 1 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

Authors do not consider bottleneck blocks. Instead,
they experiment with different block types, e.g.,

 or .

Table 2 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

The is used in further experiments, unless specified otherwise.

B(1, 3, 1) B(3, 3)

B(3, 3)

16/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

WideNet

Table 1 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

Authors evaluate various widening factors

Table 4 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

k

17/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

WideNet

Table 1 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

Authors measure the effect of dropping out inside the
residual block (but not the residual connection itself)

Table 6 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

Figure 3 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

18/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

WideNet – Results

Dataset Results

CIFAR

Table 5 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

ImageNet

Table 8 of "Wide Residual Networks", https://arxiv.org/abs/1605.07146

19/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

DenseNet

Figure 2 of "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

Figure 1 of "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

20/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

DenseNet – Architecture

The initial convolution generates 64 channels, each convolution in dense block 128, each

 convolution in dense block 32, and the transition layer reduces the number of channels in

the initial convolution by half.

Table 1 of "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

1 × 1
3 × 3

21/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

DenseNet – Results

Table 2 of "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

Figure 3 of "Densely Connected Convolutional Networks",
https://arxiv.org/abs/1608.06993

22/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

PyramidNet

Figure 1 of "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

23/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

PyramidNet – Growth Rate

Figure 2 of "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

In architectures up until now, number of filters doubled when spacial resolution was halved.

Such exponential growth would suggest gradual widening rule .

However, the authors employ a linear widening rule , where is

number of filters in the -th out of convolutional block and is number of filters to add in

total.

D =k ⌊D ⋅k−1 α ⌋1/N

D =k ⌊D +k−1 α/N⌋ D k

k N α

24/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

PyramidNet – Residual Connections

No residual connection can be a real identity – the authors propose to zero-pad missing
channels, where the zero-pad channels correspond to newly computed features.

Figure 5 of "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

25/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

PyramidNet – CIFAR Results

Table 4 of "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

Table 1 of "Deep Pyramidal Residual Networks",
https://arxiv.org/abs/1610.02915

26/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

PyramidNet – ImageNet Results

Table 5 of "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

27/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNeXt

Figure 1 of "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431

28/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNeXt

Figure 3 of "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431

29/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNeXt

Table 1 of "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431

30/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNeXt

Figure 5 of "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431

31/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

ResNeXt

Table 3 of "Aggregated Residual Transformations for Deep Neural Networks",
https://arxiv.org/abs/1611.05431

Table 4 of "Aggregated Residual Transformations for Deep Neural Networks",
https://arxiv.org/abs/1611.05431

Table 5 of "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431

32/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Deep Networks with Stochastic Depth

Figure 2 of "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382

We drop a whole block (but not the residual connection) with probability . During

inference, we multiply the block output by to compensate; or we can use the alternative

approach like in regular dropout, where we divide the activation by during training only.

All can be set to a constant, but more effective approach is to utilize a simple linear decay

, where is the final probability of the last layer, motivated by the

intuition that the initial blocks extract low-level features utilized by the later layers, and should
therefore be present.

1 − p l

p l

p l

p l

p =l 1 − (1 −
L
l p)L p L

33/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Deep Networks with Stochastic Depth

Figure 8 of "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382

According to the ablation experiments, linear decay with was selected.p =L 0.5

34/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Deep Networks with Stochastic Depth

Figure 3 of "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382

35/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Cutout

Figure 1 of "Improved Regularization of Convolutional Neural Networks with Cutout", https://arxiv.org/abs/1708.04552

Drop square in the input image, with randomly chosen center. The pixels are replaced

by their mean value from the dataset.

16 × 16

36/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Cutout

Figure 3 of "Improved Regularization of Convolutional Neural Networks with Cutout", https://arxiv.org/abs/1708.04552

Table 1 of "Improved Regularization of Convolutional Neural Networks with Cutout", https://arxiv.org/abs/1708.04552

37/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

DropBlock

Dropout drops individual values, SpatialDropout drops whole channels, DropBlock drops
rectangular areas in all channels at the same time.

Figure 1 of "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890

The authors mention that they also tried applying DropBlock in every channel separately, but
that masking all channels equally “tends to work better in our experiments”.

38/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

DropBlock

Figure 2 of "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890

39/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

DropBlock

The authors have chosen block size=7 and also employ linear schedule of the keep probability,
which starts at 1 and linearly decays until the target value is reached at the end of training.

Figure 3 of "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890

40/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

DropBlock

Table 1 of "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890

The results are averages of three runs.

41/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

CutMix

Figure 1 of "CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features",
https://arxiv.org/abs/1905.04899

Table 3 of "CutMix: Regularization Strategy to Train Strong Classifiers with
Localizable Features", https://arxiv.org/abs/1905.04899

Table 4 of "CutMix: Regularization Strategy to Train Strong Classifiers with
Localizable Features", https://arxiv.org/abs/1905.04899

To perform CutMix:

First we sample uniformly from .

We sample bounding box center uniformly.
Width and height are set to , .

Labels are combined as .

λ (0, 1)

W λ H λ

λy +A (1 − λ)y B

42/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

CutMix

Table 5 of "CutMix: Regularization Strategy to Train Strong Classifiers with Localizable
Features", https://arxiv.org/abs/1905.04899

Table 7 of "CutMix: Regularization Strategy to Train Strong Classifiers with Localizable
Features", https://arxiv.org/abs/1905.04899

In the following, .

Figure 3 of "CutMix: Regularization Strategy to Train Strong Classifiers with Localizable
Features", https://arxiv.org/abs/1905.04899

λ ∼ Beta(α,α)

43/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Squeeze and Excitation

Figure 1 of "Squeeze-and-Excitation Networks", https://arxiv.org/abs/1709.01507

Figure 2 of "Squeeze-and-Excitation Networks", https://arxiv.org/abs/1709.01507

The ILSVRC 2017 winner was SENet,
Squeeze and Excitation Network,
augmenting existing architectures by a
squeeze and excitation block, which
learns to emphasise informative
channels and suppress less useful ones
according to global information.

squeeze (global information
embedding) computes the
average value of every channel;

excitation (adaptive
recalibration) computes a weight
for every channel using a sigmoid
activation function and multiplies the corresponding channel with it. To not increase the
number of parameters too much (by), an additional small hidden layer with

neurons is employed (to reduce the additional parameters to only).

C2 C/16
C /82

44/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Mobile Inverted Bottleneck Convolution

Figure 3 of "MobileNetV2: Inverted Residuals and Linear Bottlenecks", https://arxiv.org/abs/1801.04381

When designing convolutional neural networks for mobile phones, the following mobile
inverted bottleneck block was proposed.

Regular convolution is replaced by
separable convolution, which
consists of

a depthwise separable
convolution (for example)

acting on each channel
separately (which reduces time
and space complexity of a regular convolution by a factor equal to the number of
channels);
a pointwise convolution acting on each position independently (which reduces

time and space complexity of a regular convolution by a factor of).

The residual connections connect bottlenecks (layers with least channels).
There is no nonlinear activation on the bottlenecks (it would lead to loss of information
given small capacity of bottlenecks).

3 × 3

1 × 1
3 ⋅ 3

45/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Mobile Inverted Bottleneck Convolution

The mobile inverted bottleneck convolution is denoted for example as MBConv6 k3x3, where
the 6 denotes expansion factor after the bottleneck and is the kernel size of the separable

convolution.

Furthermore, the mobile inverted bottleneck convolution can be augmented with squeeze and
excitation blocks.

Figure 7 of "MnasNet: Platform-Aware Neural Architecture
Search for Mobile", https://arxiv.org/abs/1807.11626

Figure 7 of "MnasNet: Platform-Aware Neural Architecture
Search for Mobile", https://arxiv.org/abs/1807.11626

Figure 7 of "MnasNet: Platform-Aware Neural Architecture
Search for Mobile", https://arxiv.org/abs/1807.11626

3 × 3

46/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

EfficientNet

Table 1 of "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https://arxiv.org/abs/1905.11946

In 2019, very performant and efficient convolutional architecture EfficientNet was proposed.

The EfficientNet architecture was created using
a multi-objective neural architecture search that
optimized both accuracy and computation
complexity.

The resulting network is denoted as
EfficientNet-B0 baseline network.

It was trained using RMSProp with =0.9 and

momentum 0.9, weight decay 1e-5, and initial
learning rate 0.256 decayed by 0.97 every 2.4
epochs. Dropout with dropout rate 0.2 is used on the last layer, stochastic depth with survival

probability 0.8 is employed, and activation function is utilized.

β

swish(x) =def
x⊙ σ(x)

47/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

EfficientNet – Compound Scaling

Figure 2 of "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", https://arxiv.org/abs/1905.11946

To effectively scale the network, the authors propose a simultaneous increase of three qualities:

width, which is the number of channels;
depth, which is the number of layers;
resolution, which is the input image resolution.

By a grid search on a network with double computation complexity, the best trade-off of scaling
width by 1.1, depth by 1.2 and resolution by 1.15 was found ().1.1 ⋅2 1.2 ⋅ 1.15 ≈2 2

48/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

EfficientNet – Results

Table 2 of "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", https://arxiv.org/abs/1905.11946

49/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

EfficientNet – Results

Figure 5 of "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https://arxiv.org/abs/1905.11946

Figure 1 of "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https://arxiv.org/abs/1905.11946

50/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

EfficientNetV2

Figure 2 of "EfficientNetV2: Smaller Models and Faster
Training", https://arxiv.org/abs/2104.00298

In April 2021, an improved version of EfficientNet, EfficientNetV2, was published. It is
currently one of very good CNNs available for image recognition.

The improvements between EfficientNet and EfficientNetV2 are not large:

The separable convolutions have fewer parameters, but are slow
to execute on modern hardware. The authors therefore “fuse”
the convolution and a depthwise convolution into

a regular convolution, which has more parameters and require
more computation, but is in fact executed faster.

Very large images make training very slow. EfficientNetV2
avoids aggressively scaling the image sizes, limiting maximum
image size to 480.

The authors utilize progressive training – the image size is
gradually increased during training, as is the regularization strength (dropout, mixup,
RandAugment magnitude).

1 × 1 3 × 3

51/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

EfficientNetV2 – Architecture

Table 4 of "EfficientNetV2: Smaller Models and Faster Training",
https://arxiv.org/abs/2104.00298

Table 1 of "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https://arxiv.org/abs/1905.11946

Figure 5 of "EfficientNetV2: Smaller Models and Faster Training", https://arxiv.org/abs/2104.00298

52/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

EfficientNetV2 – Results

Table 7 of "EfficientNetV2: Smaller Models and Faster Training", https://arxiv.org/abs/2104.00298

53/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Transfer Learning

In many situations, we would like to utilize a model trained on a different dataset – generally,
this cross-dataset usage is called transfer learning.

In image processing, models trained on ImageNet are frequently used as general feature
extraction models.

The easiest scenario is to take a ImageNet model, drop the last classification layer, and use the
result of the global average pooling as image features. The ImageNet model is not modified
during training.

For efficiency, we may precompute the image features once and reuse it later many times.

54/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Transfer Learning – Finetuning

After we have successfully trained a network employing an ImageNet model, we may improve
performance further by finetuning – training the full network including the ImageNet model,
allowing the feature extraction to adapt to the current dataset.

The layers after the ImageNet models should be already trained to convergence.

Usually a smaller learning rate is necessary, because the original model probably finished
training with a very small learning rate. A good starting point is one tenth of the original
starting learning rate (therefore, 0.0001 for Adam).

We have to think about batch normalization, data augmentation, or other regularization
techniques.

55/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Transposed Convolution

So far, the convolution operation produces either an output of the same size, or it produced a
smaller one if stride was larger than one.

In order to come up with upscaling convolution, we start by considering how a gradient is
backpropagated through a fully connected layer and a regular convolution.

In a fully connected layer without activation:

during the forward pass, the input is multiplied by the weight matrix as ;

during the backward pass, the gradient is multiplied by the transposed weight matrix as

.

X W XW

G

GW T

56/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Transposed Convolution

Analogously, in a convolutional layer without activation:

during the forward pass, the cross-correlation operation between input and kernel is

performed as

during the backward pass, we obtain , and we need to backpropagate it to

obtain . It is not difficult to show that

This operation is called transposed or upscaling convolution and stride greater than one
makes the output larger, not smaller.

I K

(K ⋆ I) =i,j,o I K ;
m,n,c

∑ i⋅S+m,j⋅S+n,c m,n,c,o

G =i,j,o ∂(K⋆I) i,j,o

∂L

 ∂I i,j,c

∂L

 =
∂I i,j,c

∂L
 G K .

i ,m′

i ⋅S+m=i′

∑

j ,n′

j ⋅S+n=j′

∑
o

∑ i ,j ,o′ ′ m,n,c,o

57/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Transposed Convolution Animation

Illustration of the padding schemes and different strides for a kernel.

valid, stride=1, regular:

https://github.com/vdumoulin/conv_arithmetic

 transposed:

https://github.com/vdumoulin/conv_arithmetic

valid, stride=2, regular:

https://github.com/vdumoulin/conv_arithmetic

 transposed:

https://github.com/vdumoulin/conv_arithmetic

3 × 3

58/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Transposed Convolution Animation

Illustration of the padding schemes and different strides for a kernel.

same, stride=1, regular:

https://github.com/vdumoulin/conv_arithmetic

 transposed:

https://github.com/vdumoulin/conv_arithmetic

same, stride=2, regular:

https://github.com/vdumoulin/conv_arithmetic

 transposed:

https://github.com/vdumoulin/conv_arithmetic

3 × 3

59/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

Transposed Convolution

Given that the transposed convolution must be implemented for efficient backpropagation of a
regular convolution, it is usually available for direct usage in neural network frameworks.

It is frequently used to perform upscaling of an image, as an “inverse” operation to pooling (or
convolution with stride), which is useful for example in image segmentation:

Modification of Figure 2 of "Lunar Crater Identification via Deep Learning", https://arxiv.org/abs/1803.02192

> 1

60/60NPFL114, Lecture 5 ResNet ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

