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Convolutional Networks

Consider data with some structure (temporal data, speech, images, …).

Unlike densely connected layers, we might want:

local interactions only;

shift invariance (equal response everywhere);

parameter sharing.
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1D Convolution
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2D Convolution

 

https://i.stack.imgur.com/YDusp.png
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2D Convolution

 

Figure 9.1 of "Deep Learning" book, https://www.deeplearningbook.org
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Convolution Operation

For a functions  and , convolution  is defined asx w w ∗ x

(w ∗ x)(t) = x(t−∫ a)w(a) da.
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Convolution Operation

For a functions  and , convolution  is defined as

 

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif

 

https://commons.wikimedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif

x w w ∗ x

(w ∗ x)(t) = x(t−∫ a)w(a) da.
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Convolution Operation

For a functions  and , convolution  is defined as

For vectors, we have

Convolution operation can be generalized to two dimensions by

Closely related is cross-correlation, where  is flipped:

x w w ∗ x

(w ∗ x)(t) = x(t−∫ a)w(a) da.

(w ∗ x)  =t  x  w  .∑
i

t−i i

(K ∗ I)  =i,j  I K  .∑
m,n

i−m,j−n m,n

K

(K ⋆ I)  =i,j  I K  .∑
m,n

i+m,j+n m,n
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Convolution Layer

The  is usually called a kernel or a filter.

Note that usually we have a whole vector of values for a single pixel, the so-called channels.
These single pixel channel values have no longer any spacial structure, so the kernel contains a
different set of weights for every input dimension, obtaining

Furthermore, we usually want to be able to specify the output dimensionality similarly to for
example a fully connected layer – the number of output channels for every pixel. Each output
channel is then the output of an independent convolution operation, so we can consider  to be

a four-dimensional tensor and the convolution if computed as

K

(K ⋆ I)  =i,j  I  K  .
m,n,c

∑ i+m,j+n,c m,n,c

K

(K ⋆ I)  =i,j,o  I  K  .
m,n,c

∑ i+m,j+n,c m,n,c,o
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Convolution Layer

To arrive at the complete convolution layer, we need to specify:

the width  and height  of the kernel;

the number of output channels ;

the stride denoting that every output pixel is computed for every stride-th input pixel (e.g.,
the output is half the size if stride is 2).

Considering an input image with  channels, the convolution layer is then parametrized by a

kernel  of total size  and is computed as

Note that while only local interactions are performed in the image spacial dimensions (width
and height), we combine input channels in a fully connected manner.

W H

F

C

K W × H × C × F

(K ⋆ I)  =i,j,o  I  K  .
m,n,c

∑ i⋅S+m,j⋅S+n,c m,n,c,o
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Convolution Layer

There are multiple padding schemes, most common are:

valid: Only use valid pixels, which causes the result to be smaller than the input.
same: Pad original image with zero pixels so that the result is exactly the size of the input.

Illustration of the padding schemes and different strides for a  kernel:

valid padding, stride=1: 

 

https://github.com/vdumoulin/conv_arithmetic

 stride=2: 

 

https://github.com/vdumoulin/conv_arithmetic

same padding, stride=1: 

 

https://github.com/vdumoulin/conv_arithmetic

 stride=2: 

 

https://github.com/vdumoulin/conv_arithmetic

3 × 3
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Convolution Layer Representation

There are two prevalent image formats (called data_format in TensorFlow):

channels_last: The dimensions of the 4-dimensional image tensor are batch, height,
width, and channels.

The original TensorFlow format, faster on CPU.

channels_first: The dimensions of the 4-dimensional image tensor are batch, channel,
height, and width.

Usual GPU format (used by CUDA and nearly all frameworks); on TensorFlow, not all CPU
kernels are available with this layout.

In TensorFlow, data is represented using the channels_last approach and the runtime will
automatically convert it to channels_first if it is more suitable for available hardware
(especially for a GPU).
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Pooling

Pooling is an operation similar to convolution, but we perform a fixed operation instead of
multiplying by a kernel.

Max pooling (minor translation invariance)
Average pooling

 

Figure 9.10 of "Deep Learning" book, https://www.deeplearningbook.org
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High-level CNN Architecture

We repeatedly use the following block:

1. Convolution operation
2. Non-linear activation (usually ReLU)
3. Pooling

 

https://cdn-images-1.medium.com/max/1200/0*QyXSpqpm1wc_Dt6V.
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AlexNet – 2012 (16.4% ILSVRC top-5 error)

 

Figure 2 of "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al.
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AlexNet – 2012 (16.4% ILSVRC top-5 error)

Training details:

61M parameters, 2 GPUs for 5-6 days

SGD with batch size 128, momentum 0.9,  regularization strength (weight decay) 0.0005

initial learning rate 0.01, manually divided by 10 when validation error rate stopped
improving

ReLU nonlinearities

dropout with rate 0.5 on the fully-connected layers (except for the output layer)

data augmentation using translations and horizontal reflections (choosing random 

 patches from  images)
during inference, 10 patches are used (four corner patches and a center patch, as well as
their reflections)

L2

v ← 0.9 ⋅ v − α ⋅  −∂θ
∂L 0.0005 ⋅ α ⋅ θ

θ ← θ + v

224 ×
224 256 × 256
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AlexNet – ReLU vs tanh

 

Figure 1 of "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al.
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LeNet – 1998

AlexNet built on already existing CNN architectures, mostly on LeNet, which achieved 0.8% test
error on MNIST.

 

Figure 2 of "Gradient-Based Learning Applied to Document Recognition", http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
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Similarities in Primary Visual Cortex (V1) and CNNs

 

Figure 9.18 of "Deep Learning" book, https://www.deeplearningbook.org

The primary visual cortex recognizes Gabor functions.
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Similarities in Primary Visual Cortex (V1) and CNNs

 

Figure 9.19 of "Deep Learning" book, https://www.deeplearningbook.org

Similar functions are recognized in the first layer of a CNN.
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CNNs as Regularizers – Deep Prior

 

Figure 1 of "Deep Image Prior", https://arxiv.org/abs/1711.10925

22/56NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet



CNNs as Regularizers – Deep Prior

 

Figure 2 of "Deep Image Prior" supplementary materials, https://arxiv.org/abs/1711.10925

 

Figure 1 of "Deep Image Prior" supplementary materials, https://arxiv.org/abs/1711.10925

 

Random noise from  used on input; in

large inpainting, meshgrid is used instead and
the skip-connections are not used.

U [0,  ]10
1
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CNNs as Regularizers – Deep Prior

 

Figure 7 of "Deep Image Prior", https://arxiv.org/abs/1711.10925v2
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CNNs as Regularizers – Deep Prior

 

Figure 5 of "Deep Image Prior" supplementary materials, https://arxiv.org/abs/1711.10925

Deep Prior paper website with supplementary material
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VGG – 2014 (6.8% ILSVRC top-5 error)

 

Figure 1 of "Very Deep Convolutional Networks For Large-Scale Image Recognition",
https://arxiv.org/abs/1409.1556

 

Figure 1 of "Rethinking the Inception Architecture for Computer Vision",
https://arxiv.org/abs/1512.00567

 

 

Figure 2 of "Very Deep Convolutional Networks For Large-Scale Image Recognition",
https://arxiv.org/abs/1409.1556
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VGG – 2014 (6.8% ILSVRC top-5 error)

Training detail similar to AlexNet:

SGD with batch size 128 256, momentum 0.9, weight decay 0.0005

initial learning rate 0.01, manually divided by 10 when validation error rate stopped
improving

ReLU nonlinearities

dropout with rate 0.5 on the fully-connected layers (except for the output layer)

data augmentation using translations and horizontal reflections (choosing random 

 patches from  images)
additionally, a multi-scale training and evaluation was performed. During training, each
image was resized so that its smaller size was equal to , which was sampled uniformly

from 

during test time, the image was rescaled three times so that the smaller size was 

, respectively, and the results on the three images were averaged

224 ×
224 256 × 256

S

[256, 512]

256, 384, 512
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VGG – 2014 (6.8% ILSVRC top-5 error)

 

Table 3 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556

 

Table 4 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556
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VGG – 2014 (6.8% ILSVRC top-5 error)

 

Figure 2 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556
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Inception (GoogLeNet) – 2014 (6.7% ILSVRC top-5 error)

Inception block:

 

Figure 2 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842
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Inception (GoogLeNet) – 2014 (6.7% ILSVRC top-5 error)

Inception block with dimensionality reduction:

 

Figure 2 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842
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Inception (GoogLeNet) – 2014 (6.7% ILSVRC top-5 error)

 

Table 1 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842
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Inception (GoogLeNet) – 2014 (6.7% ILSVRC top-5 error)

 

Figure 3 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842

Auxiliary
classifiers
w/ weight
0.3.

 

Figure 3 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842
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Inception (GoogLeNet) – 2014 (6.7% ILSVRC top-5 error)

Training details:

SGD with momentum 0.9

fixed learning rate schedule of decreasing the learning rate by 4% each 8 epochs

during test time, the image was rescaled four times so that the smaller size was 

, respectively.

For each image, the left, center and right square was considered, and from each square six
crops of size  were extracted (4 corners, middle crop and the whole scaled-down

square) together with their horizontal flips, arriving at  crops per image

7 independently trained models were ensembled

256, 288, 320, 352

224 × 224
4 ⋅ 3 ⋅ 6 ⋅ 2 = 144
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Inception (GoogLeNet) – 2014 (6.7% ILSVRC top-5 error)

 

Table 3 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842
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Batch Normalization

Internal covariate shift refers to the change in the distributions of hidden node activations
due to the updates of network parameters during training.

Let  be -dimensional input. We would like to normalize each dimension as

Furthermore, it may be advantageous to learn suitable scale  and shift  to produce

normalized value

x = (x  , … ,x  )1 d d

 =x̂i  .
 Var[x  ]i

x  − E[x  ]i i

γ  i β  i

y  =i γ   +ix̂i β  .i
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Batch Normalization

Batch normalization of a mini-batch of  examples  is the following:

Inputs: Mini-batch ,  with default value 0.001 

Parameters:  initialized to ,  initialized to ; both trained by the optimizer 

Outputs: Normalized batch 

Batch normalization is added just before a nonlinearity , and it is useless to add bias before it

(because it will cancel out). Therefore, we replace  by

m (x , … ,x )(1) (m)

(x , … ,x )(1) (m) ε ∈ R
β 0 γ 1

(y , … ,y )(1) (m)

μ ←   x
m
1 ∑i=1

m (i)

σ ←2
  (x −m

1 ∑i=1
m (i) μ)2

←x̂(i) (x −(i) μ)/  σ + ε2

y ←(i) γ ⊙ +x̂(i) β

f

f(Wx+ b)

f(BN(Wx)).
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Batch Normalization during Inference

During inference,  and  are fixed (so that prediction does not depend on other examples in

a batch).

They could be precomputed after training on the whole training data, but in practice we
estimate  and  during training using an exponential moving average.

Additional Inputs: momentum  with default value of 0.99 

Additional Parameters:  initialized to ,  initialized to ; both updated manually

During training, also perform:

Batch normalization is then during inference computed as:

μ σ2

 μ̂ σ̂2

τ ∈ R
 μ̂ 0 σ̂2 1

 ←μ̂ τ  +μ̂ (1 − τ)μ
←σ̂2 τ +σ̂2 (1 − τ)σ2

←x̂(i) (x −(i)
 )/  μ̂ + εσ̂2

y ←(i) γ ⊙ +x̂(i) β

38/56NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet



Batch Normalization

When a batch normalization is used on a fully connected layer, each neuron is normalized
individually across the minibatch.

However, for convolutional networks we would like the normalization to honour their properties,
most notably the shift invariance. We therefore normalize each channel across not only the
minibatch, but also across all corresponding spacial/temporal locations.

 

Adapted from Figure 2 of "Group Normalization", https://arxiv.org/abs/1803.08494
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Inception with BatchNorm (4.8% ILSVRC top-5 error)

 

Figures 2 and 3 of "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", https://arxiv.org/abs/1502.03167

The BN-x5 and BN-x30 use 5/30 times larger initial learning rate, faster learning rate decay, no
dropout, weight decay smaller by a factor of 5, and several more minor changes.
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Inception v2 and v3 – 2015 (3.6% ILSVRC top-5 error)

 

Figure 1 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

 

 

Figure 3 of "Rethinking the Inception Architecture for Computer
Vision", https://arxiv.org/abs/1512.00567
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Inception v2 and v3 – 2015 (3.6% ILSVRC top-5 error)

 

Figure 5 of "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567

 

 

Figure 6 of "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567

 

 

Figure 7 of "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567
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Inception v2 and v3 – 2015 (3.6% ILSVRC top-5 error)

 

Table 1 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567
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Inception v2 and v3 – 2015 (3.6% ILSVRC top-5 error)

Training details:

RMSProp with momentum of  and 

batch size of 32 for 100 epochs

initial learning rate of 0.045, decayed by 6% every two epochs

gradient clipping with threshold 2.0 was used to stabilize the training

label smoothing was first used in this paper, with 

input image size enlarged to 

β = 0.9 ε = 1.0

α = 0.1

299 × 299
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Inception v2 and v3 – 2015 (3.6% ILSVRC top-5 error)

 

Table 3 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567
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Inception v2 and v3 – 2015 (3.6% ILSVRC top-5 error)

 

Table 4 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

 

Table 5 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567
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ResNet – 2015 (3.6% ILSVRC top-5 error)

 

Figure 1 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385
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ResNet – 2015 (3.6% ILSVRC top-5 error)

 

Figure 2 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

48/56NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet



ResNet – 2015 (3.6% ILSVRC top-5 error)

 

Figure 5 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385
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ResNet – 2015 (3.6% ILSVRC top-5 error)

 

Table 1 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

50/56NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet



ResNet – 2015 (3.6% ILSVRC top-5 error)

 

Figure 3 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

The residual connections cannot be applied
directly when number of channels increases.

The authors considered several alternatives, and
chose the one where in case of channels
increase a  convolution + BN is used on

the projections to match the required number of
channels. The required spacial resolution is
achieved by using stride 2.

1 × 1
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ResNet – 2015 (3.6% ILSVRC top-5 error)

 

Figure 4 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385
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ResNet – 2015 (3.6% ILSVRC top-5 error)

 

Figure 1 of "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913
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ResNet – 2015 (3.6% ILSVRC top-5 error)

Training details:

batch normalizations after each convolution and before activation

SGD with batch size 256 and momentum of 0.9

learning rate starts with 0.1 and “is divided by 10 when the error plateaus”
600k training iterations are used (120 epochs, each containing 1.281M images)
according to one graph (and to their later paper) they decay at 25% and 50% of the
training, so after epochs 30 and 60

other concurrent papers also use exponential decay or 25%-50%-75%

no dropout, weight decay 0.0001

during training, an image is resized with its shorter side randomly sampled in the range 

, and a random  crop is used

during testing, 10-crop evaluation strategy is used
for the best results, the scores across multiple scales are averaged – the images are
resized so that their smaller size is in 

[256, 480] 224 × 224

{224, 256, 384, 480, 640}
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ResNet – 2015 (3.6% ILSVRC top-5 error)

 

Table 4 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

 

 

Table 5 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

The ResNet-34 B uses the  convolution on residual connections with different number of

input and output channels; ResNet-34 C uses this convolution on all residual connections.
Variant B is used for ResNet-50/101/152.

1 × 1
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Main Takeaways

Convolutions can provide
local interactions in spacial/temporal dimensions
shift invariance
much less parameters than a fully connected layer

Usually repeated  convolutions are enough, no need for larger filter sizes.

When pooling is performed, double the number of channels (i.e., the first convolution
following the pooling layer will have twice as many output channels).

If your network is deep enough (the last hidden neurons have a large receptive fields), final
fully connected layers are not needed, and global average pooling is enough.

Batch normalization is a great regularization method for CNNs, allowing removal/decrease
of dropout and  regularization.

Small weight decay (i.e.,  regularization) of usually 1e-4 is still useful for regularizing

convolutional kernels.

3 × 3

L2

L2
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