
NPFL114, Lecture 3

Training Neural Networks II

Milan Straka

February 27, 2023

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Putting It All Together

Let us have a dataset with training, validation, and test sets, each containing examples .

Depending on , consider one of the following output activation functions:

If , we can use a neural network with an input layer of size , some number of hidden

layers with nonlinear activations, and an output layer of size (either 1 or the number of

classes) with the mentioned output function.

BTW, there are of course many functions, which could be used as output activations instead of

 and ; however, and are almost universally used. One of the reason is

that they can be derived using the maximum-entropy principle from a set of conditions, see the
Machine Learning for Greenhorns (NPFL129) lecture 5 slides. Additionally, they are the inverses
of canonical link functions of the Bernoulli and categorical distributions, respectively.

(x, y)
y

⎩
⎨

⎧none
σ

softmax

 if y ∈ R and we assume variance is constant everywhere,
 if y is a probability of an outcome,
 if y is a gold class index out of K classes (or a full distribution).

x ∈ RD D

O

K

σ softmax σ softmax

2/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

https://ufal.mff.cuni.cz/~straka/courses/npfl129/2223/slides/?05
https://en.wikipedia.org/wiki/Generalized_linear_model#Link_function

Putting It All Together – Single-Hidden-Layer MLP

We have

where

 is a matrix of weights,

 is a vector of biases,

 is an activation function.

The weight matrix is also called a kernel.

The biases define general behaviour in case of
zero/very small input.

Transformations of type are

called affine instead of linear.

h =i f x W + b

(1) (
j

∑ j j,i
(1)

i
(1))

W ∈(1) RD×H

b ∈(1) RH
f (1)

x W +T (1) b

3/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Putting It All Together – Single-Hidden-Layer MLP

Similarly

with

 another matrix of weights,

 another vector of biases,

 being an output activation function.

o =i f h W + b

(2) (
j

∑ j j,i
(2)

i
(2))

W ∈(2) RH×O

b ∈(2) RO
f (2)

4/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Putting It All Together – Parameters and Training

Altogether, the , and form the parameters of the model, which we

denote as a vector in the model description and machine learning algorithms.

In our case, the parameters have a total size of .

To train the network, we repeatedly sample training examples and perform an SGD (or any

of its adaptive variants), updating the parameters to minimize the loss derived by MSE

:

We set the hyperparameters (size of the hidden layer, hidden layer activation function, learning
rate, …) using performance on the validation set and evaluate generalization error on the test
set.

W ,W , b(1) (2) (1) b(2)

θ

D × H + H × O + H + O

m

E(θ) = E L(f(x; θ), y)(x,y)∼ p̂data

θ ←i θ −i α , or in vector notation, θ ←
∂θ i

∂E(θ)
θ − α∇ E(θ).θ

5/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Putting It All Together – Batches

We always process data in batches, i.e., matrices whose rows are the batch examples.

We represent the network in a vectorized way (tensorized would be more accurate).

Instead of , we compute

The derivatives

are then batches of matrices (called Jacobians) or even higher-dimensional tensors.

H =b,i f X W + b

(1) (∑j b,j j,i
(1)

i
(1))

H

O

= f XW + b ,(1) ((1) (1))

= f HW + b = f f XW + b W + b .(2) ((2) (2)) (2) ((1) ((1) (1)) (2) (2))

 , , …
∂X

∂f XW + b(1) ((1) (1))

∂W (1)

∂f XW + b(1) ((1) (1))

6/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Putting It All Together – Computation Graph

 →

X

@

W1

+

b1

f1

@

W2

+

b2

f2

L

y

7/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Putting It All Together – Designing and Training Neural

Designing and training a neural network is not a one-shot action, but instead an iterative
procedure.

When choosing hyperparameters, it is important to verify that the model does not underfit
and does not overfit.

Underfitting can be checked by trying increasing model capacity or training longer, and
observing whether the training performance increases.

Overfitting can be tested by observing train/dev difference, or by trying stronger
regularization and observing whether the development performance improves.

Regarding hyperparameters:

We need to set the number of training epochs so that development performance stops
increasing during training (usually later than when the training performance plateaus).

Generally, we want to use large enough batch size, but such a one which does not slow us
down too much (GPUs sometimes allow larger batches without slowing down training).
However, because larger batch size implies less noise in the gradient, small batch size
sometimes work as regularization (especially for vanilla SGD algorithm).

8/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

High Level Overview

Classical

('90s)
Deep Learning

Architecture CNN, RNN, Transformer, VAE, GAN, …

Activation func. , ReLU, LReLU, GELU, Swish (SiLU), SwiGLU, …

Output function none, none, ,

Loss function MSE NLL (or cross-entropy or KL-divergence)

Optimization
SGD,

momentum
SGD (+ momentum), RMSProp, Adam, SGDW, AdamW, …

Regularization ,
, Dropout, Label smoothing, BatchNorm, LayerNorm,

MixUp, WeightStandardization, …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

tanh,σ tanh

σ σ softmax

L2 L1 L2

9/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Metrics and Losses

During training and evaluation, we use two kinds of error functions:

loss is a differentiable function used during training,
NLL, MSE, Huber loss, Hinge, …

metric is any (and very often non-differentiable) function used during evaluation,
any loss, accuracy, F-score, BLEU, …
possibly even human evaluation.

In TensorFlow, the losses and metrics are available in tf.losses and tf.metrics (aliases for
tf.keras.losses and tf.keras.metrics).

10/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

TF Losses

The tf.losses offer two sets of APIs. The newer API ones are loss classes like

tf.losses.MeanSquaredError(

 reduction=tf.losses.Reduction.AUTO, name='mean_squared_error'

)

The created objects are subclasses of tf.losses.Loss and can be always called with three
arguments:

__call__(y_true, y_pred, sample_weight=None)

which returns the loss of the given data, reduced using the specified reduction. If
sample_weight is given, it is used to weight (multiply) the individual batch example losses
before reduction.

tf.losses.Reduction.SUM_OVER_BATCH_SIZE, which is the default of .AUTO;
tf.losses.Reduction.SUM;
tf.losses.Reduction.NONE.

11/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

TF Cross-entropy Losses

The cross-entropy losses need to specify also the distribution in question:

tf.losses.BinaryCrossentropy: the gold and predicted distributions are Bernoulli
distributions (i.e., a single probability);
tf.losses.CategoricalCrossentropy: the gold and predicted distributions are
categorical distributions;
tf.losses.SparseCategoricalCrossentropy: a special case, where the gold
distribution is one-hot distribution (i.e., a single correct class), which is represented as the
gold class index; therefore, it has one less dimension than the predicted distribution.

These losses expect probabilities on input, but offer from_logits argument, which can be
used to indicate that logits are used instead of probabilities.

Old losses API
In addition to the loss objects, tf.losses offers methods like
tf.losses.mean_squared_error, which process two arguments y_true and y_pred and
do not reduce the batch example losses.

12/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

TF Metrics

There are two important differences between metrics and losses.

1. metrics may be non-differentiable;
2. metrics aggregate results over multiple batches.

The metric objects are subclasses of tf.metrics.Metric and offer the following methods:

update_state(y_true, y_pred, sample_weight=None) updates the value of the
metric and stores it;
result() returns the current value of the metric;
reset_states() clears the stored state of the metric.

The most common pattern is using the provided method

__call__(y_true, y_pred, sample_weight=None)

which is a combination of update_state followed by a result().

13/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

TF Metrics

Apart from analogues of the losses

tf.metrics.MeanSquaredError

tf.metrics.BinaryCrossentropy

tf.metrics.CategoricalCrossentropy

tf.metrics.SparseCategoricalCrossentropy

the tf.metrics module provides

tf.metrics.Mean computing averaged mean;
tf.metrics.Accuracy returning accuracy, which is an average number of examples where
the prediction is equal to the gold value;
tf.metrics.BinaryAccuracy returning accuracy of predicting a Bernoulli distribution
(the gold value is 0/1, the prediction is a probability);
tf.metrics.CategoricalAccuracy returning accuracy of predicting a Categorical
distribution (the argmaxes of gold and predicted distributions are equal);
tf.metrics.SparseCategoricalAccuracy is again a special case of
CategoricalAccuracy, where the gold distribution is represented as the gold class index.

14/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Derivative of MSE Loss

Given the MSE loss of

the derivative with respect to the model output is simply:

L = (f(x; θ) − y) ,
2

 =
∂f(x; θ)

∂L
2(f(x; θ) − y).

15/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Derivative of Softmax MLE Loss

o1

o2

o3

o4

z1

z2

z3

z4

Softmax

Let us have a softmax output layer with

o =i .
 e∑j
z j

ez i

16/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Derivative of Softmax MLE Loss

Consider now the MLE estimation. The loss for gold class index is then

The derivation of the loss with respect to is then

Therefore, , where is the one-hot encoding (a vector with 1 at the index

 and 0 everywhere else).

gold

L(softmax(z), gold) = − log o .gold

z

 = − log =
∂z i

∂L
∂z i

∂
[

 e∑j
z j

ez gold

]

=

=

− +

∂z i

∂z gold

∂z i

∂ log(e)∑j
z j

− [gold = i] + e
 e∑j
z j

1 z i

− [gold = i] + o .i

 =∂z
∂L o− 1 gold 1 gold

gold

17/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Derivative of Softmax MLE Loss

18/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Derivative of Softmax and Sigmoid MLE Losses

In the previous case, the gold distribution was sparse, with only one target probability being 1.

In the case of general gold distribution , we have

Repeating the previous procedure for each target probability, we obtain

Sigmoid
Analogously, for we get , where is the target gold probability.

The result follows automatically from the fact that can be computed using as

g

L(softmax(z), g) = − g log o .∑
i

i i

 =
∂z
∂L

o− g.

o = σ(z) =∂z
∂L o − g g

σ softmax

softmax ([0 x]) =1 =
e + ex 0

ex
 =

1 + e−x

1
σ(x).

19/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Derivative of Softmax MLE Loss

20/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization

As already mentioned, regularization is any change in the machine learning algorithm that is
designed to reduce generalization error but not necessarily its training error.

Regularization is usually needed only if training error and generalization error are different. That
is often not the case if we process each training example only once. Generally the more training
data, the better generalization performance without any explicit regularization.

Early stopping

, regularization

Dataset augmentation

Ensembling

Dropout

Label smoothing

L2 L1

21/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Early Stopping

Figure 7.3 of "Deep Learning" book, https://www.deeplearningbook.org

22/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

L2 Regularization

-regularization is one of the oldest regularization techniques, which tries to prefer “simpler”

models by endorsing models with smaller weights.

Concretely, -regularization (also called Tikhonov regularization or weight decay)

penalizes models with large weights by utilizing the following error function:

for a suitable (usually very small) .

Note that the -regularization is usually not applied to the bias, only to the “proper” weights,

because we cannot really overfit via the bias.

L2

L2

(θ;X) =E
~

E(θ;X) + ∥θ∥

2
λ

2
2

λ

L2

23/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

L2 Regularization

https://miro.medium.com/max/2880/1*0-
fsK9RkqL3rogo2SnZPCg.png

One way to look at -regularization is that it promotes smaller

changes of the model (the Jacobian of a single layer with respect to the

inputs depends on the weight matrix, because).

Considering the data points on the right, we present mean squared
errors and norms of the weights for three linear regression models:

https://miro.medium.com/max/2880/1*DVFYChNDMNlS_7CVq2PhSQ.png

https://miro.medium.com/max/2880/1*UolRlKXikCz7SFsPfSZrYQ.png

L2

 =∂x
∂x WT W

L2

24/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

L2 Regularization

Figures 11.4, 11.5 of "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", https://hastie.su.domains/ElemStatLearn/

25/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

L2 Regularization as MAP

Another way to arrive at regularization is to utilize Bayesian inference.

With MLE we have

Instead, we may want to maximize maximum a posteriori (MAP) point estimate:

Using Bayes' theorem stating that

we can rewrite the MAP estimate to

L2

θ =MLE arg max p(X; θ).θ

θ =MAP arg max p(θ∣X).θ

p(θ∣X) = ,
p(X)

p(X∣θ)p(θ)

θ =MAP arg max p(X∣θ)p(θ).θ

26/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

L2 Regularization as MAP

The are prior probabilities of the parameter values (our preference).

A common choice of the preference is the small weights preference, where the mean is assumed
to be zero, and the variance is assumed to be . Given that we have no further information,

we employ the maximum entropy principle, which results in , so that

 Then

By substituting the probability of the Gaussian prior, we get

p(θ)

σ2

p(θ) =i N (θ ; 0,σ)i
2

p(θ) = N (θ ; 0,σ) =∏i i
2 N (θ;0,σ I).2

θ MAP = arg max p(X; θ)p(θ)θ

= arg max p(x ; θ)p(θ)θ ∏
i=1

m (i)

= arg min (− log p(x ; θ) − log p(θ)).θ ∑
i=1

m (i)

θ =MAP (−
θ

arg min
i=1

∑
m

log p(x ; θ)+ log(2πσ) +(i)

2
∣θ∣ 2

).
2σ2

∥θ∥ 2
2

27/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

L2 Regularization

The resulting parameter update during SGD with -regularization is

This update can be rewritten to

Termilogically, the update of weights in these two formulas is called weight decay, because the
weights are multiplied by a factor , while adding the -norm of the parameters to

the loss is called -regularization.

For SGD, they are equivalent – but once you add momentum or normalization by the estimated
second moment (RMSProp, Adam), weight decay and -regularization are different.

L2

θ ←i θ −i α −
∂θ i

∂E
αλθ , or in vector notation, θ ←i θ − α∇ E(θ) −θ αλθ.

θ ←i θ (1 −i αλ) − α , or in vector notation, θ ←
∂θ i

∂E
θ(1 − αλ) − α∇ E(θ).θ

1 − αλ < 1 L2

L2

L2

28/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

L2 Regularization – AdamW

It has taken more than three years to realize that using Adam with -regularization does not

work well. At the end of 2017, AdamW was proposed, which is Adam with weight decay.

Adam with -regularization, AdamW

, ,

Repeat until stopping criterion is met:
Sample a minibatch of training examples

,

L2

L2

s ← 0 r ← 0 t ← 0

m (x , y)(i) (i)

g ← ∇ (L(f(x ; θ), y) +
m
1 ∑i θ

(i) (i)
 ∥θ∥)2

λ 2

t ← t+ 1
s ← β s+1 (1 − β)g1

r ← β r +2 (1 − β)g2
2

←ŝ s/(1 − β)1
t ←r̂ r/(1 − β)2

t

θ ← θ − −
 +εr̂

α t ŝ α λθt

29/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

L2 Regularization – AdamW

In some variants of the algorithm (notably in the original AdamW paper), the authors proposed
not to use the learning rate in the weight decay (to decouple the influence of the learning rate
on the weight decay).

However, this would mean that if you utilize learning rate decay, you would need to apply it
manually also on the weight decay. So currently, both the implementation of
tf.optimizers.experimental.AdamW (it will move to tf.optimizers.AdamW in TF
2.12) and torch.optim.AdamW multiplies the (possibly decaying) learning rate and the
(constant) weight decay in the update.

θ ← θ − −
 + εr̂

α t
ŝ α λθt

30/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

L1 Regularization

Similar to -regularization, but could prefer low metric of parameters. We could therefore

minimize

The corresponding SGD update is then

Empirically, -regularization does not work well with deep neural networks and is essentially

never used, as far as I know.

L2 L1

(θ;X) =E
~

E(θ;X) + λ∥θ∥ .1

θ ←i θ −i α −
∂θ i

∂EJ
min (αλ, ∣θ ∣) sign(θ).i i

L1

31/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Dataset Augmentation

For some data, it is cheap to generate slightly modified examples.

Image processing: translations, horizontal flips, scaling, rotations, color adjustments, …
Mixup (appeared in 2017)

Figure 1b of "mixup: Beyond Empirical Risk Minimization", https://arxiv.org/abs/1710.09412

Speech recognition: noise, frequency change, …

More difficult for discrete domains like text.

32/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Ensembling

Ensembling (also called model averaging or in some contexts bagging) is a general technique
for reducing generalization error by combining several models. The models are usually combined
by averaging their outputs (either distributions or output values in case of a regression).

The main idea behind ensembling it that if models have uncorrelated (independent) errors, then
by averaging model outputs the errors will cancel out. If we denote the prediction of the

model on a training example as , so that is the model error on

example , the mean square error of the model is

Because for uncorrelated identically distributed random values we have

we get that , so the errors should decrease with the

increasing number of models.

ith

(x, y) y (x) =i y + ε (x)i ε (x)i

x E[(y (x) −i y)] =2 E[ε (x)].i
2

x i

Var x =(∑ i) Var(x), Var(a ⋅∑ i x) = a Var(x),2

Var (ε) =
n
1 ∑i i (Var(ε))

n
1 ∑i n

1
i

33/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Ensembling Visualization

Consider ensembling predictions generated uniformly on a planar disc:

34/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Ensembling

Figure 7.5 of "Deep Learning" book,
https://www.deeplearningbook.org

There are many possibilities how to train the models to ensemble:

For neural network models, training models with independent random initialization is usually
enough, given that the loss has many local minima, so the models tend to be quite
independent just when using different random initialization.

Algorithms with convex loss functions usually converge to
the same optimum independent of randomization. In that
case, we can use bagging (bootstrap aggregation), where
we generate different training data for each model by
sampling with replacement.

Average models from last hours/days of training.

However, ensembling usually has high performance
requirements.

35/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Dropout

How to design good universal features?

In reproduction, evolution is achieved using gene swapping. The genes must not be just
good with combination with other genes, they need to be universally good.

Idea of dropout by (Srivastava et al., 2014), in preprint since 2012.

When applying dropout to a layer, we drop each neuron independently with a probability of

(usually called dropout rate). To the rest of the network, the dropped neurons have value of
zero.

Figure 4 of "Multiple Instance Fuzzy Inference Neural Networks" by Amine B. Khalifa et al.

p

36/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Dropout

Dropout is performed only when training, during inference no nodes are dropped. However, in
that case we need to scale the activations down by a factor of to account for more

neurons than usual.

1 − p

37/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Dropout

In practice, the dropout is implemented by instead scaling the activations up during training
by a factor of and then doing nothing during inference.1/(1 − p)

38/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Dropout as Ensembling

Figure 7.6 of "Deep Learning" book, https://www.deeplearningbook.org

We can understand dropout as a layer
obtaining inputs and multiplying them

element-wise by a vector of Bernoulli random
variables , where each is 0 with a

probability :

During training, we sample randomly.

During inference, we compute an expectation
over all :

In order for the inference to be an identity,
we can use .

x

z z i

p

dropout(x∣z) = x⊙ z.

z

z

E [x⊙ z]z = p ⋅ x⊙ 0+ (1 − p) ⋅ x⊙ 1
= (1 − p) ⋅ x.

dropout(x∣z) = ⋅1−p
1 x⊙ z

39/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Dropout Implementation

def dropout(inputs, rate=0.5, training=False):

 def do_inference():

 return inputs

 def do_train():

 random_noise = tf.random.uniform(tf.shape(inputs))

 mask = tf.cast(random_noise >= rate, tf.float32)

 return inputs * mask / (1 - rate)

 if training:

 return do_train()

 else:

 return do_inference()

40/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Dropout Effect

Figure 7 of "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

41/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Label Smoothing

Problem with softmax MLE loss is that it is never satisfied, always pushing the gold label
probability higher (but it saturates near 1).

This behaviour can be responsible for overfitting, because the network is always commanded to
respond more strongly to the training examples, not respecting similarity of different training
examples.

Ideally, we would like a full (non-sparse) categorical distribution of classes for training examples,
but that is usually not available.

We can at least use a simple smoothing technique, called label smoothing, which allocates some
small probability volume uniformly for all possible classes.

The target distribution is then

α

(1 − α)1 +gold α .
number of classes

1

42/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Label Smoothing

43/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Regularization – Good Defaults

When you need to regularize (your model is overfitting), then a good default strategy is to:

use data augmentation if possible;

use dropout on all hidden dense layers (not on the output layer), good default dropout rate
is 0.5 (or use 0.3-0.1 if the model is underfitting);

use weight decay (AdamW) for convolutional networks;

use label smoothing (start with 0.1);

if you require best performance and have a lot of resources, also perform ensembling.

44/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Convergence

The training process might or might not converge. Even if it does, it might converge slowly or
quickly.

A major issue of convergence of deep networks is to make sure that the gradient with respect
to all parameters is reasonable at all times, i.e., it does not decrease or increase too much with
depth or in different batches.

There are many factors influencing the gradient, convergence and its speed, we now mention
three of them:

saturating nonlinearities,
parameter initialization strategies,
gradient clipping.

45/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Convergence – Saturating Non-linearities

46/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Convergence – Parameter Initialization

Neural networks usually need random initialization to break symmetry.

Biases are usually initialized to a constant value, usually 0.

Weights are usually initialized to small random values, either with uniform or normal
distribution.

The scale matters for deep networks!

Originally, people used distribution.

Xavier Glorot and Yoshua Bengio, 2010: Understanding the difficulty of training deep
feedforward neural networks.

The authors theoretically and experimentally show that a suitable way to initialize a

 matrix is

U − , [
 n

1
 n

1]

Rn×m

U − , .[

m + n

6

m + n

6
]

47/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Convergence – Parameter Initialization

Figure 6 of "Understanding the difficulty of training deep feedforward neural networks", http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

48/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Convergence – Parameter Initialization

Figure 7 of "Understanding the difficulty of training deep feedforward neural networks", http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

49/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Convergence – Gradient Clipping

Figure 8.3 of "Deep Learning" book, https://www.deeplearningbook.org

50/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

Convergence – Gradient Clipping

Figure 10.17 of "Deep Learning" book, https://www.deeplearningbook.org

Using a given maximum norm, we may clip the gradient.

Clipping can be performed per weight (parameter clipvalue of
tf.optimizers.Optimizer), per variable (clipnorm) or for the gradient as a whole
(global clipnorm).

g ← {
g

c ∥g∥
g

 if ∥g∥ ≤ c,
 if ∥g∥ > c.

51/51NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence

