
NPFL114, Lecture 2

Training Neural Networks

Milan Straka

February 20, 2023

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Refresh – Neural Networks

Neural network describes a computation, which gets an input tensor and produces an
output.

For the time being, the input tensor has a fixed size.
The input tensor is usually a vector, but it can be 2D/3D/4D tensor.

images, video, time sequences like speech, …

The output usually describes a distribution.
normal distribution for regression
Bernoulli for binary classification
categorical for multiclass classification

The basic units are nodes, composed in an acyclic graph.

The edges have weights, nodes have activation functions.

Nodes of neural networks are usually composed in layers.

2/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Machine Learning Basics

We usually have a training set, which is assumed to consist of examples generated
independently from a data-generating distribution.

The goal of optimization is to match the training set as well as possible.

However, the goal of machine learning is to perform well on previously unseen data, to achieve
lowest generalization error or test error. We typically estimate it using a test set of examples
independent of the training set, but generated by the same data-generating distribution.

The No free lunch theorem (Wolpert, 1996) states that averaging over all possible data
distributions, every classification algorithm achieves the same overall error when processing
unseen examples. In a sense, no machine learning algorithm is universally better than others.

3/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Machine Learning Basics

Challenges in machine learning:

underfitting (the model is “too weak”, bad performance even on training set)
overfitting (the model is “too strong”, learned rules are too specific and do not generalize)

Figure 5.2 of "Deep Learning" book, https://www.deeplearningbook.org

4/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Machine Learning Basics

We can control whether a model underfits or overfits by modifying its capacity.

representational capacity (what the model could represent, depends on the model size)

effective capacity (what the model actually learns, depends on training, regularization, …)

Figure 5.3 of "Deep Learning" book, https://www.deeplearningbook.org

5/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Machine Learning Basics

Any change in a machine learning algorithm that is designed to reduce generalization error (but
not necessarily its training error) is called regularization.

 regularization (also called weight decay) penalizes models with large weights (using

a penalty of).

Figure 5.5 of "Deep Learning" book, https://www.deeplearningbook.org

L2

 ∥θ∥2
1 2

6/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Machine Learning Basics

Hyperparameters are not adapted by a learning algorithm itself, while the model parameters
(weights, biases) are adapted by it.

Usually a development set, also called a validation set, is used to estimate the generalization
error, allowing to update hyperparameters accordingly.

7/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Loss Function

A model is usually trained in order to minimize the loss on the training data.

Assuming that a model computes using parameters , the mean square error of given

 examples is computed as

A common principle used to design loss functions is the maximum likelihood principle.

f(x; θ) θ

N (x , y), (x , y), … , (x , y)(1) (1) (2) (2) (N) (N)

 (f(x ; θ) −
N

1

i=1

∑
N

(i) y) .(i)
2

8/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Maximum Likelihood Estimation

Let be training data drawn independently from the data-generating

distribution .

We denote the empirical data distribution as , where

Let be a family of distributions.

If the weights are fixed, is a probability distribution.

If we instead consider the fixed training data , then

is called the likelihood. Note that even if the value of the likelihood is in range , it is

not a probability, because the likelihood is not a probability distribution.

X = {x ,x , … ,x }(1) (2) (N)

p data

 p̂data

 (x)p̂data =def
 .

N

 {i : x = x}

(i)

p (x; θ)model

p (x; θ)model

X

L(θ) = p (X; θ) =model p (x ; θ)∏
i=1

N

model
(i)

[0, 1]

9/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Maximum Likelihood Estimation

Let be training data drawn independently from the data-generating

distribution . We denote the empirical data distribution as and let be a

family of distributions.

The maximum likelihood estimation of is:

X = {x ,x , … ,x }(1) (2) (N)

p data p̂data p (x; θ)model

θ

=θ MLE p (X; θ) =
θ

arg max model p (x ; θ)
θ

arg max∏
i=1

N

model
(i)

= − log p (x ; θ)
θ

arg min∑
i=1

N

model
(i)

= E [− log p (x; θ)]
θ

arg min x∼ p̂data model

= H((x), p (x; θ))
θ

arg min p̂data model

= D ((x)∥p (x; θ)) +
θ

arg min KL p̂data model H((x))p̂data

10/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Maximum Likelihood Estimation

MLE can be easily generalized to the conditional case, where our goal is to predict given :

where the conditional entropy is defined as and

the conditional cross-entropy as .

The resulting loss function is called negative log-likelihood (NLL), or cross-entropy, or
Kullback-Leibler divergence.

y x

θ MLE = p (Y∣X; θ) = − log p (y ∣x ; θ)
θ

arg max model
θ

arg min∑
i=1

N

model
(i) (i)

= − log p (y ∣x ; θ)
θ

arg min∑
i=1

N

model
(i) (i)

= E [− log p (y∣x; θ)]
θ

arg min (x,y)∼ p̂data model

= H((y∣x), p (y∣x; θ))
θ

arg min p̂data model

= D ((y∣x)∥p (y∣x; θ)) + H((y∣x))
θ

arg min KL p̂data model p̂data

H() =p̂data E [− log((y∣x; θ))](x,y)∼ p̂data p̂data

H(, p) =p̂data model E [− log(p (y∣x; θ))](x,y)∼ p̂data model

11/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Estimators and Bias

An estimator is a rule for computing an estimate of a given value, often an expectation of
some random value(s). For example, we might estimate mean of a random variable by sampling
a value according to its probability distribution.

The bias of an estimator is the difference of the expected value of the estimator and the true
value being estimated. If the bias is zero, we call the estimator unbiased, otherwise biased.

If we have a sequence of estimates, it might also happen that the bias converges to zero.
Consider the well-known sample estimate of variance. Given independent and identically
distributed random variables , we might estimate the mean and the variance as

Such a mean estimate is unbiased, but the estimate of the variance is biased, because

; however, the bias of this estimate converges to zero for increasing .

Also, an unbiased estimator does not necessarily have a small variance – in some cases, it can
have a large variance, so a biased estimator with a smaller variance might be preferred.

x , … , x 1 N

 =μ̂ x , =
N

1
∑

i
i σ̂2

 (x −
N

1
∑

i
i) .μ̂ 2

E[] =σ̂2

(1 −)σ
N
1 2 N

12/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Properties of Maximum Likelihood Estimation

Assume that the true data-generating distribution lies within the model family

, and assume there exists a unique such that .

MLE is a consistent estimator. If we denote to be the parameters found by MLE for a

training set with examples generated by the data-generating distribution, then

converges in probability to .

Formally, for any , as .

MLE is in a sense the most statistically efficient. For any consistent estimator, let us
consider the average distance of and : .

It can be shown (Rao 1945, Cramér 1946) that no consistent estimator has lower mean
squared error than the maximum likelihood estimator.

Therefore, for reasons of consistency and efficiency, maximum likelihood is often considered the
preferred estimator for machine learning.

p data

p (•; θ)model θ p data p =data p (•; θ)model p data

θ m

m θ m

θ p data

ε > 0 P (∥θ −m θ ∥ >p data ε) → 0 m → ∞

θ m θ p data E [∥θ −x ,…,x ∼p 1 m data m θ ∥]p data
2

13/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Mean Square Error as MLE

During regression, we predict a number, not a real probability distribution. In order to generate
a distribution, we might consider a distribution with the mean of the predicted value and a fixed
variance – the most general such a distribution is the normal distribution.

https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg

σ2

14/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Mean Square Error as MLE

Let be the output of our model, which we assume to be the mean of .

We define as for some fixed . The MLE then results in

f(x; θ) y

p(y∣x) N (y; f(x; θ),σ)2 σ2

https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2465539/

= p(Y∣X; θ)
θ

arg max − log p(y ∣x ; θ)
θ

arg min
i=1

∑
N

(i) (i)

= − log e
θ

arg min
i=1

∑
N

2πσ2

1 − 2σ2
(y −f (x ;θ))(i) (i) 2

= −N log(2πσ) −
θ

arg min 2 −1/2
 −

i=1

∑
N

2σ2

(y − f(x ; θ))(i) (i) 2

= =
θ

arg min
i=1

∑
N

2σ2

(y − f(x ; θ))(i) (i) 2

 (f(x ; θ) −
θ

arg min
N

1

i=1

∑
N

(i) y) .(i) 2

15/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Gradient Descent

Figure 4.1 of "Deep Learning" book, https://www.deeplearningbook.org

Let a model compute using parameters , and for a given loss function denote

Assuming we are minimizing an error
function

we may use gradient descent:

The constant is called a learning rate

and specifies the “length” of a step we
perform in every iteration of the gradient
descent.

f(x; θ) θ L

E(θ) = E L(f(x; θ), y).(x,y)∼ p̂data

 E(θ),
θ

arg min

θ ← θ − α∇ E(θ).θ

α

16/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Gradient Descent Variants

The gradient of the error function can be computed as

(Standard/Batch) Gradient Descent: We use all training data to compute .

Stochastic (or Online) Gradient Descent: We estimate using a single random

example from the training data. Such an estimate is unbiased, but very noisy.

Minibatch SGD: Trade-off between gradient descent and SGD – the expectation in

 is estimated using random independent examples from the training data.

E(θ)

∇ E(θ) =θ E ∇ L(f(x; θ), y).(x,y)∼ p̂data θ

∇ E(θ)θ

∇ E(θ)θ

∇ E(θ) ≈θ ∇ L(f(x; θ), y) for a randomly chosen (x, y) from .θ p̂data

∇ E(θ)θ m

∇ E(θ) ≈θ ∇ L(f(x ; θ), y) for randomly chosen (x , y) from .
m

1

i=1

∑
m

θ
(i) (i) (i) (i) p̂data

17/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Stochastic Gradient Descent Convergence

Assume that we perform a stochastic gradient descent, using a sequence of learning rates ,

and using a noisy estimate of the real gradient :

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function is convex and continuous, then SGD converges to the unique optimum
almost surely if the sequence of learning rates fulfills the following conditions:

Note that the second condition implies that .

For nonconvex loss functions, we can get guarantees of converging to a local optimum only.
However, note that finding the global minimum of an arbitrary function is at least NP-hard.

α i

J(θ) ∇ E(θ)θ

θ ←i+1 θ −i α J(θ).i i

α i

 α =
i

∑ i ∞, α <
i

∑ i
2 ∞.

α →i 0

18/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Stochastic Gradient Descent Convergence

Convex functions mentioned on the previous slide are such that for and real ,

https://upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg

https://commons.wikimedia.org/wiki/File:Partial_func_eg.svg

A twice-differentiable function of a single variable is convex iff its second derivative is always
nonnegative. (For functions of multiple variables, the Hessian must be positive semi-definite.)

A local minimum of a convex function is always a global minimum.

Well-known examples of convex functions are , , , MSE, +NLL, +NLL.

u,v 0 ≤ t ≤ 1

f(tu+ (1 − t)v) ≤ tf(u) + (1 − t)f(v).

x2 ex − log x σ softmax
19/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Loss Function Visualization

Visualization of loss function of ResNet-56 (0.85 million parameters) with/without skip connections:

Figure 1 of "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913

20/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Loss Function Visualization

Visualization of loss function of ResNet-110 without skip connections and DenseNet-121:

Figure 4 of "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913

21/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Backpropagation

Assume we want to compute partial derivatives of a given loss function .

The gradient computation is based on the chain rule of derivatives: .

L

 =
∂x i

∂L

∂y
∂L

∂x i

∂y

22/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Backpropagation Algorithm

Forward Propagation

Input: Network with nodes numbered in topological order.

Each node's value is computed as for being a set of values of the

predecessors of .

Output: Value of .

For :

Return

u ,u , … ,u(1) (2) (n)

u =(i) f (A)(i) (i) A(i)

P (u)(i) u(i)

u(n)

i = 1, … ,n
A ←(i) {u ∣j ∈(j) P (u)}(i)

u ←(i) f (A)(i) (i)

u(n)

23/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Backpropagation Algorithm

Simple Variant of Backpropagation

Input: The network as in the Forward propagation algorithm.

Output: Partial derivatives of with respect to all .

Run forward propagation to compute all

For :

Return

In practice, we do not usually represent networks as collections of scalar nodes; instead we
represent them as collections of tensor functions – most usually functions . Then

 is a Jacobian matrix. However, the backpropagation algorithm is analogous.

g =(i)
 ∂u(i)

∂u(n)
u(n) u(i)

u(i)

g =(n) 1
i = n − 1, … , 1
g ←(i)

 g ∑j:i∈P (u)(j)
(j)

∂u(i)
∂u(j)

(g , g , … , g)(1) (2) (n)

f : R →n Rm

 ∂x
∂f (x)

24/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Neural Network Activation Functions

Hidden Layers Derivatives
:

:

ReLU:

σ

 =
∂x

∂σ(x)
σ(x) ⋅ (1 − σ(x))

tanh

 =
∂x

∂ tanh(x)
1 − tanh(x)2

 =
∂x

∂ ReLU(x)

⎩
⎨
⎧ 1

NaN
0

if x > 0
if x = 0
if x < 0⎭

⎬
⎫

 assuming (0)=0∂x
∂ ReLU(x)

[x > 0] = [ReLU(x) > 0]

25/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) Algorithm

Input: NN computing function with initial value of parameters .

Input: Learning rate .

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of training examples

f(x; θ) θ

α

θ

m (x , y)(i) (i)

g ← ∇ L(f(x ; θ), y)
m
1 ∑i θ

(i) (i)

θ ← θ − αg

26/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

SGD With Momentum

Figure 8.5 of "Deep Learning" book, https://www.deeplearningbook.org

SGD With Momentum

Input: NN computing function with initial

value of parameters .

Input: Learning rate , momentum .

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of training examples

A nice writeup about momentum can be found on https://distill.pub/2017/momentum/.

f(x; θ)
θ

α β

θ

v ← 0

m

(x , y)(i) (i)

g ← ∇ L(f(x ; θ), y)
m
1 ∑i θ

(i) (i)

v ← βv − αg

θ ← θ + v

27/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

https://distill.pub/2017/momentum/

SGD With Nesterov Momentum

https://github.com/cs231n/cs231n.github.io/blob/master/assets/nn3/nesterov.jpeg

SGD With Nesterov Momentum

Input: NN computing function

with initial value of parameters .

Input: Learning rate , momentum .

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of training examples

f(x; θ)
θ

α β

θ

v ← 0

m (x , y)(i) (i)

θ ← θ + βv

g ← ∇ L(f(x ; θ), y)
m
1 ∑i θ

(i) (i)

v ← βv − αg

θ ← θ − αg

28/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Algorithms with Adaptive Learning Rates

AdaGrad (2011)

Input: NN computing function with initial value of parameters .

Input: Learning rate , constant (usually).

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of training examples

The and are computed element-wise, i.e., . It might be better to

write , but it is not done in the papers, so we are keeping the usual notation.

f(x; θ) θ

α ε 10−7

θ

r ← 0

m (x , y)(i) (i)

g ← ∇ L(f(x ; θ), y)
m
1 ∑i θ

(i) (i)

r ← r + g2

θ ← θ − g
 +εr
α

g2
 g

 +εr
α g =2 g ⊙ g

 ⊙
 +εr
α g

29/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Algorithms with Adaptive Learning Rates

AdaGrad has favourable convergence properties (being faster than regular SGD) for convex loss
landscapes. In this settings, gradients converge to zero reasonably fast.

However, for nonconvex losses, gradients can stay quite large for a long time. In that case, the
algorithm behaves as if decreasing learning rate by a factor of , because if each

then after steps

and therefore

1/ t

g ≈ g ,0

t

r ≈ t ⋅ g ,0
2

 ≈
 + εr

α
 .

 + ε/ g 0
2 t

α/ t

30/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Algorithms with Adaptive Learning Rates

RMSProp (2012)

Input: NN computing function with initial value of parameters .

Input: Learning rate , momentum (usually), constant (usually).

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of training examples

However, after first step, , which for default is

so is a biased estimate of (but the bias converges to zero exponentially fast).

f(x; θ) θ

α β 0.9 ε 10−7

θ

r ← 0

m (x , y)(i) (i)

g ← ∇ L(f(x ; θ), y)
m
1 ∑i θ

(i) (i)

r ← βr + (1 − β)g2

θ ← θ − g
 +εr
α

r = (1 − β)g2 β = 0.9

r = 0.1g ,2

r E[g]2

31/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Algorithms with Adaptive Learning Rates

Adam (2014)

Input: NN computing function with initial value of parameters .

Input: Learning rate (default 0.001), constant (usually).

Input: Momentum (default 0.9), momentum (default 0.999).

Output: Updated parameters .

, ,

Repeat until stopping criterion is met:
Sample a minibatch of training examples

 (biased first moment estimate)

 (biased second moment estimate)

, (unbiased estimates of the moments)

f(x; θ) θ

α ε 10−7

β 1 β 2

θ

s ← 0 r ← 0 t ← 0

m (x , y)(i) (i)

g ← ∇ L(f(x ; θ), y)
m
1 ∑i θ

(i) (i)

t ← t+ 1
s ← β s+1 (1 − β)g1

r ← β r +2 (1 − β)g2
2

←ŝ s/(1 − β)1
t ←r̂ r/(1 − β)2

t

θ ← θ −

 +εr̂

α ŝ

32/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Adam Bias Correction

To allow analysis, we add indices to the update

with .

After steps, we have

Because , is computed as a weighted average of infinitely many elements.

s ←t β s +1 t−1 (1 − β)g ,1 t

s ←0 0

t

s =t (1 − β) β g .1
i=1

∑
t

1
t−i

i

 β =∑i=0
∞

1
i

 1−β 1

1 s ∞

33/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Adam Bias Correction

However, for , the sum of weights in the

computation of does not sum to one.

To obtain an unbiased estimate, we therefore
need to account for the “missing” elements; in
other words, we need to scale the weights so
that they sum to one.

The sum of weights after steps is

so we obtain an unbiased estimate by dividing with , and analogously for the

correction of .

t < ∞
s t

t

(1 − β) β =1
i=1

∑
t

1
t−i

 β −
i=1

∑
t

1
t−i

 β =
i=0

∑
t−1

1
t−i 1 − β ,1

t

s t (1 − β)1
t

r

34/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Adaptive Optimizers Animations

http://2.bp.blogspot.com/-q6l20Vs4P_w/VPmIC7sEhnI/AAAAAAAACC4/g3UOUX2r_yA/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

35/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Adaptive Optimizers Animations

http://2.bp.blogspot.com/-L98w-SBmF58/VPmICIjKEKI/AAAAAAAACCs/rrFz3VetYmM/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

36/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Adaptive Optimizers Animations

http://3.bp.blogspot.com/-nrtJPrdBWuE/VPmIB46F2aI/AAAAAAAACCw/vaE_B0SVy5k/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

37/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Adaptive Optimizers Animations

http://1.bp.blogspot.com/-K_X-yud8nj8/VPmIBxwGlsI/AAAAAAAACC0/JS-h1fa09EQ/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

38/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Learning Rate Schedules

Even if RMSProp and Adam are adaptive, they still usually require carefully tuned decreasing
learning rate for top-notch performance.

Polynomial decay: learning rate is multiplied by some
polynomial of the current update number .

Linear decay uses and

has theoretical guarantees of convergence, but is usually
too fast for deep neural networks.
Inverse square root decay uses and

is currently used by best machine translation models.

Exponential decay: learning rate is multiplied by a constant
each minibatch/epoch/several epochs.

Often used for convolutional networks (image recognition
etc.).

t

α =t α ⋅initial (1 −)max steps
t

α =t α ⋅initial

 t
1

α =t α ⋅initial ct

39/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Learning Rate Schedules

Cosine decay: The cosine decay has became quite popular in
the past years, both for training and finetuning.

Cyclic restarts, warmup, …

The tf.optimizers.schedules offers several such learning rate schedules, which can be
passed to any Keras optimizer directly as a learning rate.

tf.optimizers.schedules.PiecewiseConstantDecay

tf.optimizers.schedules.PolynomialDecay

tf.optimizers.schedules.ExponentialDecay

tf.optimizers.schedules.CosineDecay

α =t α ⋅initial (1 +
2
1

cos(π ⋅))
max steps

t

40/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Why do Neural Networks Generalize so Well – Double Descent

Figure 1 of "Reconciling modern machine learning practice and the bias-variance trade-off", https://arxiv.org/abs/1812.11118

41/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Deep Double Descent

Figure 1 of "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292

42/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Deep Double Descent – Effective Model Complexity

The authors define the Effective Model Complexity (EMC) of a training procedure with

respect to distribution and parameter as

where is the mean error of a model on the train samples .

Hypothesis: For any natural data distribution , neural-network-based training procedure ,

and small , if we consider the task of predicting labels based on samples from , then:

Under-parametrized regime. If is sufficiently smaller than , any

perturbation of that increases its effective complexity will decrease the test error.

Over-parametrized regime. If is sufficiently larger than , any perturbation

of that increases its effective complexity will decrease the test error.

Critically parametrized regime. If , then a perturbation of that

increases its effective complexity might decrease or increase the test error.

T

D ε > 0

EMC (T)D,ε =def max{n E [Error (T (S))] ≤S∼Dn S ε},

Error (M)S M S

D T

ε > 0 n D

EMC (T)D,ε n

T

EMC (T)D,ε n

T

EMC (T) ≈D,ε n T

43/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Why do Neural Networks Generalize so Well

Figure 2 of "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292

44/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

Why do Neural Networks Generalize so Well

Figure 4 of "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292

45/45NPFL114, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD

