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What is Deep Learning

 

https://i.redd.it/t87gswsbmnq41.jpg
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Deep Learning Highlights

 

Figure 3 of "Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks", https://arxiv.org/abs/1506.01497

 

Figure 2 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

 

Figure 7 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

 

https://translator.cuni.cz/

 

 

https://ufal.mff.cuni.cz/courses/npfl123

 

 

Figure 4.1 of diploma thesis "Adaptive
Handwritten Text Recognition",

https://hdl.handle.net/20.500.11956/147680

 

 

Figure 1.1 of diploma thesis "Optical Music Recognition using
Deep Neural Networks",

https://hdl.handle.net/20.500.11956/119393
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Deep Reinforcement Learning

Deep learning has also been successfully combined with reinforcement learning.

 

Figure 1 of "A Comparison of learning algorithms on the
Arcade Learning Environment",
https://arxiv.org/abs/1410.8620

 

 

Figure 2 of "A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play" by David Silver et al.

 

 

Figure 2 of "Grandmaster level in StarCraft II using
multi-agent reinforcement learning" by Oriol

Vinyals et al.

 

Figure 1 of "Long-Range Indoor
Navigation with PRM-RL",

https://arxiv.org/abs/1902.09458

 

 

https://assets-global.website-files.com/
621e749a546b7592125f38ed/

622690391abb0e8c1ecf4b6a_Data%20Centers.jpg

 

 

https://assets-global.website-files.com/
621e749a546b7592125f38ed/

6224b41588a4994b5c6efc29_MuZero.gif

 

 

https://storage.googleapis.com/deepmind-
media/DeepMind.com/Authors-

Notes/sparrow/sparrow_fig_2.svg
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Organization

Course Website: https://ufal.mff.cuni.cz/courses/npfl114

Slides, recordings, assignments, exam questions

Course Repository: https://github.com/ufal/npfl114

Templates for the assignments, slide sources.

Piazza
Piazza will be used as a communication platform.

You can post questions or notes,
privately to the instructors,
publicly to everyone (signed or anonymously).

Other students can answer these too, which allows you to get faster response.
However, do not include even parts of your source code in public questions.

Please use Piazza for all communication with the instructors.

You will get the invite link after the first lecture.
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https://ufal.mff.cuni.cz/courses/npfl114
https://github.com/ufal/npfl114


ReCodEx

https://recodex.mff.cuni.cz

The assignments will be evaluated automatically in ReCodEx.
If you have a MFF SIS account, you should be able to create an account using your CAS
credentials and should automatically see the right group.
Otherwise, there will be instructions on Piazza how to get ReCodEx account (generally
you will need to send me a message with several pieces of information and I will send it to
ReCodEx administrators in batches).
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Course Requirements

Practicals
There will be about 2-3 assignments a week, each with a 2-week deadline.

There is also another week-long second deadline, but for fewer points.

After solving the assignment, you get non-bonus points, and sometimes also bonus points.
To pass the practicals, you need to get 80 non-bonus points. There will be assignments for
at least 120 non-bonus points.
If you get more than 80 points (be it bonus or non-bonus), they will be all transferred to
the exam. Additionally, if you solve all the assignments, you pass the exam with grade 1.

Lecture
You need to pass a written exam (or solve all the assignments).

All questions are publicly listed on the course website.
There are questions for 100 points in every exam, plus the surplus points from the practicals
and plus at most 10 surplus points for community work (improving slides, …).
You need 60/75/90 points to pass with grade 3/2/1.
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What are Neural Networks

Neural networks are just a model for describing computation of outputs from given inputs.

The model:

is strong enough to approximate any reasonable function,

is reasonably compact,

allows heavy parallelization during execution (GPUs, TPUs, …).

Nearly all the time, neural networks generate a probability distribution on output:

distributions allow small changes during training,

during prediction, we usually take the most probable outcome (class/label/…).

When there is enough data, neural networks are currently the best performing machine learning
model, especially when the data are high-dimensional (images, videos, speech, texts, …).
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Notation

, , , : scalar (integer or real), vector, matrix, tensor

 denotes scalar multiplication,  denotes element-wise multiplication, and 

denotes matrix multiplication
all vectors are always column vectors
transposition changes a column vector into a row vector, so  is a row vector

we denote the dot (scalar) product of the vectors  and  using 

we understand it as matrix multiplication

the  or just  is the Euclidean (or ) norm

, , : scalar, vector, matrix random variable

: derivative of  with respect to 

: partial derivative of  with respect to 

: gradient of  with respect to , i.e., 

a a A A
c ⋅A x⊙ y AB

aT

a b a bT

∥a∥  2 ∥a∥ L2

∥a∥  =2   a  ∑i i
2

a a A

 dx
df f x

 ∂x
∂f f x

∇  f(x)x f x  ,  , … ,  ( ∂x  1

∂f (x)
∂x  2

∂f (x)
∂x  n

∂f (x))
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Random Variables

A random variable  is a result of a random process, and it can be either discrete or

continuous.

Probability Distribution
A probability distribution describes how likely are the individual values that a random variable
can take.

The notation  stands for a random variable  having a distribution .

For discrete variables, the probability that  takes a value  is denoted as  or explicitly as 

. All probabilities are nonnegative, and the sum of the probabilities of all possible

values of  is .

For continuous variables, the probability that the value of  lies in the interval  is given by 

, where  is the probability density function, which is always nonnegative and

integrates to 1 over the range of all values of .

x

x ∼ P x P

x x P (x)
P (x = x)

x  P (x =∑x x) = 1

x [a, b]
 p(x) dx∫

a

b
p(x)

x
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Joint, Conditional, Marginal Probability

For two random variables, a joint probability
distribution is a distribution of all possible pairs of
outputs (and analogously for more than two):

Marginal distribution is a distribution of one
(or a subset) of the random variables and can be
obtained by summing over the other variable(s):

Conditional distribution is a distribution of one (or a subset) of the random variables, given
that another event has already occurred:

If  or , random variables  and  are independent.

P (x = x  , y =2 y  ).1

P (x = x  ) =2  P (x =∑
y

x  , y =2 y).

P (x = x  ∣y =2 y  ) =1 P (x = x  , y =2 y  )/P (y =1 y  ).1

P (x, y) = P (x) ⋅ P (y) P (x∣y) = P (x) x y
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Random Variables

Expectation
The expectation of a function  with respect to a discrete probability distribution  is

defined as:

For continuous variables, the expectation is computed as:

If the random variable is obvious from context, we can write only , , or even .

Expectation is linear, i.e., for constants :

f(x) P (x)

E  [f(x)]x∼P =def
 P (x)f(x).

x

∑

E  [f(x)]x∼p =
def

 p(x)f(x) dx.∫
x

E  [x]P E  [x]x E[x]

α, β ∈ R

E  [αf(x) +x βg(x)] = αE  [f(x)] +x βE  [g(x)].x
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Random Variables

Variance
Variance measures how much the values of a random variable differ from its mean .

It is easy to see that

because .

Variance is connected to , the second moment of a random variable – it is in fact a

centered second moment.

E[x]

  

Var(x)

Var  (f(x))x∼P

E (x− E[x]) , or more generally,=def
[

2
]

E (f(x) − E[f(x)]) .=def
[

2
]

Var(x) = E x − 2x ⋅ E[x] + (E[x]) =[ 2 2
] E x −[ 2] (E[x]) ,

2

E[2x ⋅ E[x]] = 2(E[x])2

E[x ]2
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Common Probability Distributions

Bernoulli Distribution
The Bernoulli distribution is a distribution over a binary random variable. It has a single
parameter , which specifies the probability that the random variable is equal to 1.φ ∈ [0, 1]

  

P (x)

E[x]

Var(x)

= φ (1 − φ)x 1−x

= φ

= φ(1 − φ)

14/48NPFL114, Lecture 1 Organization TL;DR Notation Random Variables Information Theory Machine Learning NNs '80s



Common Probability Distributions

Categorical Distribution
Extension of the Bernoulli distribution to random variables taking one of  different discrete

outcomes. It is parametrized by  such that .

We represent outcomes as vectors  in the one-hot encoding. Therefore, an outcome

 is represented as a vector

The outcome probability, mean, and variance are very similar to the Bernoulli distribution.

K

p ∈ [0, 1]K  p  =∑i=0
K−1

i 1

∈ {0, 1}K

x ∈ {0, 1, … ,K − 1}

1  x =def
([i = x])  =

i=0
K−1

(  , 1,  ).
x

 0, … , 0

K−x−1

 0, … , 0

  

P (x)

E[x  ]i
Var(x  )i

=  p  ∏
i=0

K−1

i
x  i

= p  i

= p  (1 − p  )i i
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Information Theory

Self Information
Amount of surprise when a random variable is sampled.

Should be zero for events with probability 1.
Less likely events are more surprising.
Independent events should have additive information.

I(x) =def − logP (x) = log  

P (x)
1
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Information Theory

Entropy
Amount of surprise in the whole distribution.

for discrete : 

for continuous : 

Because , for  we consider 

 to be zero.

Note that in the continuous case, the continuous entropy
(also called differential entropy) has slightly different
semantics, for example, it can be negative.

For binary logarithms, the entropy is measured in bits.
However, from now on, all logarithms are natural logarithms with base e (and then the entropy
is measured in units called nats).

H(P ) =def E  [I(x)] =x∼P −E  [logP (x)]x∼P

P H(P ) = −  P (x) logP (x)∑x

P H(P ) = − P (x) logP (x) dx∫

lim  x log x =x→0 0 P (x) = 0
P (x) logP (x)
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Information Theory

Cross-Entropy

Gibbs inequality states that

Proof: Using the fact that  with equality only for , we get

Corollary: For a categorical distribution with  outcomes, , because for 

 we get 

Note that generally .

H(P ,Q) =def −E  [logQ(x)]x∼P

H(P ,Q) ≥ H(P )
H(P ) = H(P ,Q) ⇔ P = Q

log x ≤ (x− 1) x = 1

 P (x) log  ≤
x

∑
P (x)
Q(x)

 P (x)  − 1 =
x

∑ (
P (x)
Q(x)

)  Q(x) −
x

∑  P (x) =
x

∑ 0.

n H(P ) ≤ logn
Q(x) = 1/n H(P ) ≤ H(P ,Q) = −  P (x) logQ(x) =∑x logn.

H(P ,Q) = H(Q,P )
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Information Theory

Kullback-Leibler Divergence (KL Divergence)
Sometimes also called relative entropy.

consequence of Gibbs inequality: ,  iff 

generally 

D  (P∥Q)KL =def
H(P ,Q) − H(P ) = E  [logP (x) −x∼P logQ(x)]

D  (P∥Q) ≥KL 0 D  (P∥Q) =KL 0 P = Q

D  (P∥Q) =KL  D  (Q∥P )KL
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Nonsymmetry of KL Divergence

 

Figure 3.6 of "Deep Learning" book, https://www.deeplearningbook.org
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Common Probability Distributions

Normal (or Gaussian) Distribution
Distribution over real numbers, parametrized by a mean  and variance :

For standard values  and  we get .

 

Figure 3.1 of "Deep Learning" book, https://www.deeplearningbook.org

μ σ2

N (x;μ,σ ) =2
 exp −   

2πσ2

1
(

2σ2

(x− μ)2

)

μ = 0 σ =2 1 N (x; 0, 1) =  e 2π
1 −  2

x2
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Why Normal Distribution

Central Limit Theorem
The sum of independent identically distributed random variables with finite variance converges
to normal distribution.

Principle of Maximum Entropy
Given a set of constraints, a distribution with maximal entropy fulfilling the constraints can be
considered the most general one, containing as little additional assumptions as possible.

Considering distributions on all real numbers with a given mean and variance, it can be proven
(using variational inference) that such a distribution with maximum entropy is exactly the
normal distribution.
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Machine Learning

A possible definition of learning from Mitchell (1997):

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.

Task T
classification: assigning one of  categories to a given input

regression: producing a number  for a given input

structured prediction, denoising, density estimation, …

Measure P
accuracy, error rate, F-score, …

Experience E
supervised: usually a dataset with desired outcomes (labels or targets)
unsupervised: usually data without any annotation (raw text, raw images, …)
reinforcement learning, semi-supervised learning, …

k

x ∈ R
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Well-known Datasets

Name Description Instances

MNIST Images (28x28, grayscale) of handwritten digits. 60k

CIFAR-10 Images (32x32, color) of 10 classes of objects. 50k

CIFAR-

100

Images (32x32, color) of 100 classes of objects (with 20 defined

superclasses).
50k

ImageNet
Labeled object image database (labeled objects, some with bounding

boxes).
14.2M

ImageNet-

ILSVRC

Subset of ImageNet for Large Scale Visual Recognition Challenge,

annotated with 1000 object classes and their bounding boxes.
1.2M

COCO
Common Objects in Context: Complex everyday scenes with

descriptions (5) and highlighting of objects (91 types).
2.5M

24/48NPFL114, Lecture 1 Organization TL;DR Notation Random Variables Information Theory Machine Learning NNs '80s

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/
http://image-net.org/challenges/LSVRC/
http://cocodataset.org/


Well-known Datasets

ImageNet-ILSVRC

 

Figure 4 of "ImageNet Classification with Deep Convolutional Neural Networks" by Alex
Krizhevsky et al.

 

https://image-net.org/challenges/LSVRC/2014/
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Well-known Datasets

COCO
 

https://cocodataset.org/#detection-2020
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Well-known Datasets

Name Description Instances

IAM-OnDB Pen tip movements of handwritten English from 221 writers. 86k words

TIMIT Recordings of 630 speakers of 8 dialects of American English. 6.3k sents

CommonVoice 1.6M Eng recordings from 86k people, ~2400 hours of speech. 1.6M

PTB
Penn Treebank: 2500 stories from Wall Street Journal, with POS

tags and parsed into trees.
1M words

PDT
Prague Dependency Treebank: Czech sentences annotated on 4

layers (word, morphological, analytical, tectogrammatical).

1.9M

words

UD
Universal Dependencies: Treebanks of 138 languages with

consistent annotation of lemmas, POS tags, morphology, syntax.

243

treebanks

WMT Aligned parallel sentences for machine translation. gigawords
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http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database
https://catalog.ldc.upenn.edu/LDC93S1
https://voice.mozilla.org/data
https://catalog.ldc.upenn.edu/LDC99T42
https://ufal.mff.cuni.cz/prague-dependency-treebank
http://universaldependencies.org/
http://statmt.org/


ILSVRC Image Recognition Error Rates
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ILSVRC Image Recognition Error Rates

In summer 2017, a paper came out describing automatic generation of neural architectures
using reinforcement learning.

 

Figure 5 of "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012
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ILSVRC Image Recognition Error Rates

Currently, one of the best architectures is EfficientNet, which combines automatic architecture
discovery, multidimensional scaling and elaborate dataset augmentation methods.

 

Figure 5 of "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https://arxiv.org/abs/1905.11946

 

Figure 1 of "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https://arxiv.org/abs/1905.11946
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ILSVRC Image Recognition Error Rates

EfficientNet was further improved by EfficientNetV2 two years later.

 

Figure 5 of "EfficientNetV2: Smaller Models and Faster Training", https://arxiv.org/abs/2104.00298

31/48NPFL114, Lecture 1 Organization TL;DR Notation Random Variables Information Theory Machine Learning NNs '80s



Machine Translation Improvements

To illustrate deep neural networks improvements in other domains, consider the English→Czech
results of the international Workshop on Machine Translation. Both the automatic BLEU metric
and manual evaluation are presented.

 

Figure 6.1 of "Machine Translation Using Syntactic Analysis",
https://dspace.cuni.cz/handle/20.500.11956/104305

 

Figure 6.2 of "Machine Translation Using Syntactic Analysis",
https://dspace.cuni.cz/handle/20.500.11956/104305

TectoMT parses the input, transfers to the other language, generates the sentence;
RBMT is the PC-Translator software;
SMT is statistical machine translation using the Moses system;
Online is an online translation system (Google in 2009, Online-B since 2010);
NMT is the neural machine translation using deep neural networks.
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Introduction to Deep Learning History

 

Modified from https://www.slideshare.net/deview/251-implementing-deep-learning-using-cu-dnn/4
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Perceptron – Extra Simple Neural Network

Assume we have an input node for every input feature.

Additionally, we have an output node for every model output.

Every input node and output node are connected with a
directed edge, and every edge has an associated weight.

Value of every (output) node is computed by summing the
values of predecessors multiplied by the corresponding weights,
added to a bias of this node, and finally passed through an
activation function :

or in vector form , or for a batch of examples

, .

a

y = a  x  w  + b(∑
j

j j )

y = a(x w+T b)
X y = a(Xw+ b)
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Perceptron – Linearly Separable and Nonseparable Data

 

https://miro.medium.com/v2/1*JVZ4FXVRlr1oN-4ffq_kNQ.png
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Neural Network Architecture à la '80s
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Neural Network Architecture

The computation is performed analogously to the perceptron

or in matrix form

or for a whole batch of inputs  and .

The  is a matrix of weights and  a vector of biases of

the first layer, and ,  are parameters of the second

layer

  

h  i

y  i

= f  x  w  + b  ,(∑
j

j j,i
(h)

i
(h))

= a  h  w  + b  ,(∑
j

j j,i
(y)

i
(y))

  

h

y

= f(x W + b ),T (h) (h)

= a(h W + b ),T (y) (y)

H = f(XW +(h) b )(h) Y = a(HW +(y) b )(y)

W ∈(h) R∣input∣⋅∣hidden∣ b ∈(h) R∣hidden∣

W ∈(y) R∣hidden∣⋅∣output∣ b ∈(y) R∣output∣
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Neural Network Activation Functions

Output Layers
none (linear regression if there are no hidden layers)

 (sigmoid; logistic regression if there are no hidden layers)

is used to model a probability  of a binary event; its input is called a logit, ;

 (maximum entropy model if there are no hidden layers)

is used to model probability distribution ; its input is called a logit, .

σ

σ(x) =def
 

1 + e−x

1

p log  1−p
p

softmax

 

softmax(x) ∝ ex

softmax(x)   i =def

 e∑j
x  j

ex  i

p log(p) + c
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Neural Network Activation Functions

Hidden Layers
none: does not help, composition of linear/affine mapping is a linear/affine mapping

: does not work great – nonsymmetrical, repeated application converges to the fixed point 

, and 

result of making  symmetrical and making the derivative in zero 1

ReLU: 

σ

x = σ(x) ≈ 0.659  (0) =
dx
dσ 1/4

tanh
σ

tanh(x) = 2σ(2x) − 1

max(0,x)
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Universal Approximation Theorem '89

Let  be a nonconstant, bounded and nondecreasing continuous function.  

(Later a proof was given also for  and even for any nonpolynomial function.)

For any  and any continuous function , there exists , , 

 and , such that if we denote

where  is applied element-wise, then for all :

One Possible Interpretation
It is always possible to create features using just a single linear layer followed by a nonlinearity,
such that the resulting dataset is always linearly separable.

φ(x) : R → R
φ = ReLU

ε > 0 f : [0, 1] →D R H ∈ N v ∈ RH
b ∈ RH W ∈ RD×H

F (x) = v φ(x W +T T b) =  v  φ(x W  +
i=1

∑
H

i
T

∗,i b  ),i

φ x ∈ [0, 1]D

∣F (x) − f(x)∣ < ε.
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Universal Approximation Theorem for ReLUs

Sketch of the proof:

If a function is continuous on a closed interval, it can be approximated by a sequence of
lines to arbitrary precision.

 

https://miro.medium.com/max/844/1*lihbPNQgl7oKjpCsmzPDKw.png

However, we can create a sequence of  linear segments as a sum of  ReLU units – on

every endpoint a new ReLU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tangent and the tangent of the
approximation until this point.

k k
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Evolving ReLU Approximation

−1 −0.5 0 0.5 1

−0.1

0.05

0

0.05

0.1
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Universal Approximation Theorem for Squashes

Sketch of the proof for a squashing function  (i.e., nonconstant, bounded and

nondecreasing continuous function like sigmoid):

We can prove  can be arbitrarily close to a hard threshold by compressing it horizontally.

 

https://hackernoon.com/hn-images/1*N7dfPwbiXC-Kk4TCbfRerA.png

Then we approximate the original function using a series of straight line segments

 

https://hackernoon.com/hn-images/1*hVuJgUTLUFWTMmJhl_fomg.png

φ(x)

φ
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How Good is Current Deep Learning

 

https://intl.startrek.com/sites/default/files/styles/content_full/public/images/2019-
07/c8ffe9a587b126f152ed3d89a146b445.jpg

DL has seen amazing progress in the last ten years.

Is it enough to get a bigger brain (datasets, models, computer power)?

Problems compared to Human learning:
Sample efficiency
Human-provided labels
Robustness to data distribution change
Stupid errors
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How Good is Current Deep Learning

 

https://twitter.com/ilyasut/status/1491554478243258368

 

https://twitter.com/ylecun/status/1492604977260412928

 

https://twitter.com/mpshanahan/status/1491715721289678848
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How Good is Current Deep Learning

 

https://en.wikipedia.org/wiki/File:Thinking,_Fast_and_Slow.jpg

Thinking fast and slow
System 1

intuitive
fast
automatic
frequent
unconscious

Current DL

System 2
logical
slow
effortful
infrequent
conscious

Future DL
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Curse of Dimensionality

 

Figure 5.9 of "Deep Learning" book, https://www.deeplearningbook.org
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Machine and Representation Learning

 

Figure 1.5 of "Deep Learning" book, https://www.deeplearningbook.org
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