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® \We can design neural network architectures using reinforcement learning.

® The designed network is encoded as a sequence of elements, and is generated using an
RNN controller, which is trained using the REINFORCE with baseline algorithm.

(Sample architecture A w

L with probability p J l

Train a child network
with architecture A to
convergence to get
validation accuracy R

The controller (RNN)

(Scale gradient of p by Fn
Lto update the controllerJ

® For every generated sequence, the corresponding network is trained on CIFAR-10 and the
development accuracy is used as a return.
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Neural Architecture Search (NASNet) — 2017 Ut

The overall architecture of the designed network is fixed and only the Normal Cells and
Reduction Cells are generated by the controller.
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Figure 2 of "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012

NPFL114, Lecture 14

NASNet EfficientNet WaveNet ParallelWaveNet Tacotron NTM DNC MANN 3/49




Neural Architecture Search (NASNet) — 2017

® Each cell is composed of B blocks (B = 9 is used in NASNet).

® Each block is designed by a RNN controller generating 5 parameters.
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experiments, the number of blocks B is 5.

Figure 3 of "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012

Step 1. Select a hidden state from h;, h;_1 or from the set of hidden

states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create

a new hidden state.
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Figure 2 of "Learning Transferable Architectures for Scalable Image Recognition”,

Tacotron

NTM

fm——————
:new hidden Iayer:
________ 1

3 x 3 conv

2 x 2 maxpool

!
: hidden layer A I

Figure 3. Controller model architecture for recursively constructing one block of a convolutional cell. Each block requires selecting 5
discrete parameters, each of which corresponds to the output of a softmax layer. Example constructed block shown on right. A convolu-
tional cell contains B blocks, hence the controller contains 5B softmax layers for predicting the architecture of a convolutional cell. In our
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Neural Architecture Search (NASNet) — 2017

The final Normal Cell and Reduction Cell chosen from 20k architectures (500GPUs, 4days).
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EfficientNet changes the search in three ways.

® Computational requirements are part of the return. Notably, the goal is to find an
architecture ™ maximizing

TargetFLOPS=400M \ "
DevelopmentAccuracy(m)-( argetFLOPS=400 ) :

FLOPS(m)

where the constant 0.07 balances the accuracy and FLOPS (the constant comes from an

empirical observation that doubling the FLOPS brings about 5% relative accuracy gain, and
1.05 = 29 gives B8 ~ 0.0704).

® Using a different search space, which allows to control kernel sizes and channels in different
parts of the architecture (compared to using the same cell everywhere as in NASNet).

® Training directly on ImageNet, but only for 5 epochs.

In total, 8k model architectures are sampled, and PPO algorithm is used instead of the
REINFORCE with baseline.
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EfficientNet Search
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The overall architecture consists of 7 blocks, each described by 6
parameters — 42 parameters in total, compared to 50 parameters of’

e Squeeze-and-excitation [13] ratio S F Ratio: 0, 0.25.
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<

the NASNet search space.
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Blocks are predefined Skeletons.

Search Space Per Block i:
ConvOp: dconv, conv, ...
KernelSize: 3x3, 5x5
SERatio: 0, 0.25, ...
SkipOp: identity, pool, ...
FilterSize: F.
#Layers: N,

Contents in blue are searched

— output

Convolutional ops ConvOp: regular conv (conv), depthwise

conv (dconv), and mobile inverted bottleneck conv [29].

Convolutional kernel size KernelSize: 3x3, 5x5.

Skip ops SkipOp: pooling, identity residual, or no skip.

Output filter size F;.

Number of layers per block N;.

DNC

Page 4 of "MnasNet: Platform-Aware Neural

Architecture Search for Mobile”,
https://arxiv.org/abs/1807.11626
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Stage Operator Resolution | #Channels | #Layers
1 Conv3x3 224 x 224 32 1
2 MBConvl, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 X 56 40 2
5 MBConv6, k3x3 28 X 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 7T X7 320 1
9 Convlxl & Pooling & FC 7Tx T 1280 1
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WaveNet UL

Our goal is to model speech, using an auto-regressive model
P(x) = HP(wt|a:t_1, ey T1).
t
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Figure 2: Visualization of a stack of causal convolutional layers.
Figure 2 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499
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WaveNet UL
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Figure 3: Visualization of a stack of dilated causal convolutional layers.

Figure 3 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499

NPFL114, Lecture 14 VNINE: EfficientNet WaveNet ParallelWaveNet Tacotron NTM DNC MANN 10/49



Output Distribution

WaveNet generates audio with 16kHz frequency and 16-bit samples. However, classification into
65 536 classes would not be tractable; instead, WaveNet adopts u-law transformation and

quantize the samples into 256 values using

In(1 + 255|z|)
In(1 + 255)

sign(x)

Gated Activation

To allow greater flexibility, the outputs of the dilated convolutions are passed through the gated
activation units:

z=tanh(W;xx) -o(W, xx).
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Figure 4: Overview of the residual block and the entire architecture.

Figure 4 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499
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Global Conditioning
Global conditioning is performed by a single latent representation h, changing the gated
activation function to

z=tanh(Wixax+Vih) -c(W,xx+ V h).

Local Conditioning

For local conditioning, we are given a time series h, possibly with a lower sampling frequency.

We first use transposed convolutions y = f(h) to match resolution and then compute

analogously to global conditioning

z=tanh(Wisxax+Vixy)-c(Wyxax+V,xy).

WaveNet
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The original paper did not mention hyperparameters, but later it was revealed that:

® 30 layers were used
O grouped into 3 dilation stacks with 10 layers each

O in a dilation stack, dilation rate increases by a factor of 2, starting with rate 1 and
reaching maximum dilation of 512

® filter size of a dilated convolution is 3

® residual connection has dimension 512

® gating layer uses 256+256 hidden units

® the 1 X 1 output convolution produces 256 filters

® trained for 1 000000 steps using Adam with a fixed learning rate of 0.0002

WaveNet 14/49
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Figure 5: Subjective preference scores (%) of speech samples between (top) two baselines, (middle)
two WaveNets, and (bottom) the best baseline and WaveNet. Note that LSTM and Concat cor-
respond to LSTM-RNN-based statistical parametric and HMM-driven unit selection concatenative
baseline synthesizers, and WaveNet (L) and WaveNet (L+F) correspond to the WaveNet condi-
tioned on linguistic features only and that conditioned on both linguistic features and log F{y values.
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Similar gated activations seem to work the best in Transformers, in the FFN module.

Activation Name Formula FEN(x; W1, W,)

RelLU max (0, ) max (0, W)W,

GELU rP(x) GELU(xW )W,

Swish zo(x) Swish(xW )W,

There are several variants of the new gated activations:

Activation Name Formula FFN(x; W,V ,W5)
GLU (Gated Linear Unit) g(xW +b) ® (zV +¢) (c(xW) © £V )W,
ReGLU max (0, W +b) ® (£V +¢) (max(0,eW) o xV )W,
GEGLU GELU(xW +b) ® (£V +¢) (GELU(zW) © V)W,
SwiGLU Swish(xW + b) ©® (&€V +¢) (Swish(xW) © £V )W,

WaveNet 16/49



[ ] [ ] - U\/
Gated Activations in Transformers Pl
Score | CoLA SST-2 MRPC MRPC STSB STSB QQP QQP MNLIm MNLImm QNLI RTE EM F1
Average | MCC Acc F1 Acc PCC SCC F1 Acc Acc Acc Acc Acc FFNReLU 83.18 90.87
FFNgeLu 8380 | 51.32 94.04 93.08 90.20 89.64 89.42 89.01 91.75  85.83 86.42 9281 80.14  FFNapLu 83.09  90.79
FFNGELU 83.86 | 53.48 94.04 92.81  90.20 89.69 89.49 88.63 91.62  85.89 86.13 9239 8051  ppNg. . 83.95  90.76
FFNswish 83.60 | 49.79 93.69 9231  89.46 89.20 88.98 88.84 91.67  85.22 85.02 0233 81.23 —ppno 3583 90.69
FFNGLy 8420 | 49.16 9427 9239  89.46 89.46 89.35 88.79 91.62  86.36 86.18 92,92 84.12
FFNGrGLu 8412 | 53.65 9392 9268  89.71 9026 90.13 89.11 9185 8615 8617 9281 7942  FENGEGLU 83.55  91.12
FFNBilinear 83.79 | 51.02 94.38 9228 8946 90.06 89.84 88.95 9169 86.90  87.08 9292 81.95 FFNBilinear 83.82 91.06
FFNswicLu 84.36 | 51.59 93.92 9223 8897 90.32 90.13 89.14 91.87  86.45 86.47  92.93 8339  FFNsyicLu 83.42  91.03
FFNgrecLU 84.67 | 56.16 94.38 92.06  89.22 89.97 89.85 88.86 91.72  86.20 86.40 92.68 81.59  FFNgeqLu 83.53 91.18
Table 2 of "GLU Variants Improve Transformer”, https://arxiv.org/abs/2002.05202 Table 4 of "GLU Variants Improve Transformer",
https: //arxiv.org/abs/2002.05202
Model Params Ops Step/s Early loss Final loss SGLUE XSum WebQ ‘ WMT EnDe
Vanilla Transformer 223M 11.17 3.50 2.182 4+ 0.005 1.838 71.66 17.78 23.02 | 26.62
GeLU 223 M 11.1T 3.58 2.179 £ 0.003 1.838 75.79 17.86 25.13 26.47
Swish 223 M 11.17 3.62 2.186 £+ 0.003 1.847 73.77 17.74 24.34 26.75
ELU 223 M 11.1T 3.56 2.270 £+ 0.007 1.932 67.83 16.73 23.02 26.08
GLU 223 M 11.1T 3.59 2.174 4+ 0.003 1.814 74.20 17.42 24.34 27.12
GeGLU 223 M 11.17 3.55 2.130 £ 0.006 1.792 75.96 18.27 24.87 26.87
ReGLU 223 M 11.1T 3.57 2.145 £+ 0.004 1.803 76.17 18.36 24.87 27.02
SeLLU 223 M 11.1T 3.55 2.315 £ 0.004 1.948 68.76 16.76 22.75 25.99
SwiGLU 223M 11.17T 3.53 2.127 £ 0.003 1.789 76.00 18.20 24.34 27.02
LiGLU 223 M 11.17 3.59 2.149 £ 0.005 1.798 75.34 17.97 24.34 26.53
Sigmoid 223M 11.1T 3.63 2.291 £0.019 1.867 74.31 17.51 23.02 26.30
Softplus 223 M 11.1T 3.47 2.207 £ 0.011 1.850 72.45 17.65 24.34 26.89
Table 1 of "Do Transformer Modifications Transfer Across Implementations and Applications?", https://arxiv.org/abs/2102.11972
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The output distribution was changed from 256 u-law values to a Mixture of Logistic (suggested
in another paper — Pixel C(NN++, but reused in other architectures since):

T ~ Zm Logistic(g;, s;)-

The logistic distribution is a distribution with a ¢ as cumulative
density function (where the mean and scale is parametrized by p and

T'®E T T X

NS © © >

wim w » ®»

L [ |

N R W N
i

RSN RSN |

s). Therefore, we can write

x+ 0.5 — u; x— 0.9 — u; ol
P y Uy — 1 ( ) — ( ) )
(z|7, p, 8) Zw [0 . o . ]

1

= ; ; ; =
-5 0 5 10 15 20

where we replace —0.5 and 0.5 in the edge cases by —o0 and oo.

In Parallel WaveNet, 10 mixture components are used.
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Auto-regressive (sequential) inference is extremely slow in WaveNet.

Instead, we will model P(z;) as P(z;|z;) = Logistic (z; p'(2<¢), s*(2<;)) for a random
z drawn from a logistic distribution Logistic(0, 1). Then

Ty =208 (2<1) + pt(2<).

Usually, one iteration of the algorithm does not produce good enough results — 4 iterations
were used by the authors. In further iterations,

af =it @)+ )

After N iterations, P(x) |z.¢) is a logistic distribution with location g, . and scale 8o

N N
b ab— N —1 i
ot = E :,u, (&) - (HJ.M. s (2 )) and Sy = H3 (®5).

(
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Probability Density Distillation Urzt

The network is trained using a probability density distillation using a teacher WaveNet, using
KL-divergence as loss.

WaveNet Teacher O O O OO O O OO OO0 O O 0 0,0 Teacher Output
O O O O P<xi|x<i)
Linguistic features -----»
O O O
%
T T T T T Generated Samples
?oooTooooTooooTooocT) xi:9(2i|z<z‘)
Student Output
WaveNet Student |© P(x]2<:)
O O O O O O O
Linguistic features -----+» | O

T T T T T Input noise

O 0O 0O 0O 0OO0 0 0O 0 0 0 0 0 0 0 &
Figure 2 of "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https:, //arX/v org/abs/1711.10433

NPFL114, Lecture 14 NASNet EfficientNet WaveNet ParallelWaveNet Tacotron NTM DNC MANN 20/49



Denoting the teacher distribution as Pr and the student distribution as Pg, the loss is

specifically

Dxv(Ps||Pr) = H(Ps, Pr) — H(Ps).

Therefore, we do not only minimize cross-entropy, but we also try to keep the entropy of the
student as high as possible. That is crucial not to match just the mode of the teacher.
(Consider a teacher generating white noise, where every sample comes from N(O, 1) — in this

case, the cross-entropy loss of a constant 0, complete silence, would be maximal.)

In a sense, probability density distillation is similar to GANs. However, the teacher is kept fixed
and the student does not attempt to fool it but to match its distribution instead.
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Probability Density Distillation Details ezt

Because the entropy of a logistic distribution Logistic(u, s) is In s + 2, the entropy term
H(Pg) can be rewritten as follows:

[ T
H(PS) — Il?dj’,ZNLogistic(O,l) Z - lnpS(wt |z<t)]

| t=1

+ 2T

T
— I[‘-:‘:zrvLogistic(O,1) Z In 3(z<t7 0)
| t=1

Therefore, this term can be computed without having to generate @.
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Probability Density Distillation Details ezt

However, the cross-entropy term H(Pg, Pr) requires sampling from Pg to estimate: @

H(Ps,Pr) = | —Ps(x)In Pr(x)

>/,
>/,

Py (1) [/ —PS(th|w<t)1nPT(wt|w<t)/

Ty Lt

111 PT (CIZt |:13<t)

w<t PS wt|w<t)PS(w>t‘m<t) In Pr (wt’w<t)

]~ IIMH IIMHS\

=

Po(eifa-)

t=1

I
E

Epy(a.) H(Ps(i|@<t), Pr(zi]e<) ).

I
—_

t
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H(Ps, Pr) ZEPS (2-;) (PS(wt‘w<t)7PT($t|w<t)) @

We can therefore estimate H(Pgs, Pr) by drawing a single sample @ from the student Pk,
compute all Pp(z¢|®<:) from the teacher in parallel, and finally evaluate
H(Ps(z¢|®<t), Pr(x:|x<t)) by sampling multiple different x; from the Pg(z¢|€<t); the

authors state that this unbiased estimator has a much lower variance than naively evaluating the
sample under the teacher using the original formulation.

Finally, analogously to the normal distribution, the logistic distribution offers the reparametric
trick, which means we can differentiate In Pp(x¢|®;) with respect to both x; and &-; (while

the categorical distribution would be differentiable only with respect to &).
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With the 4 iterations, the Parallel WaveNet generates over 500k samples per second, compared
to ~170 samples per second of a regular WaveNet — more than a 1000 times speedup.

Method Subjective 5-scale MOS
16kHz, 8-bit p-law, 25h data:

LSTM-RNN parametric [27] 3.67 £+ 0.098
HMM-driven concatenative [27] 3.86 + 0.137
WaveNet [27] 4.21 £ 0.081
24kHz, 16-bit linear PCM, 65h data:

HMM-driven concatenative 4.19 £+ 0.097
Autoregressive WaveNet 4.41 + 0.069
Distilled WaveNet 441 4+ 0.078
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Waveform
Mel Spectrogram Samples
5 Conv Layer WETTENG
Post-Net MoL )
T , ————— _
l [ Linear
[ 2 Layer I | 2 LSTM ]<L Projection
Pre-Net Layers i i ]
i) Linear | | Stop Token
| Projection |
Location
Sensitive
Attention

Inbut Text Character 3 Conv Bidirectional
> Embedding Layers LSTM
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System MOS
Parametric 3.492 1+ 0.096
Tacotron (Griffin-Lim) 4.001 &= 0.087
Concatenative 4.166 = 0.091
WaveNet (Linguistic) 4.341 4+ 0.051
Ground truth 4.582 4+ 0.053
Tacotron 2 (this paper) 4.526 = 0.066
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Tacotron 2 UL

400
300
200

100

Much Worse Slightly  About the  Slightly Better Much
Worse Worse Same Better Better

Figure 2 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions”, https://arxiv.org/abs/1712.05884

You can listen to samples at https://google.github.io /tacotron/publications/tacotron2/
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So far, all input information was stored either directly in network weights, or in a state of a
recurrent network.

However, mammal brains seem to operate with a working memory — a capacity for short-term
storage of information and its rule-based manipulation.

We can therefore try to introduce an external memory to a neural network. The memory M

will be a matrix, where rows correspond to memory cells.

NTM 29/49



Neural Turing Machines e

The network will control the memory using a controller which reads from the memory and
writes to is. Although the original paper also considered a feed-forward (non-recurrent)
controller, usually the controller is a recurrent LSTM network.

External Input External Output

CON T

Controller

SN

Read Heads Write Heads

| |

Figure 1 of "Neural Turing Machines", https://arxiv.org/abs/1410. 5401
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Reading
To read the memory in a differentiable way, the controller at time ¢ emits a read distribution wy

over memory locations, and the returned read vector 7; is then

Py = Z'wt(i) - M, (3).

Writing
Writing is performed in two steps — an erase followed by an add: the controller at time £ emits
a write distribution w; over memory locations, together with an erase vector e; and an add

vector a;. The memory is then updated as

M, (i) = My_1(3) |1 — wi(i)es] + we(3)ay.
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Neural Turing Machine e

The addressing mechanism is designed to allow both

® content addressing, and
® |ocation addressing.

Previous

State

Controller

Outputs —>
— — > Content

| k¢ | Addressing
| P
gt

W
|y

Interpolation

Convolutional [W
, Shift > _
| sy — > Sharpening | 3w,
Lt >

Figure 2 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401

\4 '~‘§O¢ +
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Content Addressing
Content addressing starts by the controller emitting the key vector k;, which is compared to all
memory locations M (%), generating a distribution using a softmax with temperature ;.

exp(p; - distance(k;, M (7))
> ; exp(pB; - distance(k;, M(j))

w; (i) =

The distance measure is usually the cosine similarity

alb
lal] - []b]]

distance(a, b) =
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Location-Based Addressing

To allow iterative access to memory, the controller might decide to reuse the memory location
from the previous timestep. Specifically, the controller emits an interpolation gate g: and sets

wi = gwi + (1 — g )we-1.

Then, the current weighting may be shifted, i.e., the controller might decide to “rotate” the
weights by a small integer. For a given range (the simplest case are only shifts {—1,0,1}), the

network emits a softmax distribution over the shifts, and the weights are then defined using a
circular convolution
Zwt )s¢(i — )

Finally, not to lose precision over time, the controller emits a sharpening factor 7;, and the final
memory location weights are w;(2) = w;(2)™ />, W (7).
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Overall Execution

Even if not specified in the original paper, following the DNC paper, the LSTM controller can
be implemented as a (potentially deep) LSTM. Assuming R read heads and one write head, the

input is ®; and R read vectors r} _,..., 7% | from the previous time step, the output of the
controller are vectors (v, €,), and the final output is y, = vy + W [rf,...,ri|. The &, is

a concatenation of

1 1 1 1 1 2 2 2 2 2 w w W w w w w
ktht7gt73t7'7t7kt7/8tagt73ta’7t7---a taﬂtagtasta’)’taetaat-
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Neural Turing Machines Urzt

Copy Task
Repeat the same sequence as given on input. Trained with sequences of length up to 20.
10 ‘
. LSTM —e—
2 3 NTM with LSTM Controller —=—
=5 I NTM with Feedforward Controller —— |
3
-
o)
>
o
@
9p]
)
Q
%
Q
&)

0 200 400 600 800 1000

sequence number (thousands)

Figure 3 of "Neural Turing Machines", https://arxiv.org/abs,/1410.5401
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Figure 4: NTM Generalisation on the Copy Task. The four pairs of plots in the top row
depict network outputs and corresponding copy targets for test sequences of length 10, 20, 30,
and 50, respectively. The plots in the bottom row are for a length 120 sequence. The network
was only trained on sequences of up to length 20. The first four sequences are reproduced with
high confidence and very few mistakes. The longest one has a few more local errors and one
global error: at the point indicated by the red arrow at the bottom, a single vector is duplicated,
pushing all subsequent vectors one step back. Despite being subjectively close to a correct copy,
this leads to a hioch loss.
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Figure 5: LSTM Generalisation on the Copy Task. The plots show inputs and outputs
for the same sequence lengths as Figure 4. Like NTM, LSTM learns to reproduce sequences
of up to length 20 almost perfectly. However it clearly fails to generalise to longer sequences.
Also note that the length of the accurate prefix decreases as the sequence length increases,
suggesting that the network has trouble retaining information for long periods.
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Neural Turing Machines

Associative Recall

In associative recall, a sequence is given on input, consisting of subsequences of length 3. Then
a randomly chosen subsequence is presented on input and the goal is to produce the following

subsequence.
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Figure 11 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Differentiable Neural Computer Uz

NTM was later extended to a Differentiable Neural Computer.

d Memory usage
a Controller b Read and write heads € Memory and temporal links

e ~
Output ,
Write vector
] [ BN | ] ]

Erase vector

Write key

Read key
I Read mode
B F
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Figure 1 of "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101
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The DNC contains multiple read heads and one write head.

The controller is a deep LSTM network, with input at time ¢ being the current input &; and R
1 R

read vectors r;_q1,...,7;"; from previous time step. The output of the controller are vectors
(v, €,). and the final output is y, = vy + W, |r,...,Pf]. The &, is a concatenation of
parameters for read and write heads (keys, gates, sharpening parameters, ...).

In DNC, the usage of every memory location is tracked, which enables performing dynamic
allocation — at each time step, a cell with least usage can be allocated.

Furthermore, for every memory location, we track which memory location was written to
previously and subsequently, allowing to recover sequences in the order in which it was written,
independently on the real indices used.

The write weighting is defined as a weighted combination of the allocation weighting and write
content weighting, and read weighting is computed as a weighted combination of read content
weighting, previous write weighting, and subsequent write weighting.
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Differentiable Neural Computer

a Random graph
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(TottenhamCtRd, OxfordCircus, Central)
(BakerSt, Marylebone, Circle)

(BakerSt, Marylebone, Bakerloo)
(BakerSt, OxfordCircus, Bakerloo)

(LeicesterSq, CharingCross, Northern)
(TottenhamCtRd, LeicesterSq, Northern)
(OxfordCircus, PiccadillyCircus, Bakerloo)
(OxfordCircus, NottingHillGate, Central)
(OxfordCircus, Euston, Victoria)

84 edges in total

NPFL114, Lecture 14 NASNet

b London Underground

Bond
Street

Notting
Hill Gate

Green Park

Piccadilly
Circus

Gloucester
St. James's
Victoria Park

South

Westminssg
Kensington =

Traversal

Traversal question:
(BondSt, _, Central),

(, _, Circle), (_, _, Circle),
(, _, Circle), (_, _, Circle),
(_, _, Jubilee), (, _, Jubilee),

Answer:
(BondSt, NottingHillGate, Central)
(NottingHillGate, GloucesterRd, Circle)

(Westminster, Gre.enPark, Jubilee)
(GreenPark, BondSt, Jubilee)

Leicester Square

Shortest-path

Shortest-path question:

(Moorgate, PiccadillyCircus, _)

Answer:

(Moorgate, Bank, Northern)

(Bank, Holborn, Central)

(Holborn, LeicesterSq, Piccadilly)
(LeicesterSq, PiccadillyCircus, Piccadilly)

€ Family tree

B0

UEL

B0

lan Jodie
Mary Becky Tom

Simon Freya

Family tree input:
(Charlotte, Alan, Father)
(Simon, Steve, Father)
(Steve , Simon, Son1)
(Nina, Alison, Mother)
(Lindsey, Fergus, Son1)

(Bob, Jane, Mother)
(Natalie, Alice, Mother)
(Mary, lan, Father)
(Jane, Alice, Daughter1)
(Mat, Charlotte, Mother)

54 edges in total

Alan |Lindsey
o o Iu e
Charlotte Alison ! Fergus | Jane
' :
AN O o B
1
Mat Liam Nina i Alice Bob
|
Maternal great uncle Natalie

Inference question:
(Freya, _, MaternalGreatUncle)

Answer:
(Freya, Fergus, MaternalGreatUncle)

Figure 2 of "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101
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Differentiable Neural Computer
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Figure 3 of "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101
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Memory-augmented Neural Networks

External memory can be also utilized for learning to learn. Consider a network, which should
learn classification into a user-defined hierarchy by observing ideally a small number of samples.

Apart from finetuning the model and storing the information in the weights, an alternative is to
store the samples in external memory. Therefore, the model learns how to store the data and

access it efficiently, which allows it to learn without changing its weights.

External Memory External Memory
Class Prediction El-2 5 Bl

¢ t t gl

. i 11 9%%
! | | | ® IS S ol I S S " » coo (
‘ || Backpropagated

f f Shuffle: f f f f Signal f

(X1 ) (X001, 1) [Labels (x,.0) (x,.1) o X ~
\ | Classes . ) |
Episode Samples Bind and Encode Retrieve Bound Information
(a) Task setup (b) Network strategy

Figure 1 of "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065
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ke - M(4)
ke (M)

K (ky, My (4)) (2)

which 1s used to produce a read-weight vector, w;, with
elements computed according to a softmax:

exp (K (kt, M, (z)))

wy (1) < > exp(K (ki My(4)))

3)

A memory, ry, 1s retrieved using this weight vector:

r; Z w? (1) My (2). (4)

NASNet EfficientNet WaveNet ParallelWaveNet

wy —yw + W +w ®)

Here, v is a decay parameter and w; is computed as in (3).
The least-used weights, wi¥, for a given time-step can then
be computed using w;'. First, we introduce the notation
m(v,n) to denote the n*" smallest element of the vector v.
Elements of wi* are set accordingly:

s ) 0 ifwi (i) > m(wi,n)
wi"(7) { 1 ifwf%’“(i) gm(wg‘,n) ’ ©)

where n 1s set to equal the number of reads to memory.
To obtain the write weights w3, a learnable sigmoid gate
parameter is used to compute a convex combination of the
previous read weights and previous least-used weights:

wi’ <« o(a)wi_; + (1 —o(a))wi,. (7)

Here, o () is a sigmoid function, H% and « is a scalar
gate parameter to interpolate between the weights. Prior
to writing to memory, the least used memory location is
computed from w;' ; and is set to zero. Writing to mem-
ory then occurs in accordance with the computed vector of

write weights:

M, (i) < My_1 (i) + w? (i)ky, Vi (8)
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Memory-augmented NNs Uz
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Figure 2. Omniglot classification. The network was given either five (a-b) or up to fifteen (c-d) random classes per episode, which were
of length 50 or 100 respectively. Labels were one-hot vectors in (a-b), and five-character strings in (c-d). In (b), first instance accuracy is
above chance, indicating that the MANN is performing “educated guesses” for new classes based on the classes it has already seen and
stored in memory. In (c-d), first instance accuracy is poor, as is expected, since it must make a guess from 3125 random strings. Second
instance accuracy, however, approaches 80% during training for the MANN (d). At the 100,000 episode mark the network was tested,
without further learning, on distinct classes withheld from the training set, and exhibited comparable performance.

Figure 2 of "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065
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