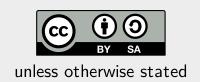


Convolutional Neural Networks

Milan Straka



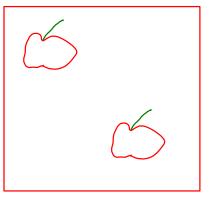
Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Going Deeper

2/56

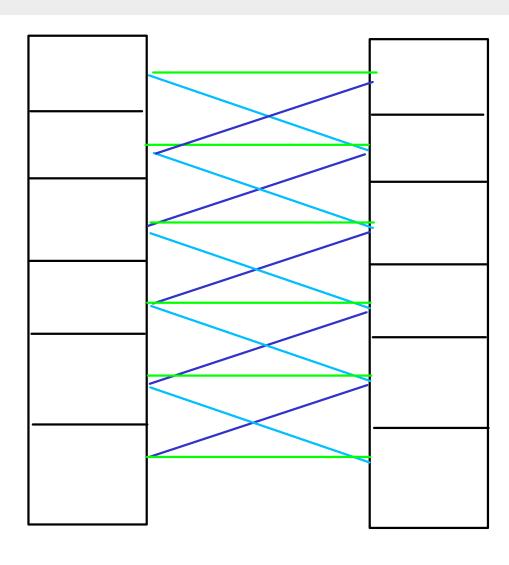
Going Deeper

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet


Convolutional Networks

Consider data with some structure (temporal data, speech, images, ...).

Unlike densely connected layers, we might want:


- local interactions only;
- shift invariance (equal response everywhere);

parameter sharing.

1D Convolution

2D Convolution

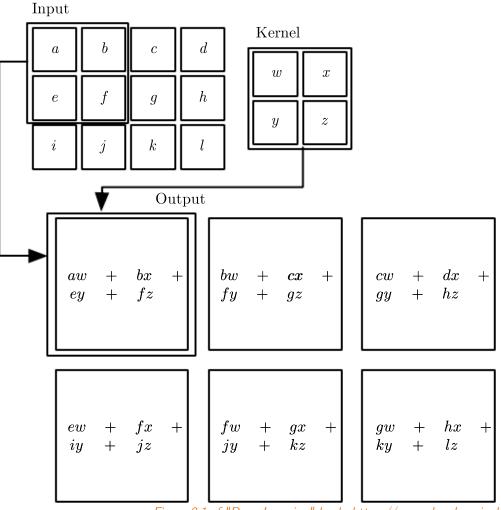
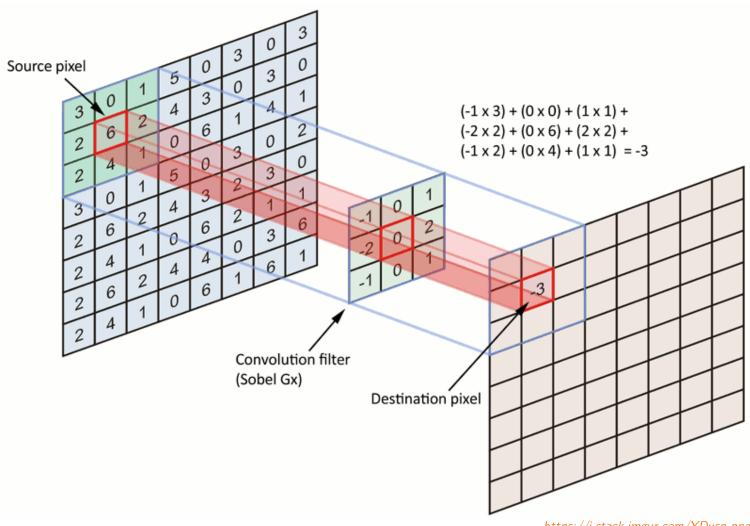
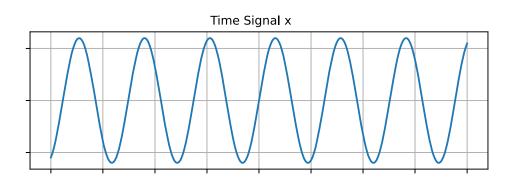
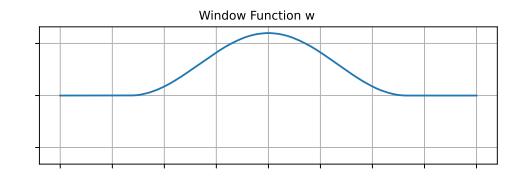
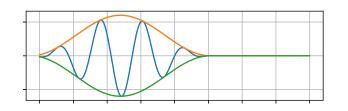



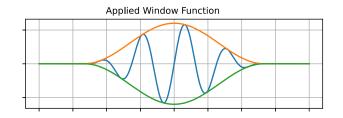
Figure 9.1 of "Deep Learning" book, https://www.deeplearningbook.org

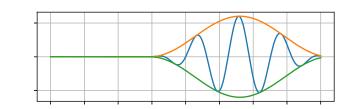
2D Convolution

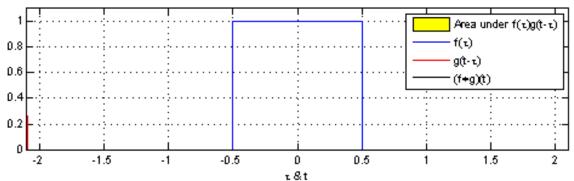

https://i.stack.imgur.com/YDusp.png


Convolution Operation

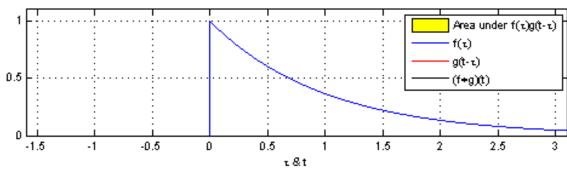



For a functions x and w, convolution w * x is defined as


$$(w*x)(t) = \int x(t-a)w(a)\,\mathrm{d}a.$$


VGG

Convolution Operation



For a functions x and w, convolution w * x is defined as

$$(w*x)(t)=\int x(t-a)w(a)\,\mathrm{d}a.$$

https://commons.wikimedia.org/wiki/File:Convolution of box signal with itself2.gif

https://commons.wikimedia.org/wiki/File:Convolution_of_spiky_function_with_box2.gif

NPFL114, Lecture 4

Convolution

CNNs

AlexNet

Deep Prior

VGG

Inception

BatchNorm

ResNet

8/56

Convolution Operation

For a functions x and w, convolution w * x is defined as

$$(w*x)(t)=\int x(t-a)w(a)\,\mathrm{d}a.$$

For vectors, we have

$$(oldsymbol{w}*oldsymbol{x})_t = \sum
olimits_i x_{t-i} w_i.$$

Convolution operation can be generalized to two dimensions by

$$(oldsymbol{K}*oldsymbol{I})_{i,j} = \sum
olimits_{m} oldsymbol{I}_{i-m,j-n} oldsymbol{K}_{m,n}.$$

Closely related is *cross-correlation*, where K is flipped:

$$(oldsymbol{K}\staroldsymbol{I})_{i,j}=\sum
olimits_{m}oldsymbol{I}_{i+m,j+n}oldsymbol{K}_{m,n}.$$

NPFL114, Lecture 4

Convolution

CNNs

Deep Prior

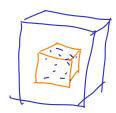
VGG

Inception

BatchNorm

ResNet

9/56


Convolution Layer

The K is usually called a **kernel** or a **filter**.

Note that usually we have a whole vector of values for a single pixel, the so-called **channels**. These single pixel channel values have no longer any spacial structure, so the kernel contains a different set of weights for every input dimension, obtaining

$$(\mathsf{K}\star\mathsf{I})_{i,j} = \sum_{m,n,c} \mathsf{I}_{i+m,j+n,c} \mathsf{K}_{m,n,c}.$$

Furthermore, we usually want to be able to specify the output dimensionality similarly to for example a fully connected layer – the number of **output channels** for every pixel. Each output channel is then the output of an independent convolution operation, so we can consider K to be a four-dimensional tensor and the convolution if computed as

$$(\mathsf{K}\star\mathsf{I})_{i,j,o} = \sum_{m,n,c} \mathsf{I}_{i+m,j+n,c} \mathsf{K}_{m,n,c,o}.$$

NPFL114, Lecture 4

Convolution Layer

To arrive at the complete convolution layer, we need to specify:

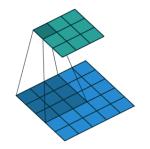
- ullet the width W and height H of the kernel;
- ullet the number of output channels F;
- the **stride** denoting that every output pixel is computed for every **stride**-th input pixel (e.g., the output is half the size if stride is 2).

Considering an input image with C channels, the convolution layer is then parametrized by a kernel K of total size W imes H imes C imes F and is computed as

$$(\mathsf{K}\star\mathsf{I})_{i,j,o} = \sum_{m,n,c} \mathsf{I}_{i\cdot S+m,j\cdot S+n,c} \mathsf{K}_{m,n,c,o}.$$

Note that while only local interactions are performed in the image spacial dimensions (width and height), we combine input channels in a fully connected manner.

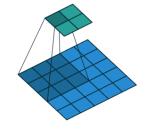
Convolution Layer



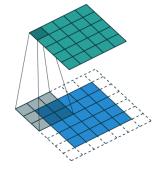
There are multiple padding schemes, most common are:

- valid: Only use valid pixels, which causes the result to be smaller than the input.
- same: Pad original image with zero pixels so that the result is exactly the size of the input.

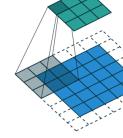
Illustration of the padding schemes and different strides for a 3×3 kernel:


• **valid** padding, stride=1:

https://github.com/vdumoulin/conv arithmetic


stride=2:

stride=2:



https://github.com/vdumoulin/conv_arithmetic

• **same** padding, stride=1:

https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

NPFL114, Lecture 4

Convolution

CNNs

AlexNet

Deep Prior

VGG

Inception

BatchNorm

ResNet

12/

Convolution Layer Representation

There are two prevalent image formats (called data_format in TensorFlow):

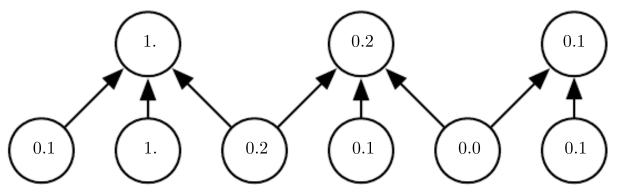
- channels_last: The dimensions of the 4-dimensional image tensor are batch, height, width, and channels.
 - The original TensorFlow format, faster on CPU.
- channels_first: The dimensions of the 4-dimensional image tensor are batch, channel, height, and width.
 - Usual GPU format (used by CUDA and nearly all frameworks); on TensorFlow, not all CPU kernels are available with this layout.

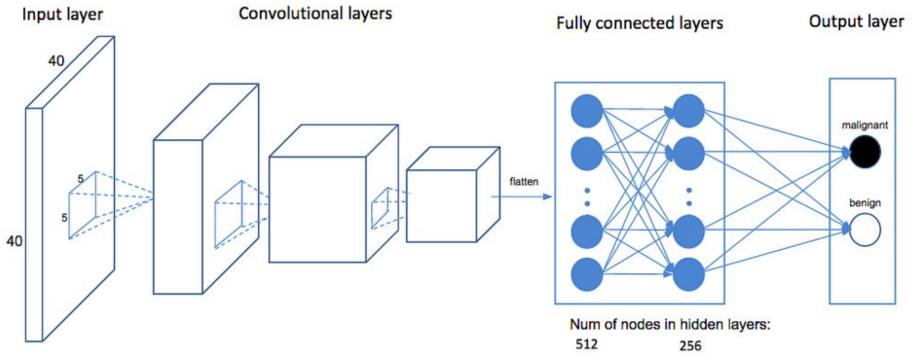
In TensorFlow, data is represented using the channels_last approach and the runtime will automatically convert it to channels_first if it is more suitable for available hardware (especially for a GPU).

Pooling

Pooling is an operation similar to convolution, but we perform a fixed operation instead of multiplying by a kernel.

- Max pooling (minor translation invariance)
- Average pooling




Figure 9.10 of "Deep Learning" book, https://www.deeplearningbook.org

High-level CNN Architecture

We repeatedly use the following block:

- 1. Convolution operation
- 2. Non-linear activation (usually ReLU)
- 3. Pooling

https://cdn-images-1.medium.com/max/1200/0*QyXSpqpm1wc_Dt6V.

NPFL114, Lecture 4

Convolution

CNNs

AlexNet

Deep Prior

VGG

Inception

BatchNorm

ResNet

15,

AlexNet - 2012 (16.4% error)

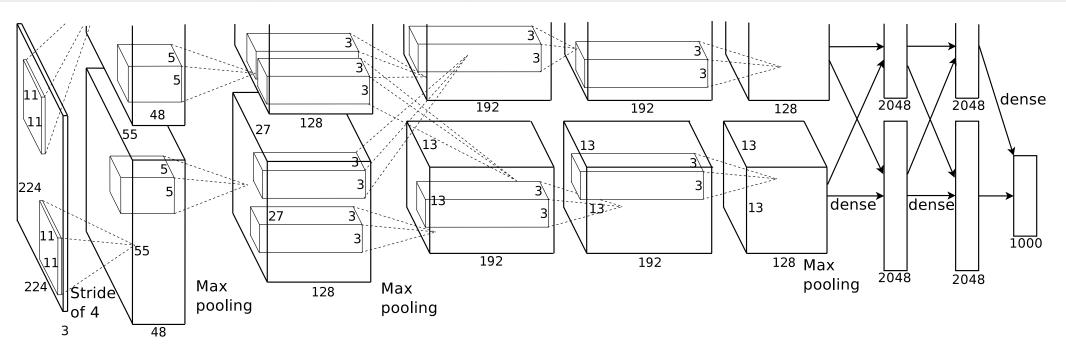


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Figure 2 of "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al.

AlexNet - 2012 (16.4% error)

Training details:

- 2 GPUs for 5-6 days
- SGD with batch size 128, momentum 0.9, L^2 regularization strength (weight decay) 0.0005

$$\circ~oldsymbol{v} \leftarrow 0.9 \cdot oldsymbol{v} - lpha \cdot rac{\partial L}{\partial oldsymbol{ heta}} - 0.0005 \cdot lpha \cdot oldsymbol{ heta}$$

$$\circ \ oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v}$$

- initial learning rate 0.01, manually divided by 10 when validation error rate stopped improving
- ReLU nonlinearities
- dropout with rate 0.5 on the fully-connected layers (except for the output layer)
- ullet data augmentation using translations and horizontal reflections (choosing random 224 imes 224 patches from 256 imes 256 images)
 - o during inference, 10 patches are used (four corner patches and a center patch, as well as their reflections)

AlexNet - ReLU vs tanh

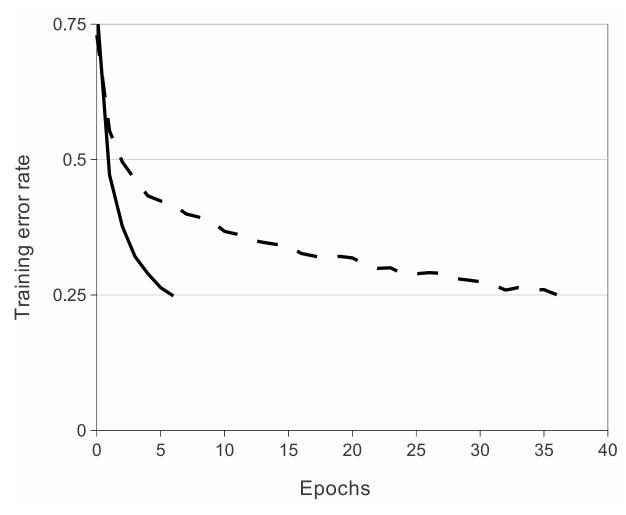
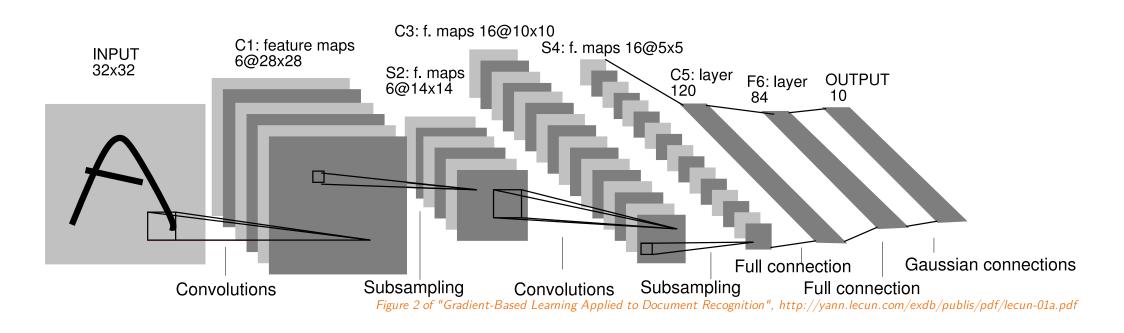
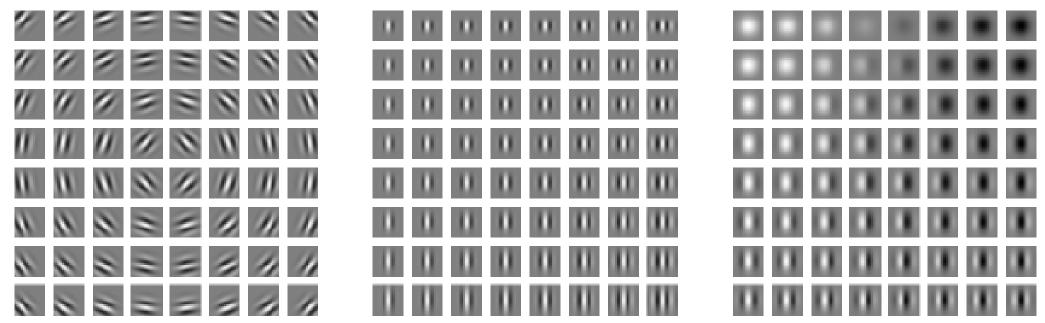



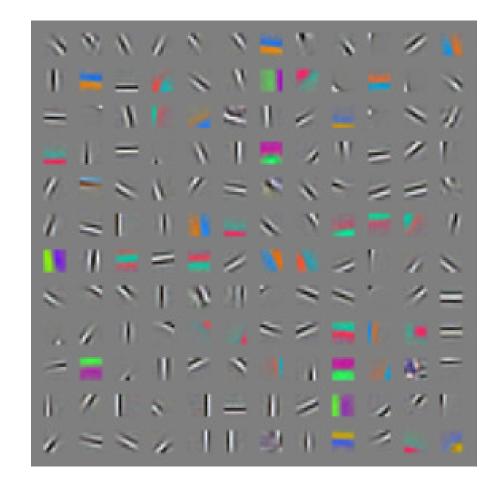
Figure 1 of "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al.

LeNet - 1998

AlexNet built on already existing CNN architectures, mostly on LeNet, which achieved 0.8% test error on MNIST.

Similarities in Primary Visual Cortex (V1) and CNNs




Figure 9.18 of "Deep Learning" book, https://www.deeplearningbook.org

The primary visual cortex recognizes Gabor functions.

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 20/56

Similarities in Primary Visual Cortex (V1) and CNNs

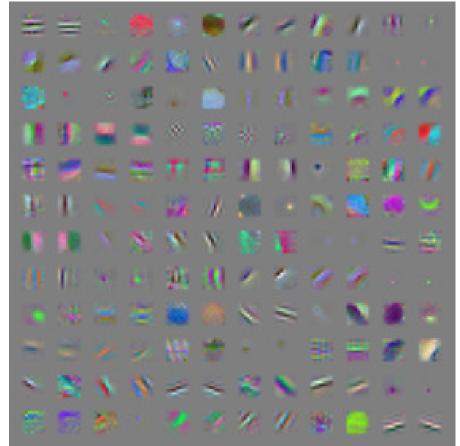


Figure 9.19 of "Deep Learning" book, https://www.deeplearningbook.org

Similar functions are recognized in the first layer of a CNN.

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet

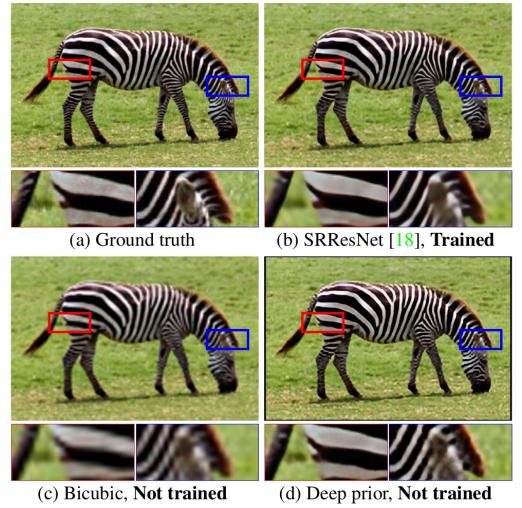
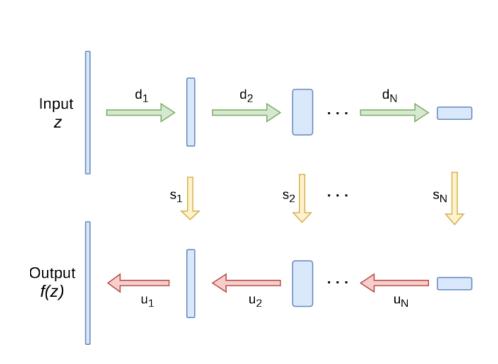



Figure 1 of "Deep Image Prior", https://arxiv.org/abs/1711.10925

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 22/56

Random noise from $U[0, \frac{1}{10}]$ used on input; in large inpainting, meshgrid is used instead and the skip-connections are not used.

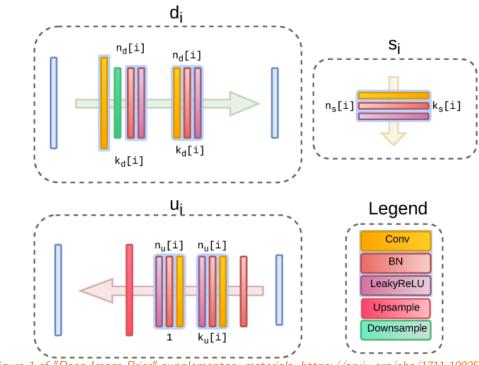


Figure 1 of "Deep Image Prior" supplementary materials, https://arxiv.org/abs/1711.10925

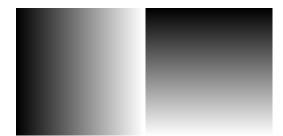


Figure 2 of "Deep Image Prior" supplementary materials, https://arxiv.org/abs/1711.10925

NPFL114, Lecture 4

Convolution

CNNs

AlexNet

Deep Prior

VGG

Inception

BatchNorm

ResNet

24/56

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet

Figure 5: Inpainting diversity. Left: original image (black pixels indicate holes). The remaining four images show results obtained using deep prior corresponding to different input vector z.

Figure 5 of "Deep Image Prior" supplementary materials, https://arxiv.org/abs/1711.10925

Deep Prior paper website with supplementary material

25/56 **CNNs AlexNet** VGG Convolution Deep Prior Inception BatchNorm ResNet

VGG - 2014 (6.8% error)

ConvNet Configuration										
A	A-LRN	В	С	D	Е					
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers										
input (224×224 RGB image)										
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64					
	LRN	conv3-64	conv3-64	conv3-64	conv3-64					
			pool							
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	conv3-128	conv3-128	conv3-128					
			pool							
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
			conv1-256	conv3-256	conv3-256					
					conv3-256					
		max	pool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
		max	pool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
	conv3-512									
		max	pool							
			4096							
	FC-4096									
	FC-1000									
	soft-max									

Figure 1 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556

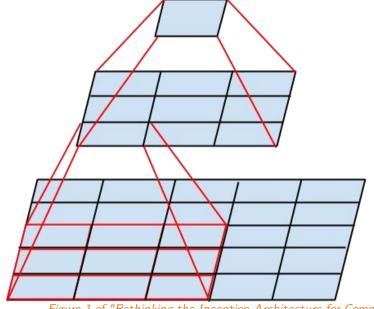


Figure 1 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

Table 2: **Number of parameters** (in millions).

			`		
Network	A,A-LRN	В	C	D	Е
Number of parameters	133	133	134	138	144

Figure 2 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet

VGG – 2014 (6.8% error)

Training detail similar to AlexNet:

- SGD with batch size 128 256, momentum 0.9, weight decay 0.0005
- initial learning rate 0.01, manually divided by 10 when validation error rate stopped improving
- ReLU nonlinearities
- dropout with rate 0.5 on the fully-connected layers (except for the output layer)
- ullet data augmentation using translations and horizontal reflections (choosing random 224 imes 224 patches from 256 imes 256 images)
 - $^{\circ}$ additionally, a multi-scale training and evaluation was performed. During training, each image was resized so that its smaller size was equal to S, which was sampled uniformly from [256,512]
 - $^{\circ}$ during test time, the image was rescaled three times so that the smaller size was 256,384,512, respectively, and the results on the three images were averaged

VGG - 2014 (6.8% error)

Table 3: ConvNet performance at a single test scale.

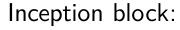
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)				
	train(S)	test(Q)						
A	256	256	29.6	10.4				
A-LRN	256	256	29.7	10.5				
В	256	256	28.7	9.9				
	256	256	28.1	9.4				
C	384	384	28.1	9.3				
	[256;512]	384	27.3	8.8				
	256	256	27.0	8.8				
D	384	384	26.8	8.7				
	[256;512]	384	25.6	8.1				
	256	256	27.3	9.0				
E	384	384	26.9	8.7				
	[256;512]	384	25.5	8.0				

Table 3 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556

Table 4: ConvNet performance at multiple test scales.

1able 4. Convinct perior mance at multiple test scales.								
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)				
	train(S)	test(Q)						
В	256	224,256,288	28.2	9.6				
	256	224,256,288	27.7	9.2				
C	384	352,384,416	27.8	9.2				
	[256; 512]	256,384,512	26.3	8.2				
	256	224,256,288	26.6	8.6				
D	384	352,384,416	26.5	8.6				
	[256; 512]	256,384,512	24.8	7.5				
	256	224,256,288	26.9	8.7				
E	384	352,384,416	26.7	8.6				
	[256; 512]	256,384,512	24.8	7.5				

Table 4 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556


VGG - 2014 (6.8% error)

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7	.9
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6	.7
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

Figure 2 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556

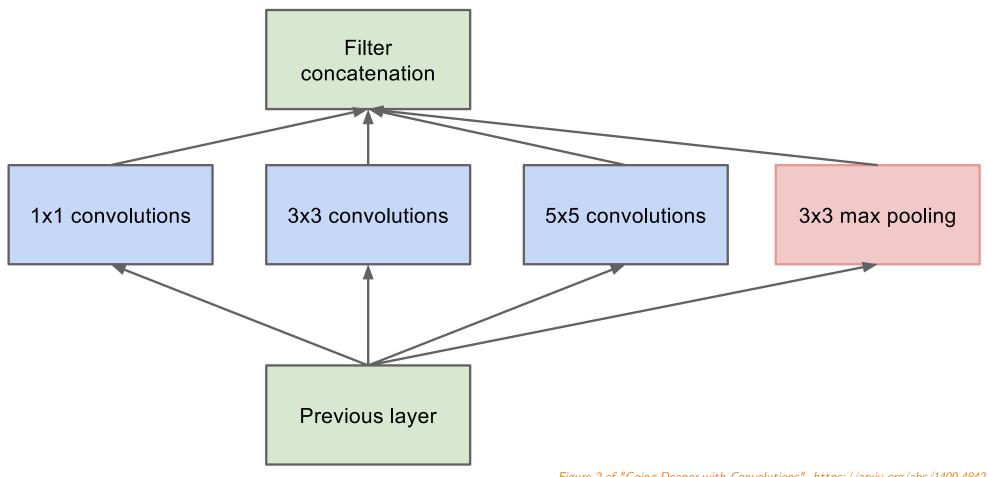
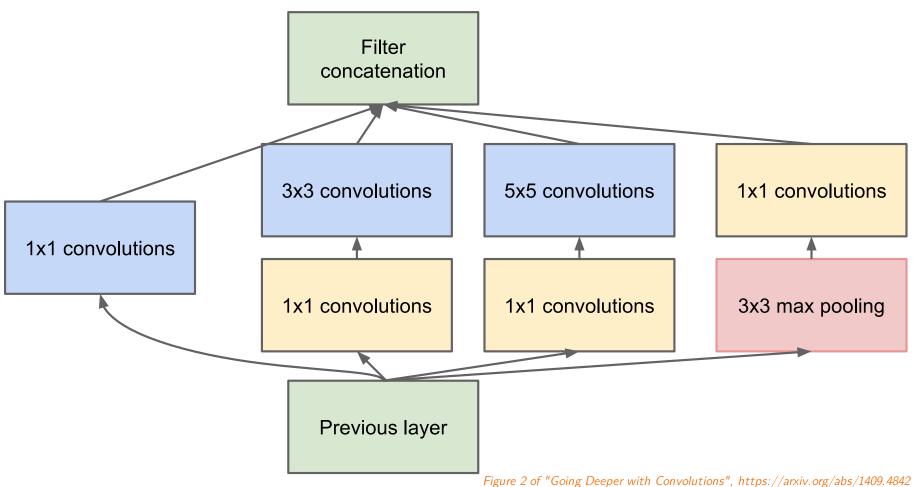
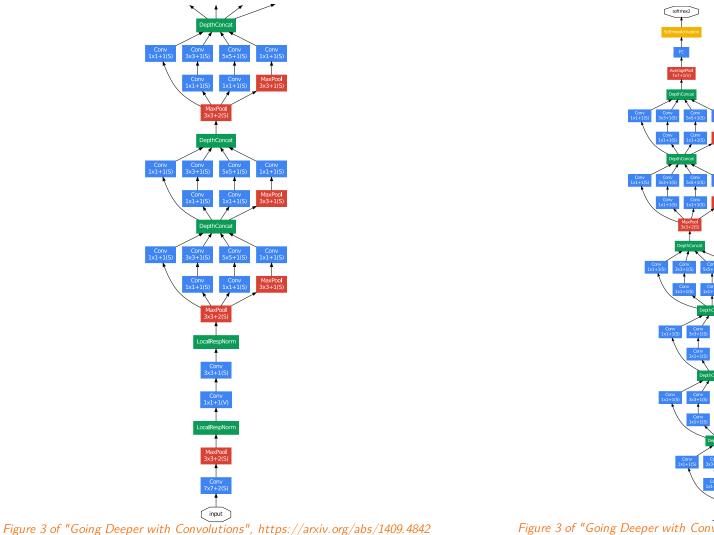



Figure 2 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842

Inception

Inception block with dimensionality reduction:


Inception

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	$3\times3/2$	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3\times3/2$	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	$3\times3/2$	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	$3\times3/2$	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	$7 \times 7/1$	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1M
softmax		$1 \times 1 \times 1000$	0								

Table 1 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842

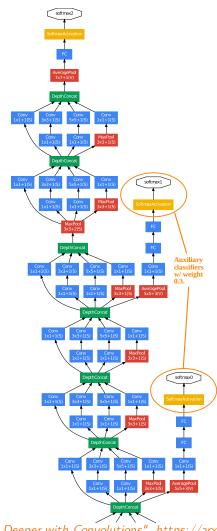


Figure 3 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842

Training details:

- SGD with momentum 0.9
- ullet fixed learning rate schedule of decreasing the learning rate by 4% each 8 epochs
- ullet during test time, the image was rescaled four times so that the smaller size was 256, 288, 320, 352, respectively.

For each image, the left, center and right square was considered, and from each square six crops of size 224×224 were extracted (4 corners, middle crop and the whole scaled-down square) together with their horizontal flips, arriving at $4 \cdot 3 \cdot 6 \cdot 2 = 144$ crops per image

• 7 independently trained models were ensembled

Number of models	Number of Crops	Cost	Top-5 error	compared to base
1	1	1	10.07%	base
1	10	10	9.15%	-0.92%
1	144	144	7.89%	-2.18%
7	1	7	8.09%	-1.98%
7	10	70	7.62%	-2.45%
7	144	1008	6.67%	-3.45%

Table 3 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842

Batch Normalization

Internal covariate shift refers to the change in the distributions of hidden node activations due to the updates of network parameters during training.

Let $oldsymbol{x}=(x_1,\ldots,x_d)$ be d-dimensional input. We would like to normalize each dimension as

$$\hat{x}_i = rac{x_i - \mathbb{E}[x_i]}{\sqrt{ ext{Var}[x_i]}}.$$

Furthermore, it may be advantageous to learn suitable scale γ_i and shift β_i to produce normalized value

$$y_i = \gamma_i \hat{x}_i + \beta_i$$
.

NPFL114, Lecture 4

VGG

Batch Normalization

Batch normalization of a mini-batch of m examples $(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)})$ is the following:

Inputs: Mini-batch $(m{x}^{(1)},\ldots,m{x}^{(m)})$, $arepsilon\in\mathbb{R}$ with default value 0.001

Parameters: $\boldsymbol{\beta}$ initialized to $\boldsymbol{0}$, $\boldsymbol{\gamma}$ initialized to $\boldsymbol{1}$; both trained by the optimizer

Outputs: Normalized batch $(m{y}^{(1)},\ldots,m{y}^{(m)})$

$$ullet$$
 $oldsymbol{\mu} \leftarrow rac{1}{m} \sum_{i=1}^m oldsymbol{x}^{(i)}$

$$ullet$$
 $oldsymbol{\sigma}^2 \leftarrow rac{1}{m} \sum_{i=1}^m (oldsymbol{x}^{(i)} - oldsymbol{\mu})^2$

$$ullet ~~ oldsymbol{\hat{x}}^{(i)} \leftarrow (oldsymbol{x}^{(i)} - oldsymbol{\mu})/\sqrt{oldsymbol{\sigma}^2 + arepsilon}$$

$$ullet \ oldsymbol{y}^{(i)} \leftarrow oldsymbol{\gamma} oldsymbol{\hat{x}}^{(i)} + oldsymbol{eta}$$

Batch normalization is added just before a nonlinearity f, and it is useless to add bias before it (because it will cancel out). Therefore, we replace $f(\mathbf{W}\mathbf{x} + \mathbf{b})$ by

$$f(BN(\boldsymbol{W}\boldsymbol{x})).$$

Batch Normalization during Inference

During inference, μ and σ^2 are fixed (so that prediction does not depend on other examples in a batch).

They could be precomputed after training on the whole training data, but in practice we estimate $\hat{\mu}$ and $\hat{\sigma}^2$ during training using an exponential moving average.

Additional Inputs: momentum $au \in \mathbb{R}$ with default value of 0.99

Additional Parameters: $\hat{\boldsymbol{\mu}}$ initialized to $\boldsymbol{0}$, $\hat{\boldsymbol{\sigma}}^2$ initialized to $\boldsymbol{1}$; both updated manually

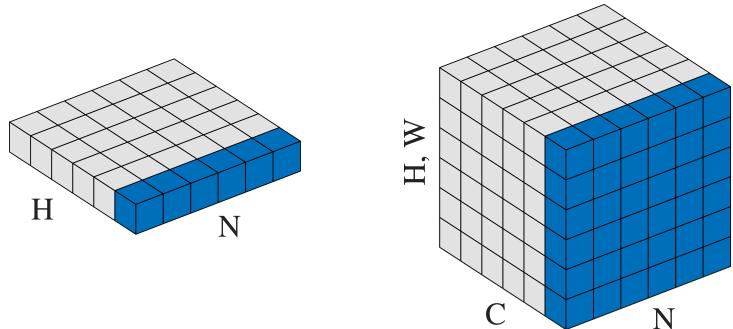
During training, also perform:

•
$$\hat{oldsymbol{\mu}} \leftarrow au\hat{oldsymbol{\mu}} + (1- au)oldsymbol{\mu}$$

$$oldsymbol{\hat{\sigma}}^2 \leftarrow au oldsymbol{\hat{\sigma}}^2 + (1- au) oldsymbol{\sigma}^2$$

Batch normalization is then during inference computed as:

$$ullet ~~ oldsymbol{\hat{x}}^{(i)} \leftarrow (oldsymbol{x}^{(i)} - oldsymbol{\hat{\mu}})/\sqrt{oldsymbol{\hat{\sigma}}^2 + arepsilon}$$


$$ullet \ oldsymbol{y}^{(i)} \leftarrow oldsymbol{\gamma} oldsymbol{\hat{x}}^{(i)} + oldsymbol{eta}$$

Batch Normalization

When a batch normalization is used on a fully connected layer, each neuron is normalized individually across the minibatch.

However, for convolutional networks we would like the normalization to honour their properties, most notably the shift invariance. We therefore normalize each channel across not only the minibatch, but also across all corresponding spacial/temporal locations.

Adapted from Figure 2 of "Group Normalization", https://arxiv.org/abs/1803.08494

NPFL114, Lecture 4

Convolution

CNNs

AlexNet

VGG

Inception

BatchNorm

ResNet

39/56

Inception with BatchNorm (4.8% error)

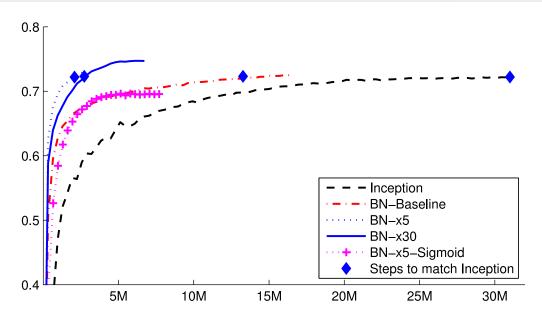


Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Model	Steps to 72.2%	Max accuracy
Inception	$31.0 \cdot 10^6$	72.2%
BN-Baseline	$13.3 \cdot 10^6$	72.7%
BN-x5	$2.1 \cdot 10^{6}$	73.0%
BN-x30	$2.7 \cdot 10^6$	74.8%
BN-x5-Sigmoid		69.8%

Figure 3: For Inception and the batch-normalized variants, the number of training steps required to reach the maximum accuracy of Inception (72.2%), and the maximum accuracy achieved by the network.

Figures 2 and 3 of "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", https://arxiv.org/abs/1502.03167

The BN-x5 and BN-x30 use 5/30 times larger initial learning rate, faster learning rate decay, no dropout, weight decay smaller by a factor of 5, and several more minor changes.

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 40/56

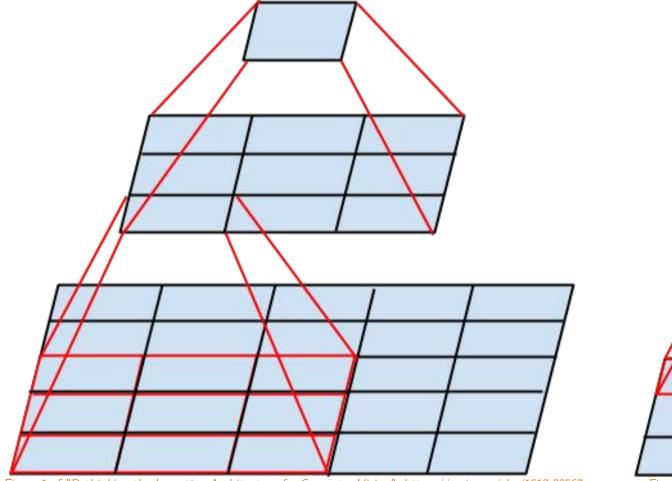


Figure 1 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

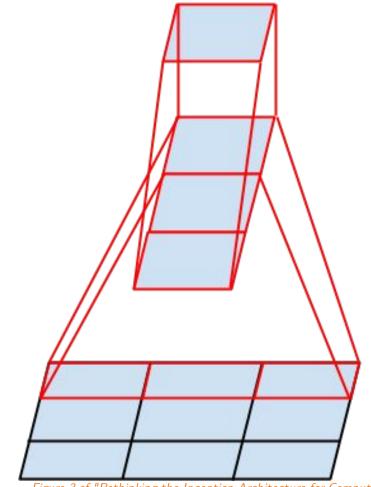


Figure 3 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 41/56

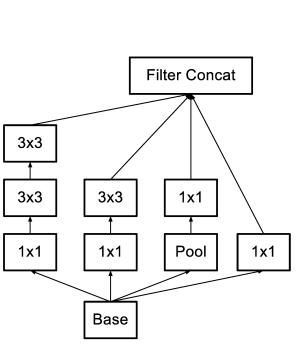


Figure 5. Inception modules where each 5×5 convolution is replaced by two 3×3 convolution, as suggested by principle 3 of Section 2.

Figure 5 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

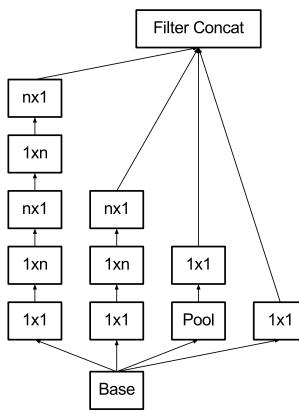


Figure 6. Inception modules after the factorization of the $n \times n$ convolutions. In our proposed architecture, we chose n=7 for the 17×17 grid. (The filter sizes are picked using principle 3)

Figure 6 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

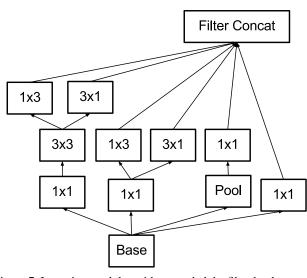


Figure 7. Inception modules with expanded the filter bank outputs. This architecture is used on the coarsest (8×8) grids to promote high dimensional representations, as suggested by principle 2 of Section 2. We are using this solution only on the coarsest grid, since that is the place where producing high dimensional sparse representation is the most critical as the ratio of local processing (by 1×1 convolutions) is increased compared to the spatial aggregation.

Figure 7 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

type	patch size/stride or remarks	input size	
conv	$3\times3/2$	$299 \times 299 \times 3$	
conv	$3\times3/1$	$149 \times 149 \times 32$	
conv padded	$3\times3/1$	$147 \times 147 \times 32$	
pool	$3\times3/2$	$147 \times 147 \times 64$	
conv	$3\times3/1$	$73 \times 73 \times 64$	
conv	$3\times3/2$	$71 \times 71 \times 80$	
conv	$3\times3/1$	$35 \times 35 \times 192$	
3×Inception	As in figure 5	$35 \times 35 \times 288$	
5×Inception	As in figure 6	$17 \times 17 \times 768$	
2×Inception	As in figure 7	$8 \times 8 \times 1280$	
pool	8×8	$8 \times 8 \times 2048$	
linear	logits	$1 \times 1 \times 2048$	
softmax	classifier	$1 \times 1 \times 1000$	

Table 1 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

Training details:

- ullet RMSProp with momentum of eta=0.9 and arepsilon=1.0
- batch size of 32 for 100 epochs
- initial learning rate of 0.045, decayed by 6% every two epochs
- gradient clipping with threshold 2.0 was used to stabilize the training
- ullet label smoothing was first used in this paper, with lpha=0.1
- ullet input image size enlarged to 299 imes 299

Network	Top-1	Top-5	Cost
Network	Error	Error	Bn Ops
GoogLeNet [20]	29%	9.2%	1.5
BN-GoogLeNet	26.8%	-	1.5
BN-Inception [7]	25.2%	7.8	2.0
Inception-v2	23.4%	-	3.8
Inception-v2			
RMSProp	23.1%	6.3	3.8
Inception-v2			
Label Smoothing	22.8%	6.1	3.8
Inception-v2			
Factorized 7×7	21.6%	5.8	4.8
Inception-v2	21.2%	5.6%	4.8
BN-auxiliary	41.4 70	3.0%	4.0

Table 3 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

VGG

Network	Crops	Top-5	Top-1
Network	Evaluated	Error	Error
GoogLeNet [20]	10	-	9.15%
GoogLeNet [20]	144	-	7.89%
VGG [18]	-	24.4%	6.8%
BN-Inception [7]	144	22%	5.82%
PReLU [6]	10	24.27%	7.38%
PReLU [6]	-	21.59%	5.71%
Inception-v3	12	19.47%	4.48%
Inception-v3	144	18.77%	4.2%

Table 4 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

Network	Models Evaluated	Crops Evaluated	Top-1 Error	Top-5 Error
VGGNet [18]	2	-	23.7%	6.8%
GoogLeNet [20]	7	144	-	6.67%
PReLU [6]	-	-	-	4.94%
BN-Inception [7]	6	144	20.1%	4.9%
Inception-v3	4	144	17.2%	3.58%*

Table 5 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

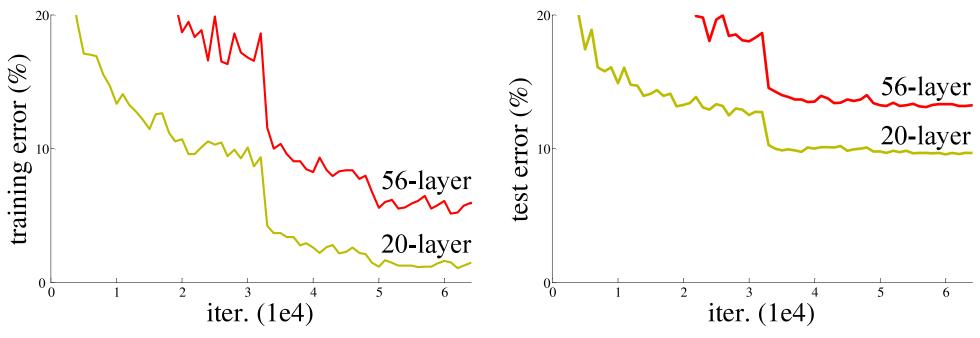


Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Figure 1 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

NPFL114, Lecture 4

Convolution

CNNs

AlexNet

Deep Prior

VGG I

Inception

BatchNorm

ResNet

47/56

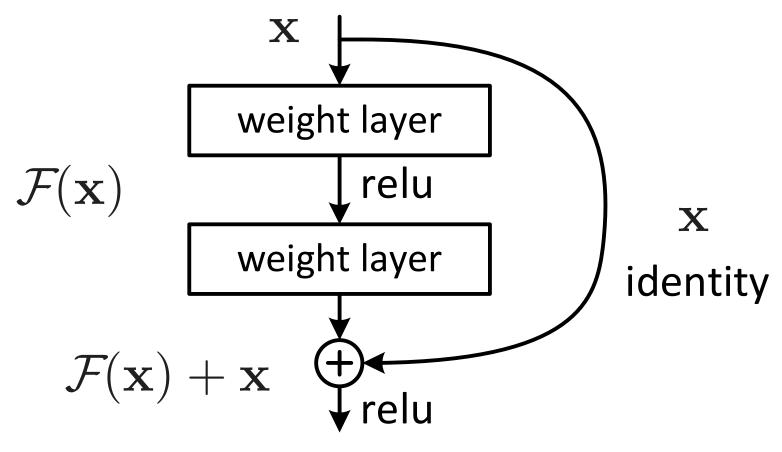


Figure 2. Residual learning: a building block.

Figure 2 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 48/56

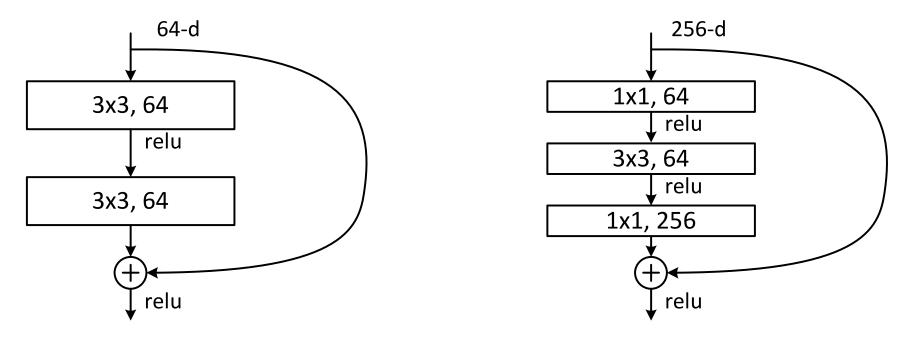
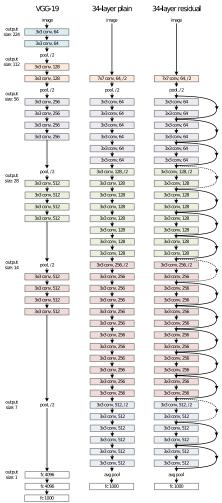


Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.


Figure 5 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112		7×7 , 64, stride 2			
				3×3 max pool, stric	le 2	
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$ \left[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$ \left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4 $	Γ 1×1 129]	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $
conv4_x		1	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $
conv5_x	7×7	$\begin{bmatrix} 3\times3,512\\ 3\times3,512 \end{bmatrix} \times 2$	$\left[\begin{array}{c} 3 \times 3,512 \\ 3 \times 3,512 \end{array}\right] \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $
	1×1	average pool, 1000-d fc, softmax				
FLO	OPs	1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9

Table 1 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

The residual connections cannot be applied directly when number of channels increases.

The authors considered several alternatives, and chose the one where in case of channels increase a 1×1 convolution + BN is used on the projections to match the required number of channels. The required spacial resolution is achieved by using stride 2.

Figure 3 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

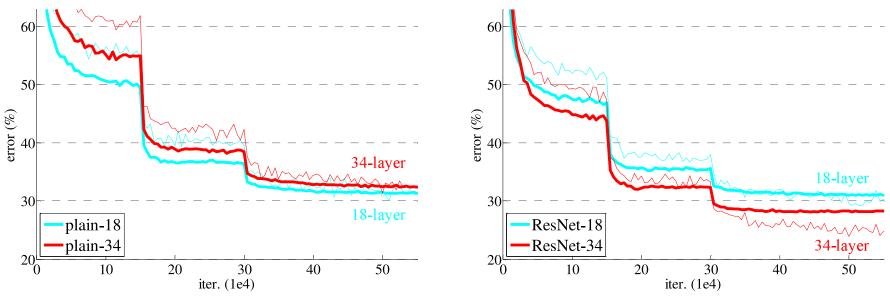
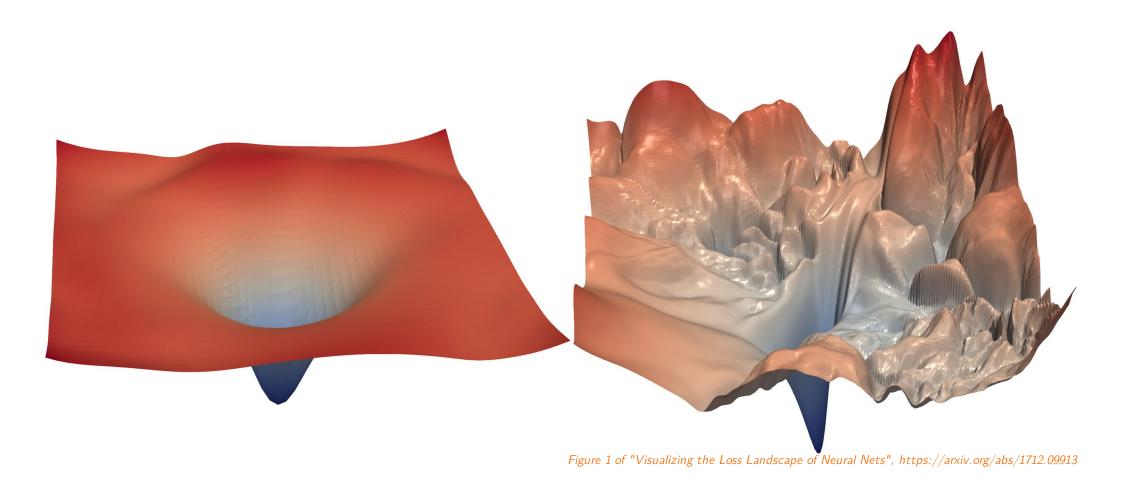



Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Figure 4 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

ResNet

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 53/56

Training details:

- batch normalizations after each convolution and before activation
- SGD with batch size 256 and momentum of 0.9
- learning rate starts with 0.1 and is divided by 10 when error plateaus
- no dropout, weight decay 0.0001
- during testing, 10-crop evaluation strategy is used, averaging scores across multiple scales the images are resized so that their smaller size is in $\{224, 256, 384, 480, 640\}$

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	_	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Table 4. Error rates (%) of **single-model** results on the ImageNet validation set (except † reported on the test set).

Table 4 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

Table 5 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

The ResNet-34 B uses the 1×1 convolution on residual connections with different number of input and output channels; ResNet-34 C uses this convolution on all residual connections. Variant B is used for ResNet-50/101/152.

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 55/56

Main Takeaways

- Convolutions can provide
 - local interactions in spacial/temporal dimensions
 - shift invariance
 - much less parameters than a fully connected layer
- ullet Usually repeated 3 imes 3 convolutions are enough, no need for larger filter sizes.
- When pooling is performed, double the number of channels (i.e., the first convolution following the pooling layer will have twice as many output channels).
- If your network is deep enough (the last hidden neurons have a large receptive fields), final fully connected layers are not needed, and global average pooling is enough.
- ullet Batch normalization is a great regularization method for CNNs, allowing removal/decrease of dropout and L^2 regularization.
- ullet Small weight decay (i.e., L^2 regularization) of usually 1e-4 is still useful for regularizing convolutional kernels.

Inception