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History of Reinforcement Learning

Develop goal-seeking agent trained using reward signal.

Optimal control in 1950s – Richard Bellman

Trial and error learning – since 1850s
Law and effect – Edward Thorndike, 1911

Responses that produce a satisfying effect in a particular situation become more
likely to occur again in that situation, and responses that produce a discomforting
effect become less likely to occur again in that situation

Shannon, Minsky, Clark&Farley, … – 1950s and 1960s
Tsetlin, Holland, Klopf – 1970s
Sutton, Barto – since 1980s

Arthur Samuel – first implementation of temporal difference methods for playing checkers

Notable successes
Gerry Tesauro – 1992, human-level Backgammon program trained solely by self-play

IBM Watson in Jeopardy – 2011
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History of Reinforcement Learning

Recent successes
Human-level video game playing (DQN) – 2013 (2015 Nature), Mnih. et al, Deepmind

29 games out of 49 comparable or better to professional game players
8 days on GPU
human-normalized mean: 121.9%, median: 47.5% on 57 games

A3C – 2016, Mnih. et al
4 days on 16-threaded CPU
human-normalized mean: 623.0%, median: 112.6% on 57 games

Rainbow – 2017
human-normalized median: 153%; ~39 days of game play experience

Impala – Feb 2018
one network and set of parameters to rule them all
human-normalized mean: 176.9%, median: 59.7% on 57 games

PopArt-Impala – Sep 2018
human-normalized median: 110.7% on 57 games; 57*38.6 days of experience
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History of Reinforcement Learning

 

Figure 2 of the paper "Recurrent
Experience Replay in Distributed

Reinforcement Learning" by Steven
Kapturowski et al.

Recent successes

R2D2 – Jan 2019
human-normalized mean: 4024.9%, median: 1920.6% on 57 games
processes ~5.7B frames during a day of training

MuZero – Nov 2019
planning with a learned model: 4999.2%, median: 2041.1%

Data-efficient Rainbow – Jun 2019
learning from ~2 hours of game experience

 

Figure 3 of the paper "When to use parametric models in reinforcement learning?" by Hado van Hasselt et al.

5/34NPFL114, Lecture 13 RL Multi-armed Bandits -greedy MDP MonteCarlo REINFORCE Baselineε



History of Reinforcement Learning

Recent successes
AlphaGo

Mar 2016 – beat 9-dan professional player Lee Sedol

AlphaGo Master – Dec 2016
beat 60 professionals, beat Ke Jie in May 2017

AlphaGo Zero – 2017
trained only using self-play
surpassed all previous version after 40 days of training

AlphaZero – Dec 2017 (Dec 2018 in Nature)
self-play only, defeated AlphaGo Zero after 30 hours of training
impressive chess and shogi performance after 9h and 12h, respectively

 

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
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History of Reinforcement Learning

Recent successes
Dota2 – Aug 2017

won 1v1 matches against a professional player

MERLIN – Mar 2018
unsupervised representation of states using external memory
beat human in unknown maze navigation

FTW – Jul 2018
beat professional players in two-player-team Capture the flag FPS
solely by self-play, trained on 450k games

OpenAI Five – Aug 2018
won 5v5 best-of-three match against professional team
256 GPUs, 128k CPUs, 180 years of experience per day

AlphaStar
Jan 2019: won 10 out of 11 StarCraft II games against two professional players
Oct 2019: ranked 99.8% on Battle.net, playing with full game rules
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AlphaStart

 

Figure 2 of the paper "Grandmaster level in StarCraft II using multi-agent reinforcement learning" by Oriol Vinyals et al.
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History of Reinforcement Learning

Recent successes
Neural Architecture Search – since 2017

automatically designing CNN image recognition networks surpassing state-of-the-art
performance
AutoML: automatically discovering

architectures (CNN, RNN, overall topology)
activation functions
optimizers
…

System for automatic control of data-center cooling – 2017
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Multi-armed Bandits

 

http://www.infoslotmachine.com/img/one-armed-bandit.jpg
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Multi-armed Bandits

 

Figure 2.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Multi-armed Bandits

We start by selecting action , which is the index of the arm to use, and we get a reward of 

. We then repeat the process by selecting actions , , …

Let  be the real value of an action :

Denoting  our estimated value of action  at time  (before taking trial ), we would like 

 to converge to . A natural way to estimate  is

Following the definition of , we could choose a greedy action  as

A  1

R  1 A  2 A  3

q  (a)∗ a

q  (a) =∗ E[R  ∣A  =t t a].

Q  (a)t a t t

Q  (a)t q  (a)∗ Q  (a)t

Q  (a)t =def
 .

number of times action a was taken
sum of rewards when action a is taken

Q  (a)t A  t

A  t =def
 Q  (a).

a
arg max t
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-greedy Methodε

Exploitation versus Exploration
Choosing a greedy action is exploitation of current estimates. We however also need to
explore the space of actions to improve our estimates.

An -greedy method follows the greedy action with probability , and chooses a uniformly

random action with probability .

ε 1 − ε

ε
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-greedy Methodε

 

Figure 2.2 of "Reinforcement Learning: An Introduction, Second Edition".
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-greedy Methodε

Incremental Implementation
Let  be an estimate using  rewards .Q  n+1 n R  , … ,R  1 n
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n
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-greedy Method Algorithmε

 

Algorithm 2.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Markov Decision Process

 

Figure 3.1 of "Reinforcement Learning: An Introduction, Second Edition".

A Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action  will lead from

state  to , producing a reward ,

 is a discount factor (we will always use  and finite episodes in this

course).

Let a return  be . The goal is to optimize .

(S, A, p, γ)

S

A

p(S  =t+1 s ,R  =′
t+1 r∣S  =t s,A  =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1] γ = 1

G  t G  t =def
 γ R  ∑k=0

∞ k
t+1+k E[G  ]0
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Multi-armed Bandits as MDP

To formulate -armed bandits problem as MDP, we do not need states. Therefore, we could

formulate it as:

one-element set of states, ;

an action for every arm, ;

assuming every arm produces rewards with a distribution of , the MDP dynamics

function  is defined as

One possibility to introduce states in multi-armed bandits problem is to consider a separate
reward distribution for every state. Such generalization is called Contextualized Bandits
problem. Assuming state transitions are independent on rewards and given by a distribution 

, the MDP dynamics function for contextualized bandits problem is given by

n

S = {S}
A = {a  , a  , … , a }1 2 n

N (μ  ,σ  )i i
2

p

p(S, r∣S, a  ) =i N (r∣μ  ,σ  ).i i
2

next(s)

p(s , r∣s, a  ) =′
i N (r∣μ  ,σ  ) ⋅i,s i,s

2 next(s ∣s).′
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Episodic and Continuing Tasks

If the agent-environment interaction naturally breaks into independent subsequences, usually
called episodes, we talk about episodic tasks.

In episodic tasks, it is often the case that every episode ends in at most  steps. These finite-

horizon tasks then can use discount factor , because the return  is

well defined.

If the agent-environment interaction goes on and on without a limit, we instead talk about
continuing tasks. In this case, the discount factor  needs to be sharply smaller than 1.

H

γ = 1 G =def
 γ R  ∑t=0

H t
t+1

γ
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(State-)Value and Action-Value Functions

A policy  computes a distribution of actions in a given state, i.e.,  corresponds to a

probability of performing an action  in state .

To evaluate a quality of a policy, we define value function , or state-value function, as

An action-value function for a policy  is defined analogously as

The value function and state-value function can be of course expressed using one another:

π π(a∣s)
a s

v  (s)π

  

v  (s)π E  G  S  = s = E   γ R   S  = s=def
π [ t∣ t ] π [∑

k=0

∞
k

t+k+1∣
∣∣
∣

t ]

= E  E  [R  + γE  E  [R  + … ]]A  ∼π(s)t S  ,R  ∼p(s,A  )t+1 t+1 t t+1 A  ∼π(S  )t+1 t+1 S  ,R  ∼p(S  ,A  )t+2 t+2 t+1 t+1 t+2

π

q  (s, a)π =def E  G  S  = s,A  = a =π [ t∣ t t ] E   γ R   S  = s,A  = a .π [∑
k=0

∞
k

t+k+1∣
∣∣
∣

t t ]

v  (s) =π E  [q  (s, a)],        q  (s, a) =a∼π π π E  [r +s ,r∼p′ γv  (s )].π
′
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Optimal Value Functions

Optimal state-value function is defined as

analogously

Any policy  with  is called an optimal policy. Such policy can be defined as 

. When multiple

actions maximize , the optimal policy can stochastically choose any of them.

Existence
In finite-horizon tasks or if , there always exists a unique optimal state-value function,

a unique optimal action-value function, and a (not necessarily unique) optimal policy.

v (s)∗ =def
 v  (s),

π
max π

q  (s, a)∗ =
def

 q  (s, a).
π

max π

π  ∗ v  =π  ∗ v  ∗

π  (s)∗ =def
 q  (s, a) =

a
arg max ∗  E[R  +

a
arg max t+1 γv  (S  )∣S  =∗ t+1 t s,A  =t a]

q  (s, a)∗

γ < 1
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Monte Carlo Methods

We now present the first algorithm for computing optimal policies without assuming a
knowledge of the environment dynamics.

However, we still assume there are finitely many states , finitely many actions  and we will

store estimates for every possible state-action pair.

Monte Carlo methods are based on estimating returns from complete episodes. Furthermore, if
the model (of the environment) is not known, we need to estimate returns for the action-value
function  instead of .

S A

q v
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Monte Carlo and -soft Policiesε

For the estimates to converge to the real values, every reachable state must be visited infinitely
many times and every action in such a state must be selected infinitely many times in limit.

A policy is called -soft, if

and we call it -greedy, if one action has a maximum probability of .

It can be shown that when considering the class of -soft policies, one of the optimal policies is

always -greedy – we will therefore search among the -greedy policies only.

ε

π(a∣s) ≥  .
∣A(s)∣
ε

ε 1 − ε+ ∣A(s)∣
ε

ε

ε ε
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Monte Carlo for -soft Policiesε

On-policy every-visit Monte Carlo for -soft Policies

Algorithm parameter: small 

Initialize  arbitrarily (usually to 0), for all  

Initialize  to 0, for all 

Repeat forever (for each episode):

Generate an episode , by generating actions as follows:

With probability , generate a random uniform action

Otherwise, set 

For each :

ε

ε > 0

Q(s, a) ∈ R s ∈ S, a ∈ A

C(s, a) ∈ Z s ∈ S, a ∈ A

S  ,A  ,R  , … ,S  ,A  ,R  0 0 1 T−1 T−1 T

ε

A  t =def arg max  Q(S  , a)a t

G ← 0
t = T − 1,T − 2, … , 0

G ← γG+ R  t+1

C(S ,A  ) ←t t C(S  ,A  ) +t t 1
Q(S  ,A  ) ←t t Q(S  ,A  ) +t t  (G−

C(S  ,A  )t t

1 Q(S  ,A  ))t t
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Policy Gradient Methods

Instead of predicting expected returns, we could train the method to directly predict the policy

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution  instead of just -greedy sampling.

However, to train the network, we maximize the expected return  and to that account we

need to compute its gradient .

π(a∣s; θ).

π ε

v  (s)π

∇  v  (s)θ π
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Policy Gradient Theorem

Assume that  and  are finite and that maximum episode length  is also finite.

Let  be a parametrized policy. We denote the initial state distribution as  and the

on-policy distribution under  as . Let also .

Then

and

where  is the probability of getting to state  when starting from state ,

after any number of 0, 1, … steps.

S A H

π(a∣s; θ) h(s)
π μ(s) J(θ) =def E  v  (s)s∼h π

∇  v  (s) ∝θ π  P (s →
s ∈S′

∑ … → s ∣π)  q  (s , a)∇  π(a∣s ; θ)′

a∈A

∑ π
′

θ
′

∇  J(θ) ∝θ  μ(s)  q  (s, a)∇  π(a∣s; θ),
s∈S

∑
a∈A

∑ π θ

P (s → … → s ∣π)′ s′ s
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Proof of Policy Gradient Theorem

We now expand .

Continuing to expand all , we obtain the following:

∇v  (s) =π ∇[  π(a∣s; θ)q  (s, a)]∑
a

π

=  [∇π(a∣s; θ)q  (s, a) +∑
a

π π(a∣s; θ)∇q  (s, a)]π

=  [∇π(a∣s; θ)q  (s, a) +∑
a

π π(a∣s; θ)∇(  p(s ∣s, a)(r +∑
s′

′ v  (s )))]π
′

=  [∇π(a∣s; θ)q  (s, a) +∑
a

π π(a∣s; θ)(  p(s ∣s, a)∇v  (s ))]∑
s′

′
π

′

v  (s )π
′

=  [∇π(a∣s; θ)q  (s, a) +∑
a

π π(a∣s; θ)(  p(s ∣s, a)(∑
s′

′

 [∇π(a ∣s ; θ)q  (s , a ) +∑
a′

′ ′
π

′ ′ π(a ∣s ; θ)(  p(s ∣s , a )∇v  (s ))]))]′ ′ ∑
s′′

′′ ′ ′
π

′′

v  (s )π
′′

∇v  (s) =π   P (s →
s ∈S′

∑
k=0

∑
H

s  in k steps ∣π)  q  (s , a)∇  π(a∣s ; θ).′

a∈A

∑ π
′

θ
′
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Proof of Policy Gradient Theorem

To finish the proof of the first part, it is enough to realize that

For the second part, we know that

therefore using the fact that  we get

Finally, note that the theorem can be proved with infinite  and ; and also for infinite

episodes when discount factor .

 P (s →∑
k=0

H
s  in k steps ∣π) ∝′ P (s → … → s ∣π).′

∇  J(θ) =θ E  ∇  v  (s) ∝s∼h θ π E   P (s →s∼h

s ∈S′

∑ … → s ∣π)  q  (s , a)∇  π(a∣s ; θ),′

a∈A

∑ π
′

θ
′

μ(s ) =′ E  P (s →s∼h … → s ∣π)′

∇  J(θ) ∝θ  μ(s)  q  (s, a)∇  π(a∣s; θ).
s∈S

∑
a∈A

∑ π θ

S A

γ < 1
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REINFORCE Algorithm

The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

minimizing . The loss gradient is then

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

where we used the fact that

−J(θ) =def −E  v  (s)s∼h π

∇  −θ J(θ) ∝ −  μ(s)  q  (s, a)∇  π(a∣s; θ) =
s∈S

∑
a∈A

∑ π θ −E   q  (s, a)∇  π(a∣s; θ).s∼μ

a∈A

∑ π θ

∇  −θ J(θ) ∝ E  E  q  (s, a)∇  −s∼μ a∼π π θ ln π(a∣s; θ),

∇  ln π(a∣s; θ) =θ  ∇  π(a∣s; θ).
π(a∣s; θ)

1
θ
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REINFORCE Algorithm

REINFORCE therefore minimizes the loss

estimating the  by a single sample.

Note that the loss is just a weighted variant of negative log-likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

 

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition" by removing γ^t from the update of θ.

E  E  q  (s, a)∇  −s∼μ a∼π π θ ln π(a∣s; θ),

q  (s, a)π
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REINFORCE with Baseline

The returns can be arbitrary – better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline  to

The baseline  can be a function or even a random variable, as long as it does not depend

on , because

b(s)

∇  J(θ) ∝θ  μ(s)  (q  (s, a) −
s∈S

∑
a∈A

∑ π b(s))∇  π(a∣s; θ).θ

b(s)
a

 b(s)∇  π(a∣s; θ) =
a

∑ θ b(s)  ∇  π(a∣s; θ) =
a

∑ θ b(s)∇   π(a∣s; θ) =θ

a

∑ b(s)∇1 = 0.
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REINFORCE with Baseline

A good choice for  is , which can be shown to minimize variance of the estimator.

Such baseline reminds centering of returns, given that

Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting  function is also called an advantage function

Of course, the  baseline can be only approximated. If neural networks are used to estimate

, then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.

b(s) v  (s)π

v  (s) =π E  q  (s, a).a∼π π

q  (s, a) −π v  (s)π

a  (s, a)π =def
q  (s, a) −π v  (s).π

v  (s)π

π(a∣s; θ)
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REINFORCE with Baseline

 

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition" by removing γ^t from the update of θ.
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REINFORCE with Baseline

 

Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".
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