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Generative Models

Generative models are given a set X of realizations of a random variable x and their goal is to
estimate P(x).

Usually the goal is to be able to sample from P(x), but sometimes an explicit calculation of

P(x) is also possible.
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Deep Generative Models Uz
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Figure 1 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

One possible approach to estimate P(&) is to assume that the random variable x depends on a
latent variable z:

ZP P(z|z) = E,.pw P(z|2).

We use neural networks to estimate the conditional probability with Py(x|2).
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® Autoencoders are useful for unsupervised feature extraction, especially when performing
input compression (i.e., when the dimensionality of the latent space z is smaller than the

dimensionality of the input).
® When @ + € is used as input, autoencoders can perform denoising.

® However, the latent space z does not need to be fully covered, so a randomly chosen 2
does not need to produce a valid .
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AutoEncoders
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https: //miro.medium.com/max/3608/1%SfaVxcGi_ELkKgAGOYRIQQ@2x.png
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Variational AutoEncoders

We assume P(z) is fixed and independent on X.

We approximate P(@|z) using Py(x|z). However, in order to train an autoencoder, we need
to know the posterior Py(z|a), which is usually intractable.

We therefore approximate Pg(z|x) by a trainable Q. (2|x).
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Let us define variational lower bound or evidence lower bound (ELBO), denoted £(8, ¢;x), as

£(8, ;%) = log Po(z) — Dxr.(Qy (=[)|| Po(=]2)).

Because KL-divergence is non-negative, £(8, ¢;x) < log Py(x).

By using simple properties of conditional and joint probability, we get that

z) + log Py(z|z) — log Qy (z|)]
z,z) —log Q,(2|z)]

x|z) + log P(2) — log Q,(2|z)]
z|z)] — D1 (Qp(z|z)| P(2)).

L(8,9;x) = Eg,(z/a) [ log P
= Eq, (z/z) | log Po
= Eq, (z/z) | log Po
= Eq, (z/z) | log Ps

AN N N N
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—L(0, ;%) = Eq, (/) | —log Po(z|2)] + Dxi(Qy(2|2)||P(2))

We train a VAE by minimizing —L£(0, ¢; x).
The distribution Q,(z|x) is parametrized as a normal distribution A'(z|w, %), with the
model predicting i and log o? given .

O The normal distribution is used, because we can sample from it efficiently, we can
backpropagate through it and we can compute Dki, analytically; furthermore, if we

decide to parametrize Q,(2|®) using mean and variance, the maximum entropy
principle suggests we should use the normal distribution.

The EQcp(z|m) is estimated using a single sample.

We use a prior P(z) = N (0, I).
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—L(0, ;%) = Eq,(2]x) | —log Po(z|2)] + Dxi(Qy(2|2)[|P(2))

image distribution latent space

T in latent space sample z

Q¢(z|a:)

Qyp(z|x) sample z ;
B — B

encoder

Note that the loss has 2 intuitive components:

® reconstruction loss — starting with @, passing though (), sampling z and then passing

through Py should arrive back at @;

* latent loss — over all &, the distribution of Q,(2|x) should be as close as possible to the

prior P(z) = N(0, I), which is independent on .

VAE

Po(x|2)

decoder

image

xr
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VAE — Reparametrization Trick

In order to backpropagate through z ~ Q,(z|x), note that if
z ~ N(p,0%),
we can write Z as
z~p+o-N(0,I).

Such formulation then allows differentiating 2z with respect to gt and o and is called a
reparametrization trick (Kingma and Welling, 2013).
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VAE — Reparametrization Trick

no problem for backpropagation = s==ea. backpropagation is not possible due to sampling
senpling | S o backpropagakion i5 reduired
/ and Yo brsinins N

sampling without reparametrisation trick sampling with reparametrisation trick

https: //miro.medium.com/max/3704/1*S8CoO3T GtFBpzv8GvmgKeg@2x.png
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VAE — Reparametrization Trick

image distribution latent space image
T in latent space sample z T
Qy(z|T)
p| e ~N(0,I)
Qp(z|x) z=€o+ Py(x|z)
> | < >
encoder , decoder
(0}
Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others

U=

12/64



Variational AutoEncoders
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(b) Learned MNIST manifold
Figure 4 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

(a) Learned Frey Face manifold
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Variational AutoEncoders
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(d) 20-D latent space

Figure 5 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

(c) 10-D latent space

(b) 5-D latent space

(a) 2-D latent space
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Variational AutoEncoders

what can happen without regularisation x

V what we want to obtain with regularisation
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There is also another way to arrive at the variational lower bound. @

First remember that Jensen's inequality states that for a concave function f (like log),

f(Elz]) > E[f(z)].

Starting with the log probability, we proceed as follows:
log P(z) =logEp(, | P(x|z)]

= log ]EQ(z|w) [P(ZB‘Z) )

> Eq(2|a) | log P(x|2) + log

P(z) ]
Q(z|x)
P(z) ]
i Q(z|x)
> Eq(z/2) | log P(|2)] — Dxr (Q(z|z)|| P(2))
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We have a generator, which given z ~ P(z) generates data .
We denote the generator as G(z;8,).

Then we have a discriminator, which given data @ generates a probability whether & comes
from real data or is generated by a generator.

We denote the discriminator as D(x; 0;).

The discriminator and generator play the following game:

min max Eq.p,,, [log D()] + Exp(s llog(1 ~ D(G(2)))]
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Generative Adversarial Networks Uz
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Figure 1 of paper "Generative Adversarial Nets", https: //arxiv.org/abs/1406.2661.
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The generator and discriminator are alternately trained, the discriminator by

argemax Ez~ Py, log D(x)] + Esz(z) log(1 — D(G(z)))]

and the generator by

argemin E.p@)llog(l — D(G(2)))].

In a sense, the discriminator acts as a trainable loss for the generator.
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Generative Adversarial Networks Uz

Because log(1 — D(G(z))) can saturate in the beginning of the training, where the
discriminator can easily distinguish real and generated samples, the generator can be trained by

arg min Esz(z) |—log D(G(2))]
09

instead, which results in the same fixed-point dynamics, but much stronger gradients early in
learning.
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Generative Adversarial Networks

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ... 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {cc(l), e ,a:(m)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 2 3" oD () +10 (1- D (6 ()]

1=

end for
e Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 2 tos (10 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Algorithm 1 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.
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Generative Adversarial Networks
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Figure 2 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.
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Conditional GAN =
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Figure 1 of paper "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784.
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Deep Convolutional GAN Uz

In Deep Convolutional GAN, the discriminator is a convolutional network (with batch
normalization) and the generator is also a convolutional network, utilizing transposed
convolutions.

- N

N AN /
(&) (c)

Figure 1 of paper "An Online Learning Approach to Generative Adversarial Networks", https://arxiv.org/abs/1706.03269.
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Deep Convolutional GAN Uz
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Figure 1 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN Uz
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Figure 2 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN Uz

Figure 3 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN =

'
Figure 4 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN

smiling neutral neutral
woman woman man

Results of doing the same
arithmetic in pixel space

Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN Uz
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Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN Uz

Figure 8 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv. org/abs]1511.06434.
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Unfortunately, alternating SGD steps are not guaranteed to reach even a local optimum of a
minimax problem — consider the following one:

min max - y.
z oy

The update rules of £ and y for learning rate « are
Tni1| |1 —af |z,
Ynt1 a 1] |yn]|
The update matrix is a rotation matrix multiplied by a constant v'1 + a? > 1

[1 —1a]: /71+a2.[cosg0 —singo],

Q sinp  cos
so the SGD will not converge with arbitrarily small step size.
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GANs are Problematic to Train
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Fig. 1: Performance of gradient method with fixed step size for Example 2. (a)
illustrates the choices of x and y as iteration processes, the red point (0.1,0.1) is

the initial value. (b) illustrates the value of zy as a function of iteration numbers.
Figure 1 of paper "Fictitious GAN: Training GANs with Historical Models", https://arxiv.org/abs/1803.08647.
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GANSs are Problematic to Train Uz

® Mode collapse

- 0 - I - - T -
. L] - - - - -
< - . 1 - - < .
- - ol e
- - - - - -
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Figure 2 of paper "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163.

O If the generator could see the whole batch, similar samples in it would be candidates for
fake images.
® Batch normalization helps a lot with this.

O Historical averaging

® |abel smoothing of only positive samples helps with the gradient flow.
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The Variational Autoencoders:

® are theoretically-pleasing;

® also provide an encoder, so apart from generation, they can be used as unsupervised feature
extraction;

® the generated samples tend to be blurry (because of the sampling used in the
reconstruction).

The Generative Adversarian Networks:

® offer very high sample quality;
® are difficult to train and suffer from mode collapse.

In past few years, GANs saw a big development, improving the sample quality substantially.
However, recently (since 2019/2020), VAEs have shown remarkable progress (alleviating the
blurriness issue) and are being used for generation too. Furthermore, additional approaches
(normalizing flows, diffusion models) are being explored.
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Standard GANs optimize the Jensen-Shannon divergence @

1

ISD(pllg) =  Dic. (pll(p + 0)/2) + 5 D (all(p + 0)/2).

— Pdata(w)
Pjiata (CC) +Pgenerat0r (w) )

because for a fixed generator GG, the optimum discriminator D, ()

Therefore,

Bz~ Py [l0g DG ()] + B pa[log(1 — D (G(2)))]
= Eo P 108 D ()] + Ean Pyperair [108(1 — Dz ()]
P data(fB) ]
Piata (@) + Pyenerator (T)

Pdata + 2P generator) 4+ DKL ( Pgenerator

P enerator (m)
+ E‘BNP enerator llog : ]
& Pdata(m) + Pgenerator(m)

Pdata + ngenerator ) 4+ e

— EwNPdata []'Og

= Dk, (P data
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Instead of minimizing JS divergence @
1 1

JSD(pllg) = 5 Dk (pll(p+q)/2) + 5 Dkt (dll(p+9)/2),

Wasserstein GAN minimizes Earth-Mover distance

Wip,q) = inf Eq ., ||z — :
(p Q) TI(p.g) (z,y) 7[” yH]

The joint distribution v € II(p, q) indicates how much “mass” must be transported from x to
Yy, and EM is the “cost” of the optimal transport plan.
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Wasserstein GAN

The EM distance behaves much better than JS.

U\,L

For example, imagine that Py is a distribution on R?, which is uniform on (0, y) for 0 <
y < 1 and that Py is a distribution on R? uniform on (0,y) for 0 < y < 1.

1.0
L]

Then
0 if0=0 . ™
JSD(POHPH) — . ’
log, if60#0" .
while

0.2+

W (Py, Py) = |6].
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Figure 1 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.
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Wasserstein GAN Urzt

Using a dual version of the Earth-Mover definition, we arrive at

W(p, Q) — sup Ewwp [f(x)] — IE‘j'ywq [f(ib)],

Lllfllz<1
so the discriminator returns a single output without activation and it needs to be 1-Lipschitz.
1.0 T T . T T
— Density of real
08l — Density of fake |
' ——  GAN Discriminator
——  WGAN Critic
0.6 -

-0.2} Vanishing gradients
in regular GAN

-8 -6 -4 -2 0 2 4 6 8
Figure 2 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.
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Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, Ncritic = O.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6y, initial generator’s parameters.
1: while 6 has not converged do
2 for t = 0, ..., Neritic do
3 Sample {2}, ~ P, a batch from the real data.
4: Sample {z(V}™ ~ p(z) a batch of prior samples.
5: Guw < Vu [% 2211 fw(x(i)) - % 221 fw(QG(z(i)))]
6:
7
8
9

w  w + a - RMSProp(w, gy)
w < clip(w, —¢, ¢)
end for
: Sample {z(V}™  ~ p(z) a batch of prior samples.
10: gp+ =V >im fulge(27))
11: 6 < 6 — a - RMSProp(6, gs)
12: end while
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Wasserstein GAN Urzt

Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right:
standard GAN formulation. Both algorithms produce high quality samples.

Figure 6: Algorithms trained with a generator without batch mormalization and constant
number of filters at every layer (as opposed to duplicating them every time as in [18]).
Aside from taking out batch normalization, the number of parameters is therefore reduced
by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN
formulation. As we can see the standard GAN failed to learn while the WGAN still was

able to produce samples.
Figures 5 and 6 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.
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Wasserstein GAN Urzt

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU
nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a
strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the
DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant
degree of mode collapse in the GAN MLP.

Figure 7 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 44 /64



F/gure 2 from paper "Large 5ca/e GAN TrammgforH/gh F/de//ty Natura/ /mage SyntheSI" https://arxiv. org/ab5/1809 11096.
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Figure 7 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.
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BigGAN Ingredients — Hinge Loss

The Wasserstein GAN formulation can be considered a linear classifier, which tries to
maximize the mean distance of real and generated images using their features.

;é@ Discriminator
o update direction

Figure 2 of paper "Geometric GAN", https://arxiv.org/abs/1705.02894.
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BigGAN Ingredients — Hinge Loss

We could aim for maximum margin classifier by using Hinge loss, updating the
discriminator by

arg max Eq. p,,, [min(0, —1 + D() )
04 e s
+Euopnmin(0,—1 — D(G(z))] °© NS ©
o o \\\ ,’ /'/
Generator \A/ Z q’( (x,) ,x,
and the generatOr by Update directioT// QNEM /"Discriminator
o ™. // %pdate dire>ztion
arg min E._p(z)[—D(G(2)))]. o ° W

7] 'e) S

&’ 'I,’
\‘\9.\//

Figure 2 of paper "Geometric GAN", https://arxiv.org/abs/1705.02894.
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Satisfying the Lipschitz constraint by truncation is not very effective. Better approaches
were proposed, by using for example gradient penalties (WGAN-GP) or spectral
normalization.

In spectral normalization, the idea is to keep the spectral norm (the largest singular value) of all
convolutional and dense layers equal or close to 1, which in turn guarantees the Lipschitz
constraint of the model.

Algorithm 1 SGD with spectral normalization

Spectral normalization can be
. R . e Initialize 4; € R% for [ = 1,..., L with a random vector (sampled from isotropic distri-
implemented efficiently by performing bution)

one step of power iteration each time o For each update and each layer I:
the kernel in question iS use d in 1. Apply power iteration method to a unnormalized weight W:

training. 1:15 — (Wﬁ)Tﬁz/UEWl)Tﬂsz (20)
u < W' /|W'o |2 (21)
2. Calculate Wgy with the spectral norm:
Wi W = Wl /o(Wh), where o(W') = 4} W@, (22)
3. Update W' with SGD on mini-batch dataset Dj; with a learning rate o
W W — aVy (Wi (WY, Day) (23)
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BigGAN Ingredients — Self Attention et

Because convolutions process local information only, non-local self attention module has
been proposed.

f(x)

transpose attention

i map

% softmax ;ﬁ self-attention
g(x) k] feature maps (o)

_' ) 4 B .:.::‘E = v V(X) B |
Ix1conv —_ ® >|: Nem B

convolution Ix1conv

feature maps (x)

o

I1x1conv

h(x)

Ix1conv _1_

Figure 2 of paper "Self-Attention Generative Adversarial Networks", https://arxiv.org/abs/1805.08318.
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BigGAN Ingredients — Self Attention et

def attention(self, x, ch):
= conv(x, ch // 8, kernel=1, stride=1) # [bs, h, w, c'
C

f ]
g = conv(x, ch // 8, kernel=1, stride=1) # [bs, h, w, c']
h = conv(x, ch, kernel=1, stride=1) # [bs, h, w, cl

# N =h *x w

s = tf.matmul (

hw_flatten(g), hw_flatten(f), transpose_b=True) # [bs, N, N]
beta = tf.nn.softmax(s) # attention map

o = tf.matmul(beta, hw_flatten(h)) # [bs, N, C]
gamma = tf.get_variable('"gamma", initializer=[0.0])

o = tf.reshape(o, shape=x.shape) # [bs, h, w, C]

X = gamma * O + X
return X
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BigGAN Ingredients — Architecture Ut

z Class

an

Linear

[ Linear J
— 4x4x16c¢ch

Linear

Image

() (b) (c)

Figure 15: (a) A typical architectural layout for BigGAN’s G; details are in the following tables.
(b) A Residual Block (ResBlock up) in BigGAN’s G. (¢c) A Residual Block (ResBlock down) in
BigGAN’s D.

Figure 15 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs,/1809.11096.
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Table 4: BigGAN architecture for 128 x 128 images. ch represents the channel width multiplier in

each network from Table 1.

z € R™% ~ N(0,1)
Embed(y) € R*?®

RGB image z € R'28*128%3

Linear (20 4+ 128) — 4 x 4 x 16¢h

ResBlock down ch — 2ch

ResBlock up 16ch — 16c¢ch

Non-Local Block (64 x 64)

ResBlock up 16ch — 8ch

ResBlock down 2ch — 4ch

ResBlock up 8ch — 4ch

ResBlock down 4ch — 8ch

ResBlock up 4ch — 2ch

ResBlock down 8ch — 16¢ch

Non-Local Block (64 x 64)

ResBlock down 16ch — 16¢h

ResBlock up 2ch — ch

ResBlock 16ch — 16¢h

BN, RelLU, 3 x 3 Conv ch — 3

ReL.U, Global sum pooling

Tanh

Embed(y)-h + (linear — 1)

(a) Generator

(b) Discriminator

{W,Big}GAN
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BigGAN Ingredients — Truncation Trick

The so-called tuncation trick is used to trade between fidelity and variety — during
training, z is sampled from N (0, I), while it is sampled from truncated normal during

generation.

In the following examle, samples were generated using threshold 2,1, 0.5, 0.04.

Figure 2 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.
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Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu: Neural Discrete Representation
Learning https://arxiv.org/abs/1711.00937

Ali Razavi, Aaron van den Oord, Oriol Vinyals: Generating Diverse High-Fidelity Images
with VQ-VAE-2 https://arxiv.org/abs/1906.00446

Patrick Esser, Robin Rombach, Bjorn Ommer: Taming Transformers for High-Resolution
Image Synthesis https://arxiv.org/abs/2012.09841

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, llya Sutskever: Zero-Shot Text-to-lmage Generation
https://arxiv.org/abs/2102.12092
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VQ-VAE

In VQ-VAE, the latent variables are arranged in a two-dimensional grid and each latent
variable is a discrete sample from a categorical distribution.

D

e,ee €,
Embedding
Space

CNN

2,() ~ q(zlx)

Encoder Decoder
Figure 1 of paper "Neural Discrete Representation Learning", https://arxiv.org/abs/1711.00937.

Figure 1 ofpaer "Neural Discrete Representation Learning”, https.‘//aiv. rg/abs/l 711.00937.
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Modeling Latent Structure

With a two-dimensional structure of interdependent latent variables, a question arises of how to
generate the latent variables themselves.

® An auto-regressive sampling is used in VQ-VAE (PixelCNN architecture).

® In VQ-VAE-2, the latents are modeled recursively as another VQ-VAE, until finally a
PixelCNN is used for the last latents.

VQ-VAE Encoder and Decoder Training
VQ Y/ /]
T
'-;’F;' D ______ > 55

Encoder I l Decoder

i o
i
Bottom i/ o
> - - oooEEoe
Level Vo
VQ oo

T

Encoder I l Decoder
A\

Original Reconstruction
Figure 2 of paper "Generating Diverse High-Fidelity Images
with VQ-VAE-2", https://arxiv.org/abs/1906.00446.
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VQ-VAE-2 vs BigGAN Diversity

*ET

L

Figure 5 of paper "Generating Diverse High-Fidelity Images with VQ-VAE-2", https://arxiv.org/abs/1906.00446.
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VQ-VAE-2 vs BigGAN Diversity
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Figure 5 of paper "Generating Diverse High-Fidelity Images with VQ-VAE-2", https://arxiv.org/abs/1906.00446.
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Modeling Latent Structure U1

With a two-dimensional structure of interdependent latent variables, a question arises of how to
generate the latent variables themselves.

® |In VQGAN, Transformer is used to model the discrete latent variables.

real/fake

I_Tw_ Y /Codebook Z\ /Transformer | \ flrl sl r
e "I 0 — ..Ill Illl, flf|r|f
- e [ p(s) =1L p(sils<i) . - T
n . - . -— __
Y -
\
CNN
N Discriminator
\\
~

CNN
Decoder

argmin, cz |2 — z||
—

guantization

Figure 2 of paper "Taming Transformers for High-Resolution Image Synthesis", https://arxiv.org/abs/2012.09841.
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Modeling Latent Structure =

With a two-dimensional structure of interdependent latent variables, a question arises of how to
generate the latent variables themselves.

® |n DALL-E, Transformer is used to model a sequence of words followed by a sequence of

the discrete image latent variables.

\3

S

g I Py

Lo 1N\ ((f1p i, il > ;
oY

Sy

S

Q

5.

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads (d) the exact same cat on the
a tapir with the texture of an hedgehog 11n a christmas “backprop”. a neon sign that top as a sketch on the bottom
accordion. sweater walking a dog reads “‘backprop”. backprop
neon sign
Figure 2 of paper "Zero-Shot Text-to-Image Generation", https://arxiv.org/abs/2102.12092.
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Normalizing Flows

® [aurent Dinh, David Krueger, Yoshua Bengio: NICE: Non-linear Independent
Components Estimation https://arxiv.org/abs/1410.8516

® [aurent Dinh, Jascha Sohl-Dickstein, Samy Bengio: Density estimation using Real NVP
https://arxiv.org/abs/1605.08803

® Diederik P. Kingma, Prafulla Dhariwal: Glow: Generative Flow with Invertible 1x1
Convolutions https://arxiv.org/abs/1807.03039

Figure 1 of paper "Glow: Generative Flowwith Invertible 1x1 Convolutions”, https://arxiv.org/abs/1807.03039.
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Diffusion Models U=

® Jonathan Ho, Ajay Jain, Pieter Abbeel: Denoising Diffusion Probabilistic Models
https://arxiv.org/abs/2006.11239

® Prafulla Dhariwal, Alex Nichol: Diffusion Models Beat GANs on Image Synthesis
https://arxiv.org/abs/2105.05233

e >
Figure 1 of paper "Diffusion Models Beat GANs on Image Synthesis", https://arxiv.org/abs/2105.05233.
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