NPFL114, Lecture 12 ==

Deep Generative Models

Milan Straka

m May 17, 2021

1 4
— L Charles University in Prague @ (7) (O
F‘,L EUROPEAN UNION Faculty of Mathematics and Physics -~
European Situoural and vestment Fund Institute of Formal and Applied Linguistics }
A LAN GTECH 82vel$pmeln}t;angd Educatir\:an " pp g UnleSS Othel’Wlse Stated

Generative Models

Generative models are given a set X of realizations of a random variable x and their goal is to
estimate P(x).

Usually the goal is to be able to sample from P(x), but sometimes an explicit calculation of

P(x) is also possible.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 2/64

Deep Generative Models Uz
(")
¢---r Z Je—Ho

TV

N

N J
Figure 1 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

One possible approach to estimate P(&) is to assume that the random variable x depends on a
latent variable z:

ZP P(z|z) = E,.pw P(z|2).

We use neural networks to estimate the conditional probability with Py(x|2).

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 3/64

® Autoencoders are useful for unsupervised feature extraction, especially when performing
input compression (i.e., when the dimensionality of the latent space z is smaller than the

dimensionality of the input).
® When @ + € is used as input, autoencoders can perform denoising.

® However, the latent space z does not need to be fully covered, so a randomly chosen 2
does not need to produce a valid .

Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 4/64

AutoEncoders

l “A

encoded data can be decoded
O without loss if the autoencoder

has enough degrees of freedom
A encoder decoder

lsm?wf'”"w O

.. . without explicit regularisation
“training” data for ccml'evd' tjb"‘-"“d""' - . !
9 for new some points of the latent space
the autoencoder

are “meaningless” once decoded

https: //miro.medium.com/max/3608/1%SfaVxcGi_ELkKgAGOYRIQQ@2x.png

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 5/64

Variational AutoEncoders

We assume P(z) is fixed and independent on X.

We approximate P(@|z) using Py(x|z). However, in order to train an autoencoder, we need
to know the posterior Py(z|a), which is usually intractable.

We therefore approximate Pg(z|x) by a trainable Q. (2|x).

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others

U=

6,64

Let us define variational lower bound or evidence lower bound (ELBO), denoted £(8, ¢;x), as

£(8, ;%) = log Po(z) — Dxr.(Qy (=[)|| Po(=]2)).

Because KL-divergence is non-negative, £(8, ¢;x) < log Py(x).

By using simple properties of conditional and joint probability, we get that

z) + log Py(z|z) — log Qy (z|)]
z,z) —log Q,(2|z)]

x|z) + log P(2) — log Q,(2|z)]
z|z)] — D1 (Qp(z|z)| P(2)).

L(8,9;x) = Eg,(z/a) [log P
= Eq, (z/z) | log Po
= Eq, (z/z) | log Po
= Eq, (z/z) | log Ps

AN N N N

VAE 7/64

—L(0, ;%) = Eq, (/) | —log Po(z|2)] + Dxi(Qy(2|2)||P(2))

We train a VAE by minimizing —L£(0, ¢; x).
The distribution Q,(z|x) is parametrized as a normal distribution A'(z|w, %), with the
model predicting i and log o? given .

O The normal distribution is used, because we can sample from it efficiently, we can
backpropagate through it and we can compute Dki, analytically; furthermore, if we

decide to parametrize Q,(2|®) using mean and variance, the maximum entropy
principle suggests we should use the normal distribution.

The EQcp(z|m) is estimated using a single sample.

We use a prior P(z) = N (0, I).

VAE 8/64

—L(0, ;%) = Eq,(2]x) | —log Po(z|2)] + Dxi(Qy(2|2)[|P(2))

image distribution latent space

T in latent space sample z

Q¢(z|a:)

Qyp(z|x) sample z ;
B — B

encoder

Note that the loss has 2 intuitive components:

® reconstruction loss — starting with @, passing though (), sampling z and then passing

through Py should arrive back at @;

* latent loss — over all &, the distribution of Q,(2|x) should be as close as possible to the

prior P(z) = N(0, I), which is independent on .

VAE

Po(x|2)

decoder

image

xr

9/64

VAE — Reparametrization Trick

In order to backpropagate through z ~ Q,(z|x), note that if
z ~ N(p,0%),
we can write Z as
z~p+o-N(0,I).

Such formulation then allows differentiating 2z with respect to gt and o and is called a
reparametrization trick (Kingma and Welling, 2013).

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE

Others

U=

10/64

VAE — Reparametrization Trick

no problem for backpropagation = s==ea. backpropagation is not possible due to sampling
senpling | S o backpropagakion i5 reduired
/ and Yo brsinins N

sampling without reparametrisation trick sampling with reparametrisation trick

https: //miro.medium.com/max/3704/1*S8CoO3T GtFBpzv8GvmgKeg@2x.png

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 11/64

VAE — Reparametrization Trick

image distribution latent space image
T in latent space sample z T
Qy(z|T)
p| e ~N(0,I)
Qp(z|x) z=€o+ Py(x|z)
> | < >
encoder , decoder
(0}
Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others

U=

12/64

Variational AutoEncoders

QAU SNANNANAANN N NSNNNNNSN
QA ELLLLL LW NN~
QAVAINNINRELLLLVYY Y NN~
QAVVUININNi Lt ©®VVVY W -~~~
QAVDHHINN VWP BVIVIY W@ - —-—
QOO0 HINININMHEBPBIIID 9 = - —
QQAQOQOIMIMMMMNOoYNMDIID D W = - —
QOO MNMMMNNME®OD DD D — —
OODMMMMMN MWD DL D e e —
QODOMM MMM MDD W® DD e e
DAl I A %0 00000000 0o tn o~ O~ O~ P~ o~ =
R N N N Nl L
G ofrororororrresos oo~
JaAadddddadogorocrororraaannMN
Sddadadadocrrrrr T TTITIIRNN
SAddddgrrrsrrrdFITTITIRINN
SAdAddTTorrrrrr>rIr22nrNN
S B g gl gl il ol ol ol ol ol ol ol S N NN LN

2555 EEE

&

(b) Learned MNIST manifold
Figure 4 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

(a) Learned Frey Face manifold

Others 13/64

{W,Big}GAN *VAE

Summary

GANConvergence

GAN DCGAN

VAE

Autoencoders

o~
i
)
S
S
)
3}
Q
'
<
i
i
J
™
Q
2

U=
FA'L

Variational AutoEncoders

Qarr-~NpP~md>d
NV~ IOHW M
NGO tA)
M~ =R D
AN OPUOANT~S
Mo NN 0ND
WEMT AN O rN
ONQO NG oM e
NS T RN
e NNV =

WO~ AN\ 0~
PR IS Yo SRR -
et ARl s BUNICE R RN o
Q0o a0 0N~
WMFTFTOMENA QO ~
ML Hd OV >
R L0 A ' E XaleL Yo
s~Mureen) N NN
0O HLIAINNCST~
NGl ~ - YOy

AN~ TwOroY
SO >NYNYDC
O~ OM =N =g
=R O~am O
OMmPe NN N0
~ONT I or\O
OWSsMews~NMmN Y -
bl OSNwTooT >
—WNesmmO Mo~
RN I —-JI™

RTFTrMYaMen —
=DV PN
N~V S T —n e~
e MaMOI N
N~ e~
N OMoT e \NI9mM
@ewemdrdTrhoeoro
VO QQ T o

(d) 20-D latent space

Figure 5 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

(c) 10-D latent space

(b) 5-D latent space

(a) 2-D latent space

Others 14/64

{W,Big}GAN *VAE

Summary

GANConvergence

GAN DCGAN

VAE

Autoencoders

NPFL114, Lecture 12

Variational AutoEncoders

what can happen without regularisation x

V what we want to obtain with regularisation
NPFL114, Lecture 12 Autoencoders

VAE

https: //miro.medium.com/max/3742/1*9ou OKh2w-b3NNOVx4Mw9bg@2x.png
GAN

DCGAN GANConvergence

Summary

{W,Big}GAN *VAE Others 15/64

L. 2. 2 2 A 2 A 3 A A A AR A A0 R R L R
.2 2 22 2.2 32 23222 bR 0 R R
05 O 06 OF 06 U9 06 06 0H &S 06 06 06 O th 8 08 08 ™ ™

16/64

VAE

17/64

VAE

There is also another way to arrive at the variational lower bound. @

First remember that Jensen's inequality states that for a concave function f (like log),

f(Elz]) > E[f(z)].

Starting with the log probability, we proceed as follows:
log P(z) =logEp(, | P(x|z)]

= log]EQ(z|w) [P(ZB‘Z))

> Eq(2|a) | log P(x|2) + log

P(z)]
Q(z|x)
P(z)]
i Q(z|x)
> Eq(z/2) | log P(|2)] — Dxr (Q(z|z)|| P(2))

VAE 18/64

We have a generator, which given z ~ P(z) generates data .
We denote the generator as G(z;8,).

Then we have a discriminator, which given data @ generates a probability whether & comes
from real data or is generated by a generator.

We denote the discriminator as D(x; 0;).

The discriminator and generator play the following game:

min max Eq.p,,, [log D()] + Exp(s llog(1 ~ D(G(2)))]

GAN 19/64

Generative Adversarial Networks Uz

™~ ™~ ™~
() L) L)

o~ L]

J
,
. e,

AN I\

Figure 1 of paper "Generative Adversarial Nets", https: //arxiv.org/abs/1406.2661.

St -e-t

\
N
8 ey
Vo
\, e

/(Y

The generator and discriminator are alternately trained, the discriminator by

argemax Ez~ Py, log D(x)] + Esz(z) log(1 — D(G(z)))]

and the generator by

argemin E.p@)llog(l — D(G(2)))].

In a sense, the discriminator acts as a trainable loss for the generator.
NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 20/64

Generative Adversarial Networks Uz

Because log(1 — D(G(z))) can saturate in the beginning of the training, where the
discriminator can easily distinguish real and generated samples, the generator can be trained by

arg min Esz(z) |—log D(G(2))]
09

instead, which results in the same fixed-point dynamics, but much stronger gradients early in
learning.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 21/64

Generative Adversarial Networks

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ... 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {cc(l), e ,a:(m)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 2 3" oD () +10 (1- D (6 ()]

1=

end for
e Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 2 tos (10 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Algorithm 1 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE

Others

22/64

Generative Adversarial Networks

O

21919
t19]0]
I | 2|2
0|25

L=

ANDI~=
VO | —

NPFL114, Lecture 12 Autoencoders

w0

VAE

GAN

Figure 2 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.

DCGAN GANConvergence Summary {W,Big}GAN

*VAE

Others

U=
o

23/64

L

Conditional GAN =

Gscriminator D(xly) @ \
00000

. e0ee® (@0000)

R Y X T

N

- 00000 00000
_ _/

Figure 1 of paper "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 24/64

Deep Convolutional GAN Uz

In Deep Convolutional GAN, the discriminator is a convolutional network (with batch
normalization) and the generator is also a convolutional network, utilizing transposed
convolutions.

- N

N AN /
(&) (c)

Figure 1 of paper "An Online Learning Approach to Generative Adversarial Networks", https://arxiv.org/abs/1706.03269.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 25/64

Deep Convolutional GAN Uz

3
A
128
256 ——
I A 1
1024
i
‘ : 32
100 z -4 .
o= Stride 2
4 F~
Stride 2 16 .
. Stride 2
Project and reshape CONV 1
CONV 2
CONV 3 64
CONV 4 -

G(2)

Figure 1 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 26/64

Deep Convolutional GAN Uz

e - e} o . R
Figure 2 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 12

Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 27/64

Deep Convolutional GAN Uz

Figure 3 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 28/64

Deep Convolutional GAN =

'
Figure 4 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 29/64

Deep Convolutional GAN

smiling neutral neutral
woman woman man

Results of doing the same
arithmetic in pixel space

Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE

Deep Convolutional GAN Uz

Fl =

woman

—
H
man

man
with glasses without glasses without glasses

Results of doing the same
arithmetic in pixel space

Ll
Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 31/64

Deep Convolutional GAN Uz

Figure 8 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv. org/abs]1511.06434.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 32/64

Unfortunately, alternating SGD steps are not guaranteed to reach even a local optimum of a
minimax problem — consider the following one:

min max - y.
z oy

The update rules of £ and y for learning rate « are
Tni1| |1 —af |z,
Ynt1 a 1] |yn]|
The update matrix is a rotation matrix multiplied by a constant v'1 + a? > 1

[1 —1a]: /71+a2.[cosg0 —singo],

Q sinp cos
so the SGD will not converge with arbitrarily small step size.

GANConvergence 33/64

GANs are Problematic to Train

0.2 4
0.1+
> 0.0

—0.1
—0.2 1

-0.2 -0.1 0.0

X
(a)

0.1

0.2

0.02 A

0.01 -

% 0.00

—0.01 -

—0.02 1

It

HH

2000

4000 6000
lteration number

(b)

8000

Fig. 1: Performance of gradient method with fixed step size for Example 2. (a)
illustrates the choices of x and y as iteration processes, the red point (0.1,0.1) is

the initial value. (b) illustrates the value of zy as a function of iteration numbers.
Figure 1 of paper "Fictitious GAN: Training GANs with Historical Models", https://arxiv.org/abs/1803.08647.

NPFL114, Lecture 12 Autoencoders

VAE

GAN

DCGAN

GANConvergence

Summary

{W,Big}GAN

*VAE

Others

10000

34/64

GANSs are Problematic to Train Uz

® Mode collapse

- 0 - I - - T -
. L] - - - - -
< - . 1 - - < .
- - ol e
- - - - - -
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Figure 2 of paper "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163.

O If the generator could see the whole batch, similar samples in it would be candidates for
fake images.
® Batch normalization helps a lot with this.

O Historical averaging

® |abel smoothing of only positive samples helps with the gradient flow.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 35/64

The Variational Autoencoders:

® are theoretically-pleasing;

® also provide an encoder, so apart from generation, they can be used as unsupervised feature
extraction;

® the generated samples tend to be blurry (because of the sampling used in the
reconstruction).

The Generative Adversarian Networks:

® offer very high sample quality;
® are difficult to train and suffer from mode collapse.

In past few years, GANs saw a big development, improving the sample quality substantially.
However, recently (since 2019/2020), VAEs have shown remarkable progress (alleviating the
blurriness issue) and are being used for generation too. Furthermore, additional approaches
(normalizing flows, diffusion models) are being explored.

Summary 36/64

Martin Arjovsky, Soumith Chintala, Léon Bottou: Wasserstein GAN
https://arxiv.org/abs/1701.07875

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville:
Improved Training of Wasserstein GANs https://arxiv.org/abs/1704.00028

Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen: Progressive Growing of GANs
for Improved Quality, Stability, and Variation https: //arxiv.org/abs/1710.10196

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida: Spectral
Normalization for Generative Adversarial Networks https://arxiv.org/abs/1802.05957

Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Jiadong Liang, Weinan Zhang,
Zhihua Zhang, Yong Yu: Understanding the Effectiveness of Lipschitz-Continuity in
Generative Adversarial Nets https://arxiv.org/abs/1807.00751

Andrew Brock, Jeff Donahue, Karen Simonyan: Large Scale GAN Training for High
Fidelity Natural Image Synthesis https://arxiv.org/abs/1809.11096

Tero Karras, Samuli Laine, Timo Aila: A Style-Based Generator Architecture for

Generative Adversarial Networks https://arxiv.org/abs/1812.04948
{W,Big}GAN 37/64

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1807.00751
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1812.04948

Standard GANs optimize the Jensen-Shannon divergence @

1

ISD(pllg) = Dic. (pll(p + 0)/2) + 5 D (all(p + 0)/2).

— Pdata(w)
Pjiata (CC) +Pgenerat0r (w))

because for a fixed generator GG, the optimum discriminator D, ()

Therefore,

Bz~ Py [l0g DG ()] + B pa[log(1 — D (G(2)))]
= Eo P 108 D ()] + Ean Pyperair [108(1 — Dz ()]
P data(fB)]
Piata (@) + Pyenerator (T)

Pdata + 2P generator) 4+ DKL (Pgenerator

P enerator (m)
+ E‘BNP enerator llog :]
& Pdata(m) + Pgenerator(m)

Pdata + ngenerator) 4+ e

— EwNPdata []'Og

= Dk, (P data

{W,Big}GAN 38/64

Instead of minimizing JS divergence @
1 1

JSD(pllg) = 5 Dk (pll(p+q)/2) + 5 Dkt (dll(p+9)/2),

Wasserstein GAN minimizes Earth-Mover distance

Wip,q) = inf Eq ., ||z — :
(p Q) TI(p.g) (z,y) 7[” yH]

The joint distribution v € II(p, q) indicates how much “mass” must be transported from x to
Yy, and EM is the “cost” of the optimal transport plan.

{W,Big}GAN 39/64

Wasserstein GAN

The EM distance behaves much better than JS.

U\,L

For example, imagine that Py is a distribution on R?, which is uniform on (0, y) for 0 <
y < 1 and that Py is a distribution on R? uniform on (0,y) for 0 < y < 1.

1.0
L]

Then
0 if0=0 . ™
JSD(POHPH) — . ’
log, if60#0" .
while

0.2+

W (Py, Py) = |6].

NPFL114, Lecture 12 Autoencoders VAE GAN

01}

0.0

-1.0

DCGAN

-0.5

0.0

GANConvergence

0.5

1.0 -1.0 -0.5 0.0 0.5 1.0
[}

Figure 1 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

{W,Big}GAN *VAE Others 40/64

Summary

Wasserstein GAN Urzt

Using a dual version of the Earth-Mover definition, we arrive at

W(p, Q) — sup Ewwp [f(x)] — IE‘j'ywq [f(ib)],

Lllfllz<1
so the discriminator returns a single output without activation and it needs to be 1-Lipschitz.
1.0 T T . T T
— Density of real
08l — Density of fake |
' —— GAN Discriminator
—— WGAN Critic
0.6 -

-0.2} Vanishing gradients
in regular GAN

-8 -6 -4 -2 0 2 4 6 8
Figure 2 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 41/64

NPFL114, Lecture 12

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, Ncritic = O.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6y, initial generator’s parameters.
1: while 6 has not converged do
2 for t = 0, ..., Neritic do
3 Sample {2}, ~ P, a batch from the real data.
4: Sample {z(V}™ ~ p(z) a batch of prior samples.
5: Guw < Vu [% 2211 fw(x(i)) - % 221 fw(QG(z(i)))]
6:
7
8
9

w w + a - RMSProp(w, gy)
w < clip(w, —¢, ¢)
end for
: Sample {z(V}™ ~ p(z) a batch of prior samples.
10: gp+ =V >im fulge(27))
11: 6 < 6 — a - RMSProp(6, gs)
12: end while

Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE

Others

42/64

Wasserstein GAN Urzt

Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right:
standard GAN formulation. Both algorithms produce high quality samples.

Figure 6: Algorithms trained with a generator without batch mormalization and constant
number of filters at every layer (as opposed to duplicating them every time as in [18]).
Aside from taking out batch normalization, the number of parameters is therefore reduced
by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN
formulation. As we can see the standard GAN failed to learn while the WGAN still was

able to produce samples.
Figures 5 and 6 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 43/64

Wasserstein GAN Urzt

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU
nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a
strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the
DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant
degree of mode collapse in the GAN MLP.

Figure 7 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 44 /64

F/gure 2 from paper "Large 5ca/e GAN TrammgforH/gh F/de//ty Natura/ /mage SyntheSI" https://arxiv. org/ab5/1809 11096.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 45 /64

= T
.- & R
_,H,.lm o o e

Figure 7 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.

NPFL114, Lecture 12

Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 46/64

BigGAN Ingredients — Hinge Loss

The Wasserstein GAN formulation can be considered a linear classifier, which tries to
maximize the mean distance of real and generated images using their features.

;é@ Discriminator
o update direction

Figure 2 of paper "Geometric GAN", https://arxiv.org/abs/1705.02894.

NPFL114, Lecture 12

Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 47 /64

BigGAN Ingredients — Hinge Loss

We could aim for maximum margin classifier by using Hinge loss, updating the
discriminator by

arg max Eq. p,,, [min(0, —1 + D())
04 e s
+Euopnmin(0,—1 — D(G(z))] °© NS ©
o o \\\ ,’ /'/
Generator \A/ Z q’((x,) ,x,
and the generatOr by Update directioT// QNEM /"Discriminator
o ™. // %pdate dire>ztion
arg min E._p(z)[—D(G(2)))]. o ° W

7] 'e) S

&’ 'I,’
\‘\9.\//

Figure 2 of paper "Geometric GAN", https://arxiv.org/abs/1705.02894.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 48/64

Satisfying the Lipschitz constraint by truncation is not very effective. Better approaches
were proposed, by using for example gradient penalties (WGAN-GP) or spectral
normalization.

In spectral normalization, the idea is to keep the spectral norm (the largest singular value) of all
convolutional and dense layers equal or close to 1, which in turn guarantees the Lipschitz
constraint of the model.

Algorithm 1 SGD with spectral normalization

Spectral normalization can be
. R . e Initialize 4; € R% for [= 1,..., L with a random vector (sampled from isotropic distri-
implemented efficiently by performing bution)

one step of power iteration each time o For each update and each layer I:
the kernel in question iS use d in 1. Apply power iteration method to a unnormalized weight W:

training. 1:15 — (Wﬁ)Tﬁz/UEWl)Tﬂsz (20)
u < W' /|W'o |2 (21)
2. Calculate Wgy with the spectral norm:
Wi W = Wl /o(Wh), where o(W') = 4} W@, (22)
3. Update W' with SGD on mini-batch dataset Dj; with a learning rate o
W W — aVy (Wi (WY, Day) (23)

{W,Big}GAN 49 /64

BigGAN Ingredients — Self Attention et

Because convolutions process local information only, non-local self attention module has
been proposed.

f(x)

transpose attention

i map

% softmax ;ﬁ self-attention
g(x) k] feature maps (o)

_') 4 B .:.::‘E = v V(X) B |
Ix1conv —_ ® >|: Nem B

convolution Ix1conv

feature maps (x)

o

I1x1conv

h(x)

Ix1conv _1_

Figure 2 of paper "Self-Attention Generative Adversarial Networks", https://arxiv.org/abs/1805.08318.

NPFL114, Lecture 12

Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 50/64

BigGAN Ingredients — Self Attention et

def attention(self, x, ch):
= conv(x, ch // 8, kernel=1, stride=1) # [bs, h, w, c'
C

f]
g = conv(x, ch // 8, kernel=1, stride=1) # [bs, h, w, c']
h = conv(x, ch, kernel=1, stride=1) # [bs, h, w, cl

N =h *x w

s = tf.matmul (

hw_flatten(g), hw_flatten(f), transpose_b=True) # [bs, N, N]
beta = tf.nn.softmax(s) # attention map

o = tf.matmul(beta, hw_flatten(h)) # [bs, N, C]
gamma = tf.get_variable('"gamma", initializer=[0.0])

o = tf.reshape(o, shape=x.shape) # [bs, h, w, C]

X = gamma * O + X
return X

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 51/64

BigGAN Ingredients — Architecture Ut

z Class

an

Linear

[Linear J
— 4x4x16c¢ch

Linear

Image

() (b) (c)

Figure 15: (a) A typical architectural layout for BigGAN’s G; details are in the following tables.
(b) A Residual Block (ResBlock up) in BigGAN’s G. (¢c) A Residual Block (ResBlock down) in
BigGAN’s D.

Figure 15 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs,/1809.11096.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 52/64

Table 4: BigGAN architecture for 128 x 128 images. ch represents the channel width multiplier in

each network from Table 1.

z € R™% ~ N(0,1)
Embed(y) € R*?®

RGB image z € R'28*128%3

Linear (20 4+ 128) — 4 x 4 x 16¢h

ResBlock down ch — 2ch

ResBlock up 16ch — 16c¢ch

Non-Local Block (64 x 64)

ResBlock up 16ch — 8ch

ResBlock down 2ch — 4ch

ResBlock up 8ch — 4ch

ResBlock down 4ch — 8ch

ResBlock up 4ch — 2ch

ResBlock down 8ch — 16¢ch

Non-Local Block (64 x 64)

ResBlock down 16ch — 16¢h

ResBlock up 2ch — ch

ResBlock 16ch — 16¢h

BN, RelLU, 3 x 3 Conv ch — 3

ReL.U, Global sum pooling

Tanh

Embed(y)-h + (linear — 1)

(a) Generator

(b) Discriminator

{W,Big}GAN

53/64

BigGAN Ingredients — Truncation Trick

The so-called tuncation trick is used to trade between fidelity and variety — during
training, z is sampled from N (0, I), while it is sampled from truncated normal during

generation.

In the following examle, samples were generated using threshold 2,1, 0.5, 0.04.

Figure 2 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 54 /64

Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu: Neural Discrete Representation
Learning https://arxiv.org/abs/1711.00937

Ali Razavi, Aaron van den Oord, Oriol Vinyals: Generating Diverse High-Fidelity Images
with VQ-VAE-2 https://arxiv.org/abs/1906.00446

Patrick Esser, Robin Rombach, Bjorn Ommer: Taming Transformers for High-Resolution
Image Synthesis https://arxiv.org/abs/2012.09841

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, llya Sutskever: Zero-Shot Text-to-lmage Generation
https://arxiv.org/abs/2102.12092

*VAE 55/64

https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/2102.12092

VQ-VAE

In VQ-VAE, the latent variables are arranged in a two-dimensional grid and each latent
variable is a discrete sample from a categorical distribution.

D

e,ee €,
Embedding
Space

CNN

2,() ~ q(zlx)

Encoder Decoder
Figure 1 of paper "Neural Discrete Representation Learning", https://arxiv.org/abs/1711.00937.

Figure 1 ofpaer "Neural Discrete Representation Learning”, https.‘//aiv. rg/abs/l 711.00937.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others

56,64

Modeling Latent Structure

With a two-dimensional structure of interdependent latent variables, a question arises of how to
generate the latent variables themselves.

® An auto-regressive sampling is used in VQ-VAE (PixelCNN architecture).

® In VQ-VAE-2, the latents are modeled recursively as another VQ-VAE, until finally a
PixelCNN is used for the last latents.

VQ-VAE Encoder and Decoder Training
VQ Y/ /]
T
'-;’F;' D ______ > 55

Encoder I l Decoder

i o
i
Bottom i/ o
> - - oooEEoe
Level Vo
VQ oo

T

Encoder I l Decoder
A\

Original Reconstruction
Figure 2 of paper "Generating Diverse High-Fidelity Images
with VQ-VAE-2", https://arxiv.org/abs/1906.00446.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others

57/64

VQ-VAE-2 vs BigGAN Diversity

*ET

L

Figure 5 of paper "Generating Diverse High-Fidelity Images with VQ-VAE-2", https://arxiv.org/abs/1906.00446.

NPFL114, Lecture 12 Autoencoders GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 58/64

VQ-VAE-2 vs BigGAN Diversity

£o
5 g P
- Tt ,M-'.lf'. r:)-u.i."'
s 2 3""'"«\-) """..n.' 7
R L el

-
L s
e g

AR NS o e T T S g e
Figure 5 of paper "Generating Diverse High-Fidelity Images with VQ-VAE-2", https://arxiv.org/abs/1906.00446.

NPFL114, Lecture 12 Autoencoders GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 59/64

Modeling Latent Structure U1

With a two-dimensional structure of interdependent latent variables, a question arises of how to
generate the latent variables themselves.

® |In VQGAN, Transformer is used to model the discrete latent variables.

real/fake

I_Tw_ Y /Codebook Z\ /Transformer | \ flrl sl r
e "I 0 — ..Ill Illl, flf|r|f
- e [p(s) =1L p(sils<i) . - T
n . - . -— __
Y -
\
CNN
N Discriminator
\\
~

CNN
Decoder

argmin, cz |2 — z||
—

guantization

Figure 2 of paper "Taming Transformers for High-Resolution Image Synthesis", https://arxiv.org/abs/2012.09841.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 60/64

Autoencoders GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 61/64

Modeling Latent Structure =

With a two-dimensional structure of interdependent latent variables, a question arises of how to
generate the latent variables themselves.

® |n DALL-E, Transformer is used to model a sequence of words followed by a sequence of

the discrete image latent variables.

\3

S

g I Py

Lo 1N\ ((f1p i, il > ;
oY

Sy

S

Q

5.

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads (d) the exact same cat on the
a tapir with the texture of an hedgehog 11n a christmas “backprop”. a neon sign that top as a sketch on the bottom
accordion. sweater walking a dog reads “‘backprop”. backprop
neon sign
Figure 2 of paper "Zero-Shot Text-to-Image Generation", https://arxiv.org/abs/2102.12092.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence

Summary {W,Big}GAN *VAE Others 62/64

Normalizing Flows

® [aurent Dinh, David Krueger, Yoshua Bengio: NICE: Non-linear Independent
Components Estimation https://arxiv.org/abs/1410.8516

® [aurent Dinh, Jascha Sohl-Dickstein, Samy Bengio: Density estimation using Real NVP
https://arxiv.org/abs/1605.08803

® Diederik P. Kingma, Prafulla Dhariwal: Glow: Generative Flow with Invertible 1x1
Convolutions https://arxiv.org/abs/1807.03039

Figure 1 of paper "Glow: Generative Flowwith Invertible 1x1 Convolutions”, https://arxiv.org/abs/1807.03039.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big} GAN *VAE Others

U\’L

63/64

https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039

Diffusion Models U=

® Jonathan Ho, Ajay Jain, Pieter Abbeel: Denoising Diffusion Probabilistic Models
https://arxiv.org/abs/2006.11239

® Prafulla Dhariwal, Alex Nichol: Diffusion Models Beat GANs on Image Synthesis
https://arxiv.org/abs/2105.05233

e >
Figure 1 of paper "Diffusion Models Beat GANs on Image Synthesis", https://arxiv.org/abs/2105.05233.

NPFL114, Lecture 12 Autoencoders VAE GAN DCGAN GANConvergence Summary {W,Big}GAN *VAE Others 64 /64

https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2105.05233

