NPFL114, Lecture 11

Transformer, BERT

Milan Straka

i May 10, 2021

EUROPEAN UNION European Structural and Investment Fund Operational Programme Research, Development and Education Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Attention is All You Need

Ú F_AL

For some sequence processing tasks, *sequential* processing (as performed by recurrent neural networks) of its elements might be too restrictive.

Instead, we may want to be able to combine sequence elements independently on their distance.

Such processing is allowed in the *Transformer* architecture, originally proposed for neural machine translation in 2017 in *Attention is All You Need* paper.

RoBERTa

Transformer

NPFL114, Lecture 11

Transformer SelfAttention PosEmbedding

ELMo BERT RoBERTa ALBERT

Transformer

http://jalammar.github.io/images/t/Transformer_decoder.png

RoBERTa

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

mBERT

ALBERT

Transformer

Assume that we have a sequence of n words represented using a matrix $oldsymbol{X} \in \mathbb{R}^{n imes d}$.

The attention module for a queries $m{Q}\in\mathbb{R}^{n imes d_k}$, keys $m{K}\in\mathbb{R}^{n imes d_k}$ and values $m{V}\in\mathbb{R}^{n imes d_v}$ is defined as:

$$ext{Attention}(oldsymbol{Q},oldsymbol{K},oldsymbol{V}) = ext{softmax}\left(rac{oldsymbol{Q}oldsymbol{K}^ op}{\sqrt{d_k}}
ight)oldsymbol{V}.$$

The queries, keys and values are computed from the input word representations X using a linear transformation as

$$oldsymbol{Q} = oldsymbol{W}^Q \cdot oldsymbol{X}$$

 $oldsymbol{K} = oldsymbol{W}^K \cdot oldsymbol{X}$
 $oldsymbol{V} = oldsymbol{W}^V \cdot oldsymbol{X}$

NPFL114, Lecture 11 Transformer SelfAttention

ELMo BERT

NPFL114, Lecture 11

9/55

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

mBERT

RoBERTa ALBERT

softmax $\left(\begin{array}{c} & & & \\ & & & \\ &$

Q

http://jalammar.github.io/images/t/self-attention-matrix-calculation-2.png

RoBERTa

KT

http://jalammar.github.io/images/t/self-attention-matrix-calculation.png

NPFL114, Lecture 11

Transformer SelfAttention

on PosEmbedding

ELMo BERT

mBERT

ALBERT

Multihead attention is used in practice. Instead of using one huge attention, we split queries, keys and values to several groups (similar to how ResNeXt works), compute the attention in each of the groups separately, concatenate the results and multiply them by a matrix W^O .

Scaled Dot-Product Attention

Multi-Head Attention

http://jalammar.github.io/images/t/transformer_attention_heads_z.png

http://jalammar.github.io/images/t/transformer_attention_heads_weight_matrix_o.png

RoBERTa

ALBERT

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

mBERT

http://jalammar.github.io/images/t/transformer_multi-headed_self-attention-recap.png

NPFL114, Lecture 11

Transformer SelfAttention PosEmbedding

ELMo

mBERT RoBERTa

BERT

ALBERT

Ζ

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k\cdot n\cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Table 1 of paper "Attention Is All You Need", https://arxiv.org/abs/1706.03762

RoBERTa

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

Feed Forward Networks

Transformer

SelfAttention

NPFL114, Lecture 11

The self-attention is complemented with FFN layers, which is a fully connected ReLU layer with four times as many hidden units as inputs, followed by another fully connected layer without activation.

ELMo

PosEmbedding

BERT

mBERT

RoBERTA ALBERT 17/55

Transformer – Residuals

NPFL114, Lecture 11

Transformer SelfAttention PosEmbedding

ELMo

BERT

ALBERT

Transformer – Decoder

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

T mBERT

ALBERT

RoBERTa

Masked Self-Attention

During decoding, the self-attention must attent only to earlier positions in the output sequence.

This is achieved by *masking* future positions, i.e., zeroing their weights out, which is usually implemented by setting them to $-\infty$ before the softmax calculation.

Encoder-Decoder Attention

In the encoder-decoder attentions, the *queries* comes from the decoder, while the *keys* and the *values* originate from the encoder.

AI BERT

PosEmbedding

ELMo BERT

mBERT

RoBERTa

Transformer – Positional Embedding

Positional Embeddings

We need to encode positional information (which was implicit in RNNs).

- Learned embeddings for every position.
- Sinusoids of different frequencies:

$${f PE}_{(pos,2i)} = \sin\left(pos/10000^{2i/d}
ight) \ {f PE}_{(pos,2i+1)} = \cos\left(pos/10000^{2i/d}
ight)$$

This choice of functions should allow the model to attend to relative positions, since for any fixed k, PE_{pos+k} is a linear function of PE_{pos} , because

$$egin{aligned} & \mathrm{PE}_{(pos+k,2i)} = \sinig((pos+k)/10000^{2i/d}ig) \ &= \sinig(pos/10000^{2i/d}ig) \cdot \cosig(k/10000^{2i/d}ig) + \cosig(pos/10000^{2i/d}ig) \cdot \sinig(k/10000^{2i/d}ig) \ &= \mathit{offset}_{(k,2i)} \cdot \mathrm{PE}_{(pos,2i)} + \mathit{offset}_{(k,2i+1)} \cdot \mathrm{PE}_{(pos,2i+1)}. \end{aligned}$$

NPFL114, Lecture 11

RoBERTa

ALBERT

mBERT

Transformer – Positional Embeddings

Transformer – Positional Embeddings

Transformer – Positional Embeddings

Transformer – Training

Regularization

The network is regularized by:

- dropout of input embeddings,
- dropout of each sub-layer, just before before it is added to the residual connection (and then normalized),
- label smoothing.

Default dropout rate and also label smoothing weight is 0.1.

Parallel Execution

Because of the *masked attention*, training can be performed in parallel.

However, inference is still sequential.

RoBERTa

Transformer – Training

Optimizer

Adam optimizer (with $\beta_2 = 0.98$, smaller than the default value of 0.999) is used during training, with the learning rate decreasing proportionally to inverse square root of the step number.

Warmup

Furthermore, during the first *warmup_steps* updates, the learning rate is increased linearly from zero to its target value.

$$learning_rate = rac{1}{\sqrt{d_{ ext{model}}}} \min\left(rac{1}{\sqrt{step_num}}, rac{step_num}{warmup_steps} \cdot rac{1}{\sqrt{warmup_steps}}
ight)$$

In the original paper, 4000 warmup steps were proposed.

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

Roberta

Transformers Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Madal	BL	EU	Training Co	ost (FLOPs)
WIGUEI	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	3.3 •	$10^{\overline{18}}$
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19}

Table 2 of paper "Attention Is All You Need", https://arxiv.org/abs/1706.03762

ALBERT

RoBERTa

ELMo BERT

Transformers Results

Ú	FAL

		<i>d</i> 1.1	dæ	h	dı	d	P_{I}	EL	train	PPL	BLEU	params
		amodel	ω_{Π}	10	$\omega_{\mathcal{K}}$	u_v	- arop	c_{ls}	steps	(dev)	(dev)	$\times 10^{6}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(Λ)				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(D)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(D)							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedo	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213
						Tab	le 4 of paper	"Attenti	on Is All You	Need", http	os://arxiv.org/	abs/1706.03762

NPFL114, Lecture 11

PosEmbedding

ELMo

BERT

mBERT

RoBERTa

ALBERT

Main Takeaway

Generally, Transformer provides more powerful sequence-to-sequence architecture and also sequence element representation architecture than RNNs, but usually requires substantially more data.

g ELMo

BERT

RoBERTa

ELMo

At the end of 2017, a new type of *deep contextualized* word representations was proposed by Peters et al., called ELMo, Embeddings from Language Models.

The ELMo embeddings were based on a two-layer pre-trained LSTM language model, where a language model predicts following word based on a sentence prefix. Specifically, two such models were used, one for the forward direction and the other one for the backward direction.

To compute an embedding of a word in a sentence, the concatenation of the two language model's hidden states is used.

Pre-trained ELMo embeddings substantially improved several NLP tasks.

NPFL114, Lecture 11

Transformer SelfAttention PosEmbedding

ELMo

BERT

mBERT

RoBERTa

BERT

A year later after ELMo, at the end of 2018, a new model called BERT (standing for **B**idirectional **E**ncoder **R**epresentations from **T**ransformers) was proposed. It is nowadays one of the most dominating approaches for pre-training word embeddings and for paragraph representation.

https://www.sesameworkshop.org/sites/default/files/imageservicecache/2019-03/header5120x1620_50thanniversary.png/4b00e17bb509f5c630c57c318b37d0da.webp

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

mBERT

ALBERT

RoBERTa

In the BERT model computes contextualized representations using a bidirectional Transformer architecture.

Figure 3 of paper "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", https://arxiv.org/abs/1810.04805

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

ALBERT

RoBERTa

Ú F_AL

The baseline BERT base model consists of 12 Transformer layers:

http://jalammar.github.io/images/bert-encoders-input.png

RoBERTa

The bidirectionality is important, but it makes training difficult.

Transformer SelfAttention

PosEmbedding

ELMo BERT

NPFL114, Lecture 11

The input to the BERT model are two so-called *sentences*, but they are in fact pieces of text with hundreds of subwords (512 maximum in total). The first token is a special CLS token and every sentence is ended by a SEP token. Additionally, a trainable embedding indicating if a token belongs to a sentence A (inclusively up to its SEP token) or to sentence B is used.

The BERT model is pretrained using two objectives:

masked language model – 15% of the input words are masked, and the model tries to predict them.
 80% of them are replaced by a special MASK token;

SelfAttention

- \circ 10% of them are replaced by a random word;
- $^{\circ}~$ 10% of them are left intact.

Transformer

- **next sentence prediction** the model tries to predict whether the second *sentence* followed the first one in the raw corpus.
 - $^{\circ}$ 50% of the time the second sentence is the actual next sentence;
 - \circ 50% of the time the second sentence is a random sentence from the corpus.

PosEmbedding

BERT

mBERT

RoBERTa

ELMo

Pre-training

Figure 1 of paper "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" , https://arxiv.org/abs/1810.04805.

AI BERT

For pre-training, English BookCorpus (800M words) and Wikipedia (2,500M words) are used, with a 30k WordPieces vocabulary.

Batch size is 256 sequences, each 512 subwords, giving 128k tokens per batch. Adam with learning rate 1e-4 is used, with linear learning rate warmup for the first 10k steps, followed by a linear learning rate decay to 0. Standard momentum parameters are used, and L2 weight decay of 0.01 is utilized.

Dropout of 0.1 on all layers is used, and GELU activation is used instead of ReLU.

Furthermore, because longer sequences are quadratically more expensive, first 90% of the pretraining is performed on sequences of length 128, and only the last 10% use sequences of length 512.

Two variants are considered:

- BERT *base* with 12 layers, 12 attention heads and hidden size 768 (110M parameters),
- BERT *large* with 24 layers, 16 attention heads and hidden size 1024 (340M parameters).

NPFL114, Lecture 11

RoBERTa

BERT – GELU

Ú FAL

ReLU multiplies the input by zero or one, depending on its value.

Dropout stochastically multiplies the input by zero or one.

Both these functionalities are merged in Gaussian error linear units (GELUs), where the input value is multiplied by $m \sim \operatorname{Bernoulli}(\Phi(x))$, where $\Phi(x) = P(x' \leq x)$ for $x' \sim \mathcal{N}(0,1)$ is the cumulative density function of the standard normal distribution.

The GELUs compute the expectation of this value, i.e.,

$$\operatorname{GELU}(x) = x \cdot \Phi(x) + 0 \cdot ig(1 - \Phi(x)ig) = x \Phi(x).$$

GELUs can be approximated using

Figure 1: The GELU ($\mu = 0, \sigma = 1$), ReLU, and ELU ($\alpha = 1$).

RoBERTa

Figure 1 of paper "Gaussian Error Linear Units (GELUs)", https://arxiv.org/abs/1606.08415

$$0.5x \left(1 + anh\left[\sqrt{2/\pi}(x + 0.044715x^3)
ight]
ight) ~~{
m or}~~x\sigma(1.702x).$$

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

mBERT

BERT – Finetuning

The pre-trained BERT model can be finetuned on a range of tasks:

- sentence element representation
 - $^{\circ}$ PoS tagging
 - $^{\circ}\,$ named entity recognition

0

...

- sentence representation
 - $^{\rm O}$ text classification
- sentence relation representation
 - textual entailment, aka natural language inference (the second sentence is *implied by/contradicts/has no relation to* the first sentence)
 - $^{\circ}$ textual similarity
 - $^{\circ}$ paraphrase detection
 - natural language inference

Class

Labe

(b) Single Sentence Classification Tasks: SST-2, CoLA

CoNLL-2003 NER

(c) Question Answering Tasks: SQuAD v1.1

Question

BERT

Figure 4 of paper "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" , https://arxiv.org/abs/1810.04805

RoBERTa

NPFL114, Lecture 11

PosEmbedding

ELMo

BERT

mBERT

Paragraph

BERT – **Results**

For finetuning, dropout 0.1 is used, usually very small number of epochs (2-4) suffice, and a good learning rate is usually one of 5e-5, 3e-5, 2e-5.

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.⁸ BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components. *Table 1 of paper "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"*, https://arxiv.org/abs/1810.04805

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

RoBERTa

ALBERT

BERT – Results

System	em Dev		Te	st
·	EM	F1	EM	F1
Top Leaderboard System	s (Dec	10th,	2018)	
Human	-	-	82.3	91.2
#1 Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
Publishe	ed			
BiDAF+ELMo (Single)	-	85.6	-	85.8
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	-
BERT _{LARGE} (Single)	84.1	90.9	-	-
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERT _{LARGE} (Ens.+TriviaOA)	86.2	92.2	87.4	93.2

System		ev	Test	
•	EM	F1	EM	F1
Top Leaderboard System	s (Dec	10th, 1	2018)	
Human	86.3	89.0	86.9	89.5
#1 Single - MIR-MRC (F-Net)	-	-	74.8	78.0
#2 Single - nlnet	-	-	74.2	77.1
Publishe	ed			
unet (Ensemble)	-	-	71.4	74.9
SLQA+ (Single)	-		71.4	74.4
Ours				
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1

System	Dev	Test
ESIM+GloVe ESIM+ELMo OpenAI GPT	51.9 59.1 -	52.7 59.2 78.0
BERT _{BASE}	81.6	-
BERTLARGE	86.6	86.3

Table 4: SWAG Dev and Test accuracies. [†]Human performance is measured with 100 samples, as reported in

Table 3: SQuAD 2.0 results. We exclude entries that the SWAG paper.

Table 2: SQuAD 1.1 results. The BERT ensembleuse BERT as one of their components. is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

Table 2 of paper "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", https://arxiv.org/abs/1810.04805

Table 3 of paper "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" https://arxiv.org/abs/1810.04805 Table 4 of paper "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", https://arxiv.org/abs/1810.04805

NPFL114, Lecture 11

Transformer SelfAttention PosEmbedding

BERT ELMo

mBERT

RoBERTa

BERT – Ablations

Ma	sking Ra	ates	Dev Set Results			
Mask	SAME	RND	MNLI Fine-tune	NER e Fine-tune Feature-ba		
80%	10%	10%	84.2	95.4	94.9	
100%	0%	0%	84.3	94.9	94.0	
80%	0%	20%	84.1	95.2	94.6	
80%	20%	0%	84.4	95.2	94.7	
0%	20%	80%	83.7	94.8	94.6	
0%	0%	100%	83.6	94.9	94.6	

Figure 5: Ablation over number of training steps. This shows the MNLI accuracy after fine-tuning, starting from model parameters that have been pre-trained for k steps. The x-axis is the value of k.

Figure 5 of paper "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" , https://arxiv.org/abs/1810.04805

Table 8: Ablation over different masking strategies. Table 8 of paper "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", https://arxiv.org/abs/1810.04805

RoBERTa

BERT ELMo

mBERT

Multilingual BERT

The Multilingual BERT is pre-trained on 102-104 largest Wikipedias, including the Czech one.

There are two versions, the *cased* one has WordPieces including case, and the *uncased* one with subwords all in lower case and *without diacritics*.

- Even if only very small percentage of input sentences were Czech, it works surprisingly well for Czech NLP.
- Furthermore, without any explicit supervision, mBERT is able to represent the input languages in a *shared* space, allowing cross-lingual transfer.

RoBERTa

Cross-lingual Transfer with Multilingual BERT

Consider a *reading comprehension* task, where for a given paragraph and a question an answer needs to be located in the paragraph.

Then training the model in English and then directly running it on a different language works comparably to translating the data to English and then back.

https://arxiv.org/abs/1910.07475

F1 / EM	en	es	de	ar	hi	vi	zh
BERT-Large Multilingual-BERT XLM	80.2 / 67.4 77.7 / 65.2 74.9 / 62.4	- 64.3 / 46.6 68.0 / 49.8	- 57.9 / 44.3 62.2 / 47.6	- 45.7 / 29.8 54.8 / 36.3	- 43.8 / 29.7 48.8 / 27.3	- 57.1 / 38.6 61.4 / 41.8	- 57.5 / 37.3 61.1 / 39.6
Translate test, BERT-L Translate train, M-BERT Translate train, XLM	- -	65.4 / 44.0 53.9 / 37.4 65.2 / 47.8	57.9 / 41.8 62.0 / 47.5 61.4 / 46.7	33.6 / 20.4 51.8 / 33.2 54.0 / 34.4	23.8/18.9* 55.0/40.0 50.7/33.4	58.2 / 33.2 62.0 / 43.1 59.3 / 39.4	44.2 / 20.3 61.4 / 39.5 59.8 / 37.9

Table 5 of paper "MLQA: Evaluating Cross-lingual Extractive Question Answering", https://arxiv.org/abs/1910.07475

NPFL114, Lecture 11

RoBERTa

AI BERT

RoBERTa – **NSP**

Ú_F≩L

The *next sentence prediction* was originally hypothesized to be an important factor during training of the BERT model, as indicated by ablation experiments. However, later experiments indicated removing it might improve results.

The RoBERTa authors therefore performed the following experiments:

- SEGMENT-PAIR: pair of segments with at most 512 tokens in total;
- SENTENCE-PAIR: pair of *natural sentences*, usually significantly shorter than 512 tokens;
- FULL-SENTENCES: just one segment on input with 512 tokens, can cross document boundary;
- DOC-SENTENCES: just one segment on input with 512 tokens, cannot cross document boundary.

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE				
Our reimplementation (with NSP loss):								
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2				
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0				
Our reimplementation	Our reimplementation (without NSP loss):							
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8				
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6				
BERT _{BASE}	88.5/76.3	84.3	92.8	64.3				
$XLNet_{BASE} (K = 7)$	-/81.3	85.8	92.7	66.1				
$XLNet_{BASE} (K = 6)$	-/81.0	85.6	93.4	66.7				

 Table 2 of paper "RoBERTa: A Robustly Optimized BERT Pretraining Approach", https://arxiv.org/abs/1907.11692

RoBERTa

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

mBERT

RoBERTa – Larger Batches

Ú_F_AL

BERT is trained for 1M steps with a learning rate of 1e-4.

The RoBERTa authors also considered larger batches (with linearly larger learning rate).

bsz	steps	lr	ppl	MNLI-m	SST-2
256	1 M	1e-4	3.99	84.7	92.7
2K	125K	7e-4	3.68	85.2	92.9
8K	31K	1e-3	3.77	84.6	92.8

Table 3: Perplexity on held-out training data (*ppl*) and development set accuracy for base models trained over BOOKCORPUS and WIKIPEDIA with varying batch sizes (*bsz*). We tune the learning rate (*lr*) for each setting. Models make the same number of passes over the data (epochs) and have the same computational cost.

NPFL114, Lecture 11

RoBERTa

The RoBERTa model, **R**bustly **o**ptimized **BERT a**pproach, is trained with dynamic masking, FULL-SENTENCES without NSP, large 8k minibatches and byte-level BPE with 50k subwords.

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data ($\S3.2$)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7
XLNet _{LARGE}						
with BOOKS + WIKI	13GB	256	1M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

Table 4: Development set results for RoBERTa as we pretrain over more data (16GB \rightarrow 160GB of text) and pretrain for longer (100K \rightarrow 300K \rightarrow 500K steps). Each row accumulates improvements from the rows above. RoBERTa matches the architecture and training objective of BERT_{LARGE}. Results for BERT_{LARGE} and XLNet_{LARGE} are from Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the Appendix.

Table 4 of paper "RoBERTa: A Robustly Optimized BERT Pretraining Approach", https://arxiv.org/abs/1907.11692

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo

ALBERT

RoBERTa

											Modol	SQuA	D 1.1	SQu A	AD 2.0
											widuei	EM	F1	EM	F1
											Single models	s on dev	, w/o da	ita augm	entation
	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg	$BERT_{LARGE}$	84.1	90.9	79.0	81.8
Single-task si	ngle models	on dev									XLNet _{LARGE} RoBERTa	89.0 88.9	94.5 94.6	86.1 86.5	88.8 89.4
BERT _{LARGE}	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-					
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-	Single models	s on test	(as of)	1uly 23, 2	2019)
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3		RoBERTa			86.8	89.1 89.8
Ensembles on	test (from le	eaderboa	rd as of .	July 25,	2019)						XLNet + SG-	Net Vei	rifier	87.0 [†]	89.9 †
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3	Table 6 of pa	per "RoE	BERTa: A	Robustly	Optimized
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6		htt	ps://arxi	v.org/abs/	Approach , /1907.11692
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4					
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5					
											Model	Accu	iracy	Middle	High

Table 5: Results on GLUE. All results are based on a 24-layer architecture. $BERT_{LARGE}$ and $XLNet_{LARGE}$ results are from Devlin et al. (2019) and Yang et al. (2019), respectively. RoBERTa results on the development set are a median over five runs. RoBERTa results on the test set are ensembles of *single-task* models. For RTE, STS and MRPC we finetune starting from the MNLI model instead of the baseline pretrained model. Averages are obtained from the GLUE leaderboard.

Table 5 of paper "RoBERTa: A Robustly Optimized BERT Pretraining Approach", https://arxiv.org/abs/1907.11692

 BERT_{LARGE}
 72.0
 76.6
 70.1

 XLNet_{LARGE}
 81.7
 85.4
 80.2

 RoBERTa
 83.2
 86.5
 81.3

Single models on test (as of July 25, 2019)

Table 7: Results on the RACE test set. BERT_{LARGE} and XLNet_{LARGE} results are from Yang et al. (2019). Table 7 of paper "RoBERTa: A Robustly Optimized BERT Pretraining Approach", https://arxiv.org/abs/1907.11692

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo

BERT mBERT

RoBERTa ALBERT

ALBERT

ALBERT model, A Lite BERT, was proposed with small model size in mind.

To achieve smaller size, the authors consider

- factorized embeddings representation; and
- parameter sharing across layers.

The following configurations are evaluated in the paper:

Moo	Model		Layers	Hidden	Embedding	Parameter-sharing
	base	108M	12	768	768	False
BERT	large	334M	24	1024	1024	False
	base	12M	12	768	128	True
	large	18M	24	1024	128	True
ALDENI	xlarge	60M	24	2048	128	True
	xxlarge	235M	12	4096	128	True

 Table 1: The configurations of the main BERT and ALBERT models analyzed in this paper.

 Table 1 of paper "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", https://arxiv.org/abs/1909.11942

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

RoBERTa

ALBERT

ALBERT – Factorized Embeddings

Ú F_AL

The subword embeddings have the hidden size dimensionality H in BERT, which results in quite a large number of parameters.

Instead, authors propose to represent the subwords using only embeddings of size E and then use a matrix of size $E \times H$ to generate the correctly-sized embeddings for the first layer.

Model	E	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
	64	87M	89.9/82.9	80.1/77.8	82.9	91.5	66.7	81.3
ALDENI	128	89M	89.9/82.8	80.3/77.3	83.7	91.5	67.9	81.7
not-shared	256	93M	90.2/83.2	80.3/77.4	84.1	91.9	67.3	81.8
not-snareu	768	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3
	64	10M	88.7/81.4	77.5/74.8	80.8	89.4	63.5	79.0
ALDEKI	128	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1
oll_shared	256	16M	88.8/81.5	79.1/76.3	81.5	90.3	63.4	79.6
an-shareu	768	31M	88.6/81.5	79.2/76.6	82.0	90.6	63.3	79.8

 Table 3: The effect of vocabulary embedding size on the performance of ALBERT-base.

 Table 3 of paper "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", https://arxiv.org/abs/1909.11942

NPFL114, Lecture 11

PosEmbedding

ELMo BERT

RoBERTa

ALBERT

ALBERT – Shared Parameters

To improve parameter efficiency, the parameters of both the soft-attention and the feed-forward networks are shared across layers.

	Model	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
	all-shared	31M	88.6/81.5	79.2/76.6	82.0	90.6	63.3	79.8
hase	shared-attention	83M	89.9/82.7	80.0/77.2	84.0	91.4	67.7	81.6
E=768	shared-FFN	57M	89.2/82.1	78.2/75.4	81.5	90.8	62.6	79.5
<i>E</i> =708	not-shared	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3
	all-shared	12M	89.3/82.3	80.0/77.1	82.0	90.3	64.0	80.1
ALDENI	shared-attention	64M	89.9/82.8	80.7/77.9	83.4	91.9	67.6	81.7
E-128	shared-FFN	38M	88.9/81.6	78.6/75.6	82.3	91.7	64.4	80.2
L=120	not-shared	89M	89.9/82.8	80.3/77.3	83.2	91.5	67.9	81.6

 Table 4: The effect of cross-layer parameter-sharing strategies, ALBERT-base configuration.

 Table 4 of paper "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", https://arxiv.org/abs/1909.11942

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

RoBERTa

ALBERT – Sentence Order Prediction

An alternative to *next sentence prediction* is considered – given two consecutive segments, predict which one appeared first in the original document.

	Intr	insic Tas	sks	Downstream Tasks						
SP tasks	MLM	NSP	SOP	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	
None	54.9	52.4	53.3	88.6/81.5	78.1/75.3	81.5	89.9	61.7	79.0	
NSP	54.5	90.5	52.0	88.4/81.5	77.2/74.6	81.6	91.1	62.3	79.2	
SOP	54.0	78.9	86.5	89.3/82.3	80.0/77.1	82.0	90.3	64.0	80.1	

Table 5: The effect of sentence-prediction loss, NSP vs. SOP, on intrinsic and downstream tasks.Table 5 of paper "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", https://arxiv.org/abs/1909.11942

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

mBERT

RoBERTa

ALBERT Results and Ablations

Ú F _A L

Moo	lel	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	Speedup
	base	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3	4.7x
BERT	large	334M	92.2/85.5	85.0/82.2	86.6	93.0	73.9	85.2	1.0
	base	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1	5.6x
	large	18M	90.6/83.9	82.3/79.4	83.5	91.7	68.5	82.4	1.7x
ALDERI	xlarge	60M	92.5/86.1	86.1/83.1	86.4	92.4	74.8	85.5	0.6x
	xxlarge	235M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	0.3x
	Table	2 of paper "ALBEI	RT: A Lite BERT for	Self-supervised Learn	ing of Langua	ge Represent	ations", https	://arxiv.or	g/abs/1909.11942
			QuAD1.1	SQuAD2.0	MNLI	I SST	C-2 R/	ACE	Avg
No a	additiona	l data 📔 🎖	9.3/82.3	80.0/77.1	81.6	90.	3 6	4.0	80.1
With a	additiona	l data 8	8.8/81.7	79.1/76.3	82.4	92.	8 6	6.0	80.8

 Table 7: The effect of additional training data using the ALBERT-base configuration.

 Table 7 of paper "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", https://arxiv.org/abs/1909.11942

	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
With dropout	94.7/89.2	89.6/86.9	90.0	96.3	85.7	90.4
Without dropout	94.8/89.5	89.9/87.2	90.4	96.5	86.1	90.7

Table 8 of paper "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", https://arxiv.org/abs/1909.11942

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

ALBERT SoTA Results

Models	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single n	nodels on	dev								
BERT-large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet-large	89.8	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa-large	90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	-	-
ALBERT (1M)	90.4	95.2	92.0	88.1	96.8	90.2	68.7	92.7	-	-
ALBERT (1.5M)	90.8	95.3	92.2	89.2	96.9	90.9	71.4	93.0	-	-
Ensembles on test (from lead	lerboard a	as of Sep	ot. 16, 20	019)					
ALICE	88.2	95.7	90.7	83.5	95.2	92.6	69.2	91.1	80.8	87.0
MT-DNN	87.9	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5
Adv-RoBERTa	91.1	98.8	90.3	88.7	96.8	93.1	68.0	92.4	89.0	88.8
ALBERT	91.3	99.2	90.5	89.2	97.1	93.4	69.1	92.5	91.8	89.4

Table 9: State-of-the-art results on the GLUE benchmark. For single-task single-model results, we report ALBERT at 1M steps (comparable to RoBERTa) and at 1.5M steps. The ALBERT ensemble uses models trained with 1M, 1.5M, and other numbers of steps.

 Table 9 of paper "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", https://arxiv.org/abs/1909.11942

ALBERT

RoBERTa

ALBERT SoTA Results

Models	SQuAD1.1 dev	SQuAD2.0 dev	SQuAD2.0 test	RACE test (Middle/High)
Single model (from leaderbod	urd as of Sept. 23,	2019)		
BERT-large	90.9/84.1	81.8/79.0	89.1/86.3	72.0 (76.6/70.1)
XLNet	94.5/89.0	88.8/86.1	89.1/86.3	81.8 (85.5/80.2)
RoBERTa	94.6/88.9	89.4/86.5	89.8/86.8	83.2 (86.5/81.3)
UPM	-	-	89.9/87.2	-
XLNet + SG-Net Verifier++	-	-	90.1/87.2	-
ALBERT (1M)	94.8/89.2	89.9/87.2	-	86.0 (88.2/85.1)
ALBERT (1.5M)	94.8/89.3	90.2/87.4	90.9/88.1	86.5 (89.0/85.5)
Ensembles (from leaderboard	l as of Sept. 23, 20	019)		
BERT-large	92.2/86.2	-	-	-
XLNet + SG-Net Verifier	-	-	90.7/88.2	-
UPM	-	-	90.7/88.2	
XLNet + DAAF + Verifier	-	-	90.9/88.6	-
DCMN+	-	-	-	84.1 (88.5/82.3)
ALBERT	95.5/90.1	91.4/88.9	92.2/89.7	89.4 (91.2/88.6)

Table 10: State-of-the-art results on the SQuAD and RACE benchmarks.

Table 10 of paper "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", https://arxiv.org/abs/1909.11942

NPFL114, Lecture 11

Transformer SelfAttention

PosEmbedding

ELMo BERT

mBERT

RoBERTa

ALBERT

