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For some sequence processing tasks, sequential processing (as performed by recurrent neural
networks) of its elements might be too restrictive.

Instead, we may want to be able to combine sequence elements independently on their distance.

Such processing is allowed in the Transformer architecture, originally proposed for neural
machine translation in 2017 in Attention is All You Need paper.
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Assume that we have a sequence of n words represented using a matrix X € R?*¢,

The attention module for a queries Q € R™"*%  keys K € R™% and values V € R™*% s
defined as:

. QK'
Attention(Q, K, V') = softmax V.
Vg

The queries, keys and values are computed from the input word representations X using a
linear transformation as

Q=wW.X
K=wi.Xx
V=w'.X
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Transformer — Self-Attention
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Transformer — Self-Attention
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Transformer — Self-Attention FaL
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Transformer — Self-Attention UL
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Multihead attention is used in practice. Instead of using one huge attention, we split queries,
keys and values to several groups (similar to how ResNeXt works), compute the attention in
each of the groups separately, concatenate the results and multiply them by a matrix w©.
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Transformer — Multihead Attention ezt
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Transformer — Multihead Attention

1) Concatenate all the attention heads 2) Multiply with a weight
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Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, £ is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logy(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)
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Feed Forward Networks

The self-attention is complemented with FFN layers, which is a fully connected RelLU layer with
four times as many hidden units as inputs, followed by another fully connected layer without

activation.
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Transformer — Residuals UL
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Transformer — Decoder
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Masked Self-Attention

During decoding, the self-attention must attent only to earlier
positions in the output sequence.

This is achieved by masking future positions, i.e., zeroing their
weights out, which is usually implemented by setting them to —o0

before the softmax calculation.

Encoder-Decoder Attention

In the encoder-decoder attentions, the queries comes from the
decoder, while the keys and the values originate from the encoder.
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Transformer — Positional Embedding

ENCODER #1 DECODER #1
ENCODER #0 DECODER #0

\_

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

NPFL114, Lecture 11 Transformer

x« [T

t[ [ T[]

+

x: [T

Je

SelfAttention

[T
[T 1]
x. (NI

Suis

PosEmbedding

t [ L[]

+

xs NIRRT

étudiant

http://jalammar.github.io/images/t /transformer_positional_encoding_vectors.png

ELMo

BERT mBERT RoBERTa ALBERT

21/55



Positional Embeddings

We need to encode positional information (which was implicit in RNNs).
® | earned embeddings for every position.
® Sinusoids of different frequencies:
PE (pos,2i) = sin (pos/10000*/¢)
PE(ps2i+1) = COS (pos/lOOOOzi/d)

This choice of functions should allow the model to attend to relative positions, since for any
fixed k, PEposk is a linear function of PE,,,, because

PE (os+£,20) = sin ((pos + k)/10000%/)
= sin (pos/10000*/?) - cos (k/10000%/¢) + cos (pos/10000*/?) - sin (k/10000*/¢)
= offset2:) - PE(pos2i) + offsety2i1) - PE(pos2it1)-
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Transformer — Positional Embeddings

Positional embeddings, 16 tokens, dimension 512
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Transformer — Positional Embeddings

Positional embeddings, 64 tokens, dimension 512
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Transformer — Positional Embeddings

Positional embeddings, 512 tokens, dimension 512
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Regularization
The network is regularized by:

® dropout of input embeddings,

® dropout of each sub-layer, just before before it is added to the residual connection (and then
normalized),

® |abel smoothing.

Default dropout rate and also label smoothing weight is 0.1.

Parallel Execution
Because of the masked attention, training can be performed in parallel.

However, inference is still sequential.
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Optimizer
Adam optimizer (with 82 = 0.98, smaller than the default value of 0.999) is used during

training, with the learning rate decreasing proportionally to inverse square root of the step
number.

Warmup

Furthermore, during the first warmup_steps updates, the learning rate is increased linearly
from zero to its target value.

l , ; 1 _ 1 step_num 1
earning_rate = ——— min : :
7 vV dmodel \/ step_num’ warmup_steps \/ warmup_steps

In the original paper, 4000 warmup steps were proposed.
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Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the

English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

el BLEU Training Cost (FLOPs)
Mode EN-DE EN-FR EN-DE  EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%Y
GNMT + RL [38] 24.6 39.92 2.3-101%  1.4-10%
ConvS2S [9] 25.16 40.46 9.6-10® 1.5-10%
MoE [32] 26.03  40.56 2.0-101° 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%0  1.1-10%!
ConvS2S Ensemble [9] 26.36 41.29 7.7-1019 1.2.10%!
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-.101

PosEmbedding

28/55



Transformers Results

train | PPL BLEU params
N dmodel dff h dk dv Pdrop €ls steps (deV) (deV) > 106
base | 6 512 2048 8 64 64 0.1 0.1 100K | 4.92 25.8 65
I 512 512 5.29 24.9
(A) 4 128 128 5.00 25.5
16 32 32 491 25.8
32 16 16 5.01 254
(B) 16 5.16 25.1 58
32 5.01 254 60
2 6.11 23.7 36
4 5.19 25.3 50
8 4.88 25.5 80
(@) 256 32 32 5.75 24.5 28
1024 128 128 4.66 26.0 168
1024 5.12 254 53
4096 4.75 26.2 90
0.0 5.77 24.6
0.2 4.95 25.5
D) 0.0 467 253
0.2 5.47 25.7
(E) positional embedding instead of sinusoids 4.92 25.7
big | 6 1024 4096 16 0.3 300K | 4.33 26.4 213
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Transformers Results UF\RL

Main Takeaway

Generally, Transformer provides more powerful sequence-to-sequence architecture and also
sequence element representation architecture than RNNs, but usually requires substantially more

data.

30/55
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ELMo UsL

At the end of 2017, a new type of deep contextualized word representations was proposed by
Peters et al., called ELMo, Embeddings from Language Maodels.

The ELMo embeddings were based on a two-layer pre-trained LSTM language model, where a
language model predicts following word based on a sentence prefix. Specifically, two such
models were used, one for the forward direction and the other one for the backward direction.
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All English words 10% | Improvisation
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http://jalammar.github.io/images/Bert-language-
modeling.png
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ELMo UF\RL

To compute an embedding of a word in a sentence, the concatenation of the two language
model's hidden states is used.
Embedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers
I R R

I B
CTTTTTTT]

B
2- Multiply each vector by P,
Il

a weight based on the task

S
RN xS
o e s

stick stick

3- Sum the (now weighted)
vectors

ELMo embedding of “stick” for this task in this context

http://jalammar.github.io/images/elmo-embedding.png

Pre-trained ELMo embeddings substantially improved several NLP tasks.
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BERT =

A vyear later after ELMo, at the end of 2018, a new model called BERT (standing for
Bidirectional Encoder Representations from Transformers) was proposed. It is nowadays one of

the most dominating approaches for pre-training word embeddings and for paragraph
representation.

YEARS AND COUNTING
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In the BERT model computes contextualized representations using a bidirectional Transformer
architecture.

BERT (Ours) OpenAl GPT
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BERT

The baseline BERT base model consists of 12 Transformer layers:
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The bidirectionality is important, but it makes training difficult.
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The input to the BERT model are two so-called sentences, but
they are in fact pieces of text with hundreds of subwords (512
maximum in total). The first token is a special CLS token and

every sentence is ended by a SEP token. Additionally, a trainable
embedding indicating if a token belongs to a sentence A
(inclusively up to its SEP token) or to sentence B is used.

The BERT model is pretrained using two objectives:

® masked language model — 15% of the input words are
masked, and the model tries to predict them.
O 80% of them are replaced by a special MASK token;
0 10% of them are replaced by a random word;
© 10% of them are left intact.

ﬂP Mask LM Mask LM \
& <t *

Le i) (n)(Tsem ) (]
BERT '

I ET T = e =T

— o I e Bl e B o

@( Tok 1 ] [TakN H [SEP] 1('@(11 [TnkMW

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair /

Pre-training

®* next sentence prediction — the model tries to predict whether the second sentence

followed the first one in the raw corpus.

o 50% of the time the second sentence is the actual next sentence;
o 50% of the time the second sentence is a random sentence from the corpus.

BERT
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For pre-training, English BookCorpus (800M words) and Wikipedia (2,500M words) are used,
with a 30k WordPieces vocabulary.

Batch size is 256 sequences, each 512 subwords, giving 128k tokens per batch. Adam with
learning rate le-4 is used, with linear learning rate warmup for the first 10k steps, followed by a
linear learning rate decay to 0. Standard momentum parameters are used, and L2 weight decay
of 0.01 is utilized.

Dropout of 0.1 on all layers is used, and GELU activation is used instead of RelU.

Furthermore, because longer sequences are quadratically more expensive, first 90% of the pre-
training is performed on sequences of length 128, and only the last 10% use sequences of length

512.

Two variants are considered:

® BERT base with 12 layers, 12 attention heads and hidden size 768 (110M parameters),
® BERT /arge with 24 layers, 16 attention heads and hidden size 1024 (340M parameters).

BERT 37/55



RelLU multiplies the input by zero or one, depending on its value.

Dropout stochastically multiplies the input by zero or one.

Both these functionalities are merged in Gaussian error
linear units (GELUs), where the input value is multiplied
by m ~ Bernoulli(®(x)), where ®(z) = P(z' < x)

for ' ~ N(0,1) is the cumulative density function of

the standard normal distribution. ol

The GELUs compute the expectation of this value, i.e.,

GELU(z) =z - ®(z) + 0 (1 — ®(z)) = z®(z).

71 —— GELU

RelLU
— ELU

Figure 1: The GELU (u = 0,0 = 1), ReLU, and ELU
(ax=1).

GELUs can be approximated using

0.5z (1 + tanh [\/2/7r(513 + 0.044715:1;3)}) or z0(1.702z).

BERT
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The pre-trained BERT model can be finetuned
on a range of tasks:

® sentence element representation
O PoS tagging
O named entity recognition
O

® sentence representation
O text classification

® sentence relation representation
O textual entailment, aka natural language

inference (the second sentence is implied
by /contradicts/has no relation to the
first sentence)

O textual similarity

O paraphrase detection

O natural language inference

Class
Label

— >

BERT

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

BERT

Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1

BERT

BERT
| 5 ] = ]
—{r L ai
[cLs] || Tok 1 Tok 2 .
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Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

BERT
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Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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For finetuning, dropout 0.1 is used, usually very small number of epochs (2-4) suffice, and a
good learning rate is usually one of 5e-5, 3e-5, 2e-5.

System MNLI-(m/mm) QQP  QNLI  SST-2 CoLA  STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTEBASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT ] ArRGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

BERT
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BERT — Results

System
EM

Dev

Test
F1 EM Fl

Top Leaderboard Systems (Dec 10th, 2018)

Human -
#1 Ensemble - nlnet -
#2 Ensemble - QANet -

- 823 912
- 86.0 91.7
- 845 905

Published
BiDAF+ELMo (Single) -
R.M. Reader (Ensemble) 81.2

856 - 858
87.9 823 885

Ours
BERTBASE (Single) 80.8
BERTLARGE (Slngle) 84.1
BERTLARGE (Ensemble) 85.8
BERT arGE (Sgl.+TriviaQA) 84.2

BERTLARGE (EIIS.+TI'iViaQA) 86.2

88.5 - -
9.9 - -
91.8 - -
91.1 85.1 91.8
92.2 87.4 93.2

is 7x systems which use different pre-training check-

points and fine-tuning seeds.

System Dev Test
EM Fl1 EM Fl
Top Leaderboard Systems (Dec 10th, 2018)
Human 86.3 89.0 86.9 89.5
#1 Single - MIR-MRC (F-Net) - - 748 78.0
#2 Single - nlnet - - 742 771
Published
unet (Ensemble) - - 714 749
SLQA+ (Single) - 71.4 744
Ours
BERTLaRrGE (Single) 78.7 81.9 80.0 83.1

Table 4: SWAG Dev and Test accuracies. THuman per-
formance is measured with 100 samples, as reported in

System Dev Test
ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2
OpenAl GPT - 78.0
BERTgAsE 81.6 -

BERTLARGE 86.6 86.3
Human (expert)T - 850
Human (5 annotations)T - 88.0

Table 3: SQuAD 2.0 results. We exclude entries thatthe SWAG paper.

Table 2: SQuAD 1.1 results. The BERT ensembleuse BERT as one of their components.
Table 3 of paper "BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding”

Table 4 of paper "BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding" ,
https: //arxiv.org/abs/1810.04805

https: //arxiv.org/abs/1810.04805

Table 2 of paper "BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding" ,

https: //arxiv.org/abs/1810.04805
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MNLI Dev Accuracy

—A— BERTB ASE (Masked LM)
76 |- — % BERTgask (Left-to-Right)

200 400

600

Pre-training Steps (Thousands)

Figure 5: Ablation over number of training steps. This
shows the MNLI accuracy after fine-tuning, starting
from model parameters that have been pre-trained for

k steps. The x-axis is the value of k.

Transformer

SelfAttention

800

1,000

PosEmbedding

Masking Rates

Dev Set Results

MASK SAME RND

80% 10% 10%
100% 0% 0%
80% 0% 20%
80% 20% 0%
0% 20% 80%

MNLI NER
Fine-tune Fine-tune Feature-based
84.2 95.4 94.9
84.3 94.9 94.0
84.1 95.2 94.6
84.4 95.2 94.7
83.7 94.8 94.6
83.6 94.9 94.6

0% 0% 100%

Table 8: Ablation over different masking strategies.
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The Multilingual BERT is pre-trained on 102-104 largest Wikipedias, including the Czech one.

There are two versions, the cased one has WordPieces including case, and the uncased one with
subwords all in lower case and without diacritics.

Even if only very small percentage of input sentences were Czech, it works surprisingly well for
Czech NLP.

Furthermore, without any explicit supervision, mMBERT is able to represent the input languages
in a shared space, allowing cross-lingual transfer.
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. . . (
Consider a reading comprehension task, where [=
for a given paragraph and a question an answer

needs to be located in the paragraph.

Then training the model in English and then
directly running it on a different language works
comparably to translating the data to English

and then back.

During what time period did the Angles migrate to Great Britain?

(

En

What are the names given to the campuses on the east side of the
land the university sits on?

~

The name "England" is derived from the Old English name Englaland [...] The

The campus is in the residential area of Westwood [...] The campus is informally

Angles were one of the Germanic tribes that settled in Great Britain during the divided into , which are both on the eastern
. [...] The Welsh name for the English language is "Saesneg" half of the university's land. [...] The campus includes [...] a mix of architectural
styles.
. J J
( Waéhrend welcher Zeitperiode migrierten die Angeln nach N\ E ¢ Cudles son los nombres dados a los campus ubicados en el lado A
De GroBbritannien? S este del recinto donde se encuentra la universidad?

Der Name England leitet sich vom altenglischen Wort Engaland [...] Die Angeln

El campus incluye [...] una mezcla de estilos arquitectonicos. Informalmente

Lessh ol e 35 [ ]

0D 1) 3 il 1 Agla sl B
syl

\@%m:ﬂiﬂg

waren ein germanischer Stamm, der das Land im besiedelte. esta dividido en , ambos localizados en la parte
[...] ein Verweis auf die weiBen Klippen von Dover. este del terreno que posee la universidad. [...] El Campus Sur esta enfocado en
la ciencias fisicas [...] y el Centro Médico Ronald Reagan de UCLA.
. RN
‘ o e )
Ar Seraliall Lty ) Jas¥1 jala Bia s 5l 8 zZh UFARZ SR FEHRERRRBHA?
il 4 o) IS G "l ol 31 ENglalande sl SulS Jal s MOal) )t e Al BIRERATERID R , EFAEMREELF RS SR,

IERERREEARL, BRANYARIXZEMXNREREDE, EPOEEHTRE
BB (Powell Library) FURIFFISREZMNRERRIHR. [ X HYEFS

J

. J
( . N ( . . .
Vi Trong khoang théri gian nao ngudi Angles di cur dén Anh? Hi faeafaenera st ferd &, 39 qdf feem & & ol @t aar = o ma 82
Tén goi clia Anh trong tiéng Viét bt ngudn tir tiéng Trung. [...] Nguai Angle la s 1919#‘33‘1 TeTq 3 37T AT TR e, aaz‘srﬁa‘r\'gq 7 et [.] IR
mét trong nhirng bd téc German dinh cu tai Anh trong . IR B0 fenmfeia €, it QT freafareera @1
dudng nhu n6 lién quan téi phong tuc goi ngudi German tai Anh 1& Angli W*‘Iﬁ%@ﬁ@ﬂ?\ ]ZFHUﬁqﬁﬂTﬂﬂ e fa, Sfta fam, sshfrafi,
Saxones hay Anh - Sachsen. ) HAAA, T o, WW@W%WW?@WW@H?I
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BERT-Large
Multilingual-BERT
XLM

80.2/67.4
77.7165.2
7497624

64.3/46.6
68.0/49.8

57.9/44.3
62.2/47.6

45.7/29.8
54.8/36.3

43.8/29.7
48.8/27.3

57.1/38.6
61.4/41.8

57.5/37.3
61.1/39.6

Translate test, BERT-L
Translate train, M-BERT
Translate train, XLLM

65.4/44.0
53.9/374
65.2/47.8

579/41.8
62.0/47.5
61.4/46.7

33.6/204
51.8/33.2
54.0/34.4

23.8/18.9"
55.0/40.0
50.7/33.4

58.2/33.2
62.0/43.1
59.3/394

44.2720.3
61.4/39.5
59.8/37.9
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The next sentence prediction was originally hypothesized to be an important factor during
training of the BERT model, as indicated by ablation experiments. However, later experiments
indicated removing it might improve results.

The RoBERTa authors therefore performed the following experiments:

e SEGMENT-PAIR: pair of segments with at Model SQuAD 1.12.0 MNLI-m SST-2 RACE
most 512 tokens in total; Our reimplementation (with NSP loss):
. SEGMENT-PAIR 90.4/78.7 84.0 92.9 64.2
[ ) _ .
SENTENCE PAIR: pair Of natural SENTENCE-PAIR 88.7/76.2 82.9 92.1 63.0

sentences, usually significantly shorter than

Our reimplementation (without NSP loss):

512 tokens; FULL-SENTENCES 90.4/79.1 84.7 92.5  64.8
® FULL-SENTENCES: just one segment on DOC-SENTENCES 90.6/79.7 84.7 92.7 65.6
input with 512 tokens, can cross document BERTs.s: 88.5/76.3 84.3 928 643
boundary' XLNetgase (K =6) —/81.0 85.6 93.4 66.7

® DOC-SENTENCES: just one segment on
input with 512 tokens, cannot cross
document boundary.
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BERT is trained for 1M steps with a learning rate of 1le-4.

The RoBERTa authors also considered larger batches (with linearly larger learning rate).

bsz steps Ir ppl MNLI-m SST-2

256 1M le-4 3.99 84.7 92.7
2K 125K  7e-4 3.68 85.2 92.9
8K 31K le-3 3.77 84.6 92.8

Table 3: Perplexity on held-out training data (pp/) and
development set accuracy for base models trained over
BOOKCORPUS and WIKIPEDIA with varying batch
sizes (bsz). We tune the learning rate (/r) for each set-
ting. Models make the same number of passes over the
data (epochs) and have the same computational cost.
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The RoBERTa model, Rbustly optimized BERT approach, is trained with dynamic masking,
FULL-SENTENCES without NSP, large 8k minibatches and byte-level BPE with 50k subwords.

SQuAD
(v1.1/2.0)

Model data  bsz steps MNLI-m SST-2

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1

+ pretrain even longer 160GB 8K 500K  94.6/89.4 90.2 96.4
BERTLARGE

with BOOKS + WIKI I3GB 256 1M  90.9/81.8 86.6 93.7
XLNet; arge

with BOOKS + WIKI I3GB 256 IM  94.0/87.8 88.4 94.4

+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Table 4: Development set results for ROBERTa as we pretrain over more data (16GB — 160GB of text) and pretrain
for longer (100K — 300K — 500K steps). Each row accumulates improvements from the rows above. ROBERTa
matches the architecture and training objective of BERT| szge. Results for BERT sgrge and XLNet; szge are from
Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the
Appendix.
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MNLI QNLI QQP RTE SST MRPC CoLA STS WNLI Avg

Single-task single models on dev
BERT| zrge 86.6/- 923 913 704 932  88.0 60.6  90.0 - -
XLNet; srce 89.8/- 939 91.8 838 956 89.2 63.6 91.8 -
RoBERTa 90.2/90.2 947 922 86.6 964 90.9 68.0 924 913 -

Ensembles on test (from leaderboard as of July 25, 2019)

ALICE 88.2/87.9 957 90.7 835 952 926 68.6 91.1 808 863
MT-DNN 87.9/87.4 96.0 899 863 965 92.7 684 91.1 89.0 87.6
XLNet 90.2/89.8 98.6 903 863 968 93.0 67.8 91.6 904 884

RoBERTa 90.8/90.2 989 90.2 882 967 923 67.8 922 89.0 88.5

Table 5: Results on GLUE. All results are based on a 24-layer architecture. BERT| srge and XLNet, szge results
are from Devlin et al. (2019) and Yang et al. (2019), respectively. RoOBERTa results on the development set are a
median over five runs. RoOBERTa results on the test set are ensembles of single-task models. For RTE, STS and
MRPC we finetune starting from the MNLI model instead of the baseline pretrained model. Averages are obtained
from the GLUE leaderboard.

SQuAD 1.1  SQuAD 2.0

Model EM FI EM Fl

Single models on dev, w/o data augmentation
BERT srge 84.1 909 79.0 81.8
XLNetparce 89.0 945  86.1 88.8
RoBERTa 88.9 94.6 86.5 89.4

Single models on test (as of July 25, 2019)

XLNet; srge 86.37  89.1T
RoBERTa 86.8 89.8
XLNet + SG-Net Verifier ~ 87.01  89.97

Model Accuracy Middle High

Single models on test (as of July 25, 2019)
BERT  srce 72.0 76.6 70.1
XLNet; srce 81.7 85.4 80.2

RoBERTa 83.2 86.5 81.3

Table 7: Results on the RACE test set. BERT srgr and

XLNet, srge results are from Yang et al. (2019).
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ALBERT model, A Lite BERT, was proposed with small model size in mind.

To achieve smaller size, the authors consider

® factorized embeddings representation; and
® parameter sharing across layers.

The following configurations are evaluated in the paper:

Model Parameters Layers Hidden Embedding Parameter-sharing
base 108M 12 768 768 False
BERT large 334M 24 1024 1024 False
base 12M 12 768 128 True
large 18M 24 1024 128 True
ALBERT Xlagrge 60M 24 2048 128 True
xxlarge 235M 12 4096 128 True

Table 1: The configurations of the main BERT and ALBERT models analyzed in this paper.
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The subword embeddings have the hidden size dimensionality H in BERT, which results in
quite a large number of parameters.

Instead, authors propose to represent the subwords using only embeddings of size E£ and then
use a matrix of size I/ X H to generate the correctly-sized embeddings for the first layer.

Model E  Parameters | SQuADI1.1 SQuAD2.0 MNLI SST-2 RACE | Avg
ALBERT 64 8™ 89.9/82.9 80.1/77.8 82.9 91.5 66.7 81.3
base 128 8OM 89.9/82.8 80.3/77.3 83.7 91.5 67.9 81.7
not-shared 290 93M 90.2/83.2 80.3/77.4 84.1 91.9 67.3 81.8
768 108M 90.4/83.2 80.4/77.6 84.5 92.8 68.2 82.3

ALBERT 64 10M 88.7/81.4 77.5/74.8 80.8 89.4 63.5 79.0
base 128 12M 89.3/82.3 80.0/77.1 81.6 90.3 64.0 80.1
all-shared 290 16M 88.8/81.5 79.1/76.3 81.5 90.3 63.4 79.6
768 31M 88.6/81.5 79.2/76.6 82.0 90.6 63.3 79.8

Table 3: The effect of vocabulary embedding size on the performance of ALBERT-base.

ALBERT
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To improve parameter efficiency, the parameters of both the soft-attention and the feed-forward
networks are shared across layers.

Model Parameters | SQuADI.1 SQuAD2.0 MNLI SST-2 RACE | Avg
ALBERT all-shared . 3IM 88.6/81.5 79.2/76.6 82.0 90.6 63.3 79.8
base shared-attention 83M 89.9/82.7 80.0/77.2 84.0 91.4 67.7 81.6
E—768  Shared-FFN 5TM 89.2/82.1 78.2/75.4 81.5 90.8 62.6 | 79.5
not-shared 108M 90.4/83.2 80.4/77.6 84.5 92.8 68.2 82.3
ALBERT all-shared . 12M 89.3/82.3 80.0/77.1 82.0 90.3 64.0 80.1
base shared-attention 64M 89.9/82.8 80.7/77.9 83.4 91.9 67.6 81.7
=128  shared-FFN 38M 88.9/81.6 78.6/75.6 82.3 91.7 64.4 | 80.2
not-shared 8OM 89.9/82.8 80.3/77.3 83.2 91.5 67.9 81.6

Table 4: The effect of cross-layer parameter-sharing strategies, ALBERT-base configuration.
Transformer SelfAttention PosEmbedding ELMo BERT mBERT RoBERTa ALBERT




ALBERT - Sentence Order Prediction Uz

An alternative to next sentence prediction is considered — given two consecutive segments,
predict which one appeared first in the original document.

Intrinsic Tasks Downstream Tasks
SPtasks | MLM NSP SOP | SQuADI1.1 SQuAD2.0 MNLI SST-2 RACE | Avg
None 54.9 524 533 88.6/81.5 78.1/75.3 81.5 89.9 61.7 79.0
NSP 54.5 90.5 52.0 88.4/81.5 77.2/74.6 81.6 91.1 62.3 79.2
SOP 54.0 789 86.5 89.3/82.3 80.0/77.1 82.0 90.3 64.0 80.1

Table 5: The effect of sentence-prediction loss, NSP vs. SOP, on intrinsic and downstream tasks.
Table 5 of paper "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", https://arxiv.org/abs/1909.11942
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Model Parameters SQuADI1.1 SQuAD2.0 MNLI SST-2 RACE | Avg | Speedup
base 108M 90.4/83.2 80.4/77.6 84.5 92.8 68.2 | 82.3 4.7x
BERT large 334M 92.2/85.5 85.0/82.2 86.6 93.0 73.9 | 85.2 1.0
base 12M 89.3/82.3 80.0/77.1 81.6 90.3 64.0 | 80.1 5.6x
ALBERT large 18M 90.6/83.9 82.3/79.4 83.5 91.7 68.5 | 82.4 1.7x
xlarge 60M 92.5/86.1 86.1/83.1 86.4 92.4 74.8 | 85.5 0.6x
xxlarge 235M 94.1/88.3 88.1/85.1 88.0 95.2 82.3 | 88.7 0.3x
| SQuADI.1 SQuAD2.0 MNLI SST-2 RACE | Avg
No additional data | 89.3/82.3 80.0/77.1 81.6 90.3 64.0 80.1
With additional data | 88.8/81.7 79.1/76.3 82.4 92.8 66.0 80.8

Table 7: The effect of additional training data using the ALBERT-base configuration.

| SQuADIL.I SQuAD2.0 MNLI SST-2 RACE | Avg
With dropout | 94.7/89.2 89.6/86.9 90.0 96.3 85.7 | 90.4
Without dropout | 94.8/89.5 89.9/87.2 90.4 96.5 86.1 90.7
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Models MNLI OQNLI QQP RTE SST MRPC CoLA STS WNLI Avg
Single-task single models on dev

BERT-large 86.6 92.3 91.3 704 932 88.0 60.6  90.0 - -
XLNet-large 89.8 93.9 91.8 83.8 95.6 89.2 63.6 91.8 - -
RoBERTa-large 90.2 94.7 92.2 86.6 96.4 90.9 68.0 924 - -
ALBERT (1M) 90.4 95.2 920 88.1 96.8 90.2 68.7  92.7 - -
ALBERT (1.5M)  90.8 95.3 922 89.2 96.9 90.9 714  93.0 - -
Ensembles on test (from leaderboard as of Sept. 16, 2019)

ALICE 88.2 95.7 90.7 835 952 92.6 69.2 O9l1.1 80.8 87.0
MT-DNN 87.9 96.0 899 86.3 96.5 92.7 684  O91.1 89.0 87.6
XLNet 90.2 98.6 90.3 863 96.8 93.0 67.8 91.6 904 88.4
RoBERTa 90.8 98.9 90.2 882 96.7 92.3 67.8 922  89.0 88.5
Adv-RoBERTa 91.1 98.8 90.3 88.7 96.8 93.1 68.0 924  89.0 88.8
ALBERT 91.3 99.2 905 89.2 971 93.4 69.1 92,5 918 894

Table 9: State-of-the-art results on the GLUE benchmark. For single-task single-model results, we
report ALBERT at 1M steps (comparable to ROBERTa) and at 1.5M steps. The ALBERT ensemble
uses models trained with 1M, 1.5M, and other numbers of steps.
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Models SQuADI.1 dev SQuAD2.0 dev SQuAD2.0test RACE test (Middle/High)

Single model (from leaderboard as of Sept. 23, 2019)

BERT-large 90.9/84.1 81.8/79.0 89.1/86.3 72.0 (76.6/70.1)
XLNet 94.5/89.0 88.8/86.1 89.1/86.3 81.8 (85.5/80.2)
RoBERTa 94.6/88.9 89.4/86.5 89.8/86.8 83.2 (86.5/81.3)
UPM - - 89.9/87.2 -
XLNet + SG-Net Verifier++ - - 90.1/87.2 -
ALBERT (1M) 94.8/89.2 89.9/87.2 - 86.0 (88.2/85.1)
ALBERT (1.5M) 94.8/89.3 90.2/87.4 90.9/88.1 86.5 (89.0/85.5)
Ensembles (from leaderboard as of Sept. 23, 2019)

BERT-large 92.2/86.2 - - -
XLNet + SG-Net Verifier - - 90.7/88.2 -

UPM - - 90.7/88.2

XLNet + DAAF + Verifier - - 90.9/88.6 -
DCMN+ - - - 84.1 (88.5/82.3)
ALBERT 95.5/90.1 91.4/88.9 92.2/89.7 89.4 (91.2/88.6)

Table 10: State-of-the-art results on the SQuAD and RACE benchmarks.
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