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Consider generating a sequence of Y1,...,yn € YV given input 1,...,ZN.

Predicting each sequence element independently models the distribution P(y;|X).

X1 46 Xrs --- LN

Y1 Y2 ys -+ YN

However, there may be dependencies among the y; themselves, which is difficult to capture by
independent element classification.
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Maximum Entropy Markov Models ezt

We might model the dependencies by assuming that the output sequence is a Markov chain,
and model it as

P(yi| X, yi-1).

Each label would be predicted by a softmax from the hidden state and the previous label.

4 o Xrs --- N
..... — )
Y1 Y2 Yys - YN

The decoding can be then performed by a dynamic programming algorithm.
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However, MEMMs suffer from a so-called label bias problem. Because the probability is
factorized, each P(y;| X ,y;_1) is a distribution and must sum to one.

Imagine there was a label error during prediction. In the next step, the model might “realize”
that the previous label has very low probability of being followed by any label — however, it
cannot express this by setting the probability of all following labels low, it has to “conserve the

mass' .
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Let G = (V, E) be a graph such that y is indexed by vertices of G. Then (X, y) is a
conditional random field, if the random variables y conditioned on X obey the Markov

property with respect to the graph, i.e.,

By a fundamental theorem of random fields, the density of a conditional random field can be
factorized over the cliques of the graph G:

Pyl X)= ] PlyclX).
clique C of G
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Linear-Chain Conditional Random Fields (CRF) Vet

Usually often assume that dependencies of y, conditioned on X, form a chain.

4 o Xrs --- N

Y1 Y2 ys -+ YN

Then, the cliques are nodes and edges, and we usually factorize the probability as:

P(y|X) o« exp (Zlog P(y;|z;) + Zlog P(yi7yi—1)>'

’L:]_ 222
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Linear-chain Conditional Random Field, usually abbreviated only to CRF, acts as an output
layer. It can be considered an extension of softmax — instead of a sequence of independent
softmaxes, it is a sentence-level softmax, with additional weights for neighboring sequence

elements.

We start by defining a score of a label sequence y as

(X, 550, 4) =S (Ay .y + folui] X))

1=1

and define the probability of a label sequence ¢ using softmax:

p(y|X) = softmax, yn (s(X,z))y.

For cross-entropy (and also to avoid underflow), we need a logarithm of the probability:

log p(y|X) = s(X,y) — logsumexp, .y~ (s(X, 2)), where
logsumexp, (f(z)) = log(>_, ef @),
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Computation
We can compute p(y|X) efficiently using dynamic programming. We denote a; (k) the
logarithmic probability of all t-element sequences with the last label y being k.

The core idea is the following:

ik

t— 1
o (k) = fo(y: = k| X) + logsumexp, .y (;—1(J) + Ajx)-

For efficient implementation, we use the fact that

In(a +b) =Ina +In(1 + ™°72%) 50
logsumexpw (f(gj)) — max, (f(iB)) + 10g(2w ef(x)_man(f(x))).
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Inputs: Network computing fg(y: = k|X), an unnormalized probability of output sequence
element probability being k at time .

Inputs: Transition matrix A € RY *Y

Inputs: Input sequence X of length N, gold labeling g € YV

Outputs: Value of log p(g|X).

Time Complexity: O(N - Y?).

® Fort=1,...,N:
© Fork=1,...,Y:
" ay(k) < fo(y: = k| X)
"ttt > 1:
= (k) < oy(k) + logsumexp (a-1(j) + Ajp |7 =1,...,Y)

o Retun 3.0, fo(ys = g:/ X) + 315 Ag, 1,0 — logsumexpy_, (an (k)
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Conditional Random Fields (CRF) U1
Decoding

We can perform decoding optimally, by using the same algorithm, only replacing logsumexp
with max and tracking where the maximum was attained.

Applications

The CRF output layer is useful (o —M{er |-I-{ o M1 o | B[ roc ]
for span labeling tasks, like Cow < o o (e RITR
® named entity recognition, [ eru |— GRU GRU GRU GRU |
® dialog slot filling. K/B:(Il o160 ECS:O:I Y

lives in Canada

It can be also useful for image
segmentation.

I GRU k—{ GRU I<—| GRU H \@RU ] === Character Embeddings
Mike S 3
[ GRU |’*>[ arL I [ eru > eRu | ' Character-Level GRU
A / mees \Word Embeddings
| ( 2( ) | m e \Word-Level GRU
M i k e == CRF Layer

Figure 1 of paper "Multi-Task Cross-Lingual Sequence Tagging from Scratch", https://arxiv.org/abs/1603.06270.
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Let us again consider generating a sequence of y1,...,yp given input ®1,..., 2N, but this
time M < NN and there is no explicit alignment of & and vy in the gold data.
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We enlarge the set of output labels by a — (blank) and perform a classification for every input

element to produce an extended labeling. We then post-process it by the following rules
(denoted as B):

1. We collapse multiple neighboring occurrences of the same symbol into one.
2. We remove the blank —.

Because the explicit alignment of inputs and labels is not known, we consider all possible
alignments.

Denoting the probability of label [ at time t as pf, we define

AHOEEY Hpnt,~

extended t'=
labelings 7r:

B(ﬂ-lit):yl:s
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In CRF, we normalize the whole sentences, therefore we need to compute unnormalized
probabilities for all the (exponentially many) sentences. Decoding can be performed optimally.

In CTC, we normalize per each label. However, because we do not have explicit alignment, we
compute probability of a labeling by summing probabilities of (generally exponentially many)
extended labelings.
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Connectionist Temporal Classification

Computation

When aligning an extended labeling to a regular one, we need to consider whether the extended

labeling ends by a blank or not. We therefore define

t
/
o ()= Y]]k,
t'=1

extended
labelings 7r:

B(ﬂ'l t):yl s t=—

al(s) = > H P,

extended
labelings 7r:

B(m1:t)=Y1.5,m 7~

and compute a’(s) as o (s) + al(s).
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Computation — Initialization

We initialize as as follows:

e ol (0) «+ pt
° o (1)+py1 A

Computation — Induction Step

We then proceed recurrently according to:
’Oét()%p ( tl()—l—at_l(s))

t py, (0 (s) + ol (s —1) +al (s — 1)), if ys # Y
* a,(s) « t (At—1 t—1 -
pys(a ( )—I—O{_ ( 1))71fys:ys—1

T-2 T-1 T
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Unlike CRF, we cannot perform the decoding optimally.

The key observation is that while an optimal extended labeling can be extended into an optimal
labeling of a larger length, the same does not apply to regular (non-extended) labeling. The
problem is that regular labeling corresponds to many extended labelings, which are modified
each in a different way during an extension of the regular labeling.

1 O """ . ’.- -—- -
\‘ '
\‘ ',
0.8 . R p(l=blank) = p(- -)
blank %, K = 0.7%0.6
IREY = 0.42
0.6 Sv
0.4
p(l=A) = p(AA)+p(A-)+p(-A)
0.2 A = 0.3*%0.4 + 0.3*0.6 + 0.7*0.4
' = 0.58
0.0
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Beam Search

To perform beam search, we keep k best regular (non-extended) labelings. Specifically, for each
regular labeling y we keep both a® (y) and o (y), which are probabilities of all (modulo beam
search) extended labelings of length ¢ which produce the regular labeling y; we therefore keep k
regular labelings with highest o’ (y) + ol (y).

To compute the best regular labelings for longer prefix of extended labelings, for each regular
labeling in the beam we consider the following cases:

® adding a blank symbol, i.e., contributing to a1 (y) both from af (y) and ol (y);
® adding a non-blank symbol, i.e., contributing to al™(+) from o’ (y) and to possibly

different o™t (+) from ol (y).

Finally, we merge the resulting candidates according to their regular labeling and keep only the
k best.
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The embeddings can be trained for each task separately.

However, a method of precomputing word embeddings have been proposed, based on
distributional hypothesis:

Words that are used in the same contexts tend to have similar meanings.
The distributional hypothesis is usually attributed to Firth (1957):

You shall know a word by a company it keeps.
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INPUT PROJECTION OUTPUT

Wi+41

Wt4-2

SUM

INPUT PROJECTION OUTPUT

CBOW (Continuous Bag Of Words)

Mikolov et al. (2013) proposed two very simple architectures for precomputing word
embeddings, together with a C multi-threaded implementation word2vec.

Word2Vec

AN

Skip-gram

Wi+1

Wt42
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Relationship

Example 1

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer
Japan - sushi

Italy: Rome
small: larger
Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

Word2Vec

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).
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Word2Vec — SkipGram Model

INPUT PROJECTION OUTPUT

Wi—2

Wt41

W42

SUM

Wy

INPUT PROJECTION OUTPUT

Wy

CBOW (Continuous Bag Of Words)

BT

Skip-gram

Wi—2

W41

W42

Considering input word w; and output w,, the Skip-gram model defines
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Word2Vec — Hierarchical Softmax

Instead of a large softmax, we construct a binary tree over the words, with a sigmoid classifier
for each node.

If word w corresponds to a path nq,n9,...,n7, we define

L-1
prs (w|w;) = H o([+1if n; ; is right child else -1] - W,TLJ V)
=1
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Instead of a large softmax, we could train individual sigmoids for all words.

We could also only sample several negative examples. This gives rise to the following negative
sampling objective (instead of just summing all the sigmoidal losses):

k
lNEG(woa wz) = — log 0( Z wj~P(w log (]— o U(W'L—Zj sz))

The usual value of negative samples k is 5, but it can be even 2 for extremely large corpora.

Each expectation in the loss is estimated using a single sample.
For P(w), both uniform and unigram distribution U (w) work, but

U(w)g/4

outperforms them significantly (this fact has been reported in several papers by different
authors).

Word2Vec
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increased | John Noahshire phding
reduced | Richard || Nottinghamshire mixing
improved | George Bucharest modelling
expected | James Saxony styling
decreased | Robert Johannesburg blaming
targeted | Edward || Gloucestershire | christening

CLEs

Table 2: Most-similar in-vocabular words under
the C2W model; the two query words on the left
are 1n the training vocabulary, those on the right
are nonce (invented) words.
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In Vocabulary Out-of-Vocabulary

while his you richard trading computer-aided misinformed  looooook
although your  conservatives  jonathan  advertised — — —
LSTM-Word letting her we robeﬁ advertising — — —
though my guys neil turnover — — —
minute their [ nancy turnover — — —
chile this your hard heading computer-guided informed look
LSTM-Char whole hhs young rich fraining computerized performed cook
(before highway)  meanwhile is four richer reading disk-drive transformed looks
white has youth richter leading computer inform shook
meanwhile hhs we eduard trade computer-guided informed look
LSTM-Char whole this your gerard training computer-driven performed looks
(after highway) though their doug edward traded computerized outperformed  looked
nevertheless  your i carl trader computer transformed looking

Table 6: Nearest neighbor words (based on cosine similarity) of word representations from the large word-level and character-level (before

and after highway layers) models trained on the PTB. Last three words are OOV words, and therefore they do not have representations in the
word-level model.
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Another simple idea appeared simultaneously in three nearly simultaneous publications as
Charagram, Subword Information or SubGram.

A word embedding is a sum of the word embedding plus embeddings of its character n-grams.
Such embedding can be pretrained using same algorithms as word2vec.

The implementation can be

® dictionary based: only some number of frequent character n-grams is kept;
® hash-based: character n-grams are hashed into K buckets (usually K ~ 10° is used).
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https://arxiv.org/abs/1607.02789
https://arxiv.org/abs/1607.04606
http://link.springer.com/chapter/10.1007/978-3-319-45510-5_21

query tiling tech-rich english-born micromanaging  eateries dendritic

sisg tile tech-dominated  british-born ~ micromanage  restaurants dendrite
flooring tech-heavy polish-born ~ micromanaged eaterie dendrites

sg bookcases technology-heavy most-capped defang restaurants  epithelial
built-ins JIxic ex-scotland internalise delis pS3

Table 7: Nearest neighbors of rare words using our representations and skipgram. These hand picked
examples are for illustration.
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Figure 2: Illustration of the similarity between character n-grams in out-of-vocabulary words. For each pair,
only one word is OOV, and is shown on the z axis. Red indicates positive cosine, while blue negative.
Figure 2 of paper "Enriching Word Vectors with Subword Information”, https://arxiv.org/abs/1607.04606.
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The word2vec enriched with subword embeddings is implemented in publicly available
fastText library https://fasttext.cc/.

Pre-trained embeddings for 157 languages (including Czech) trained on Wikipedia and
CommonCrawl are also available.
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