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Designing and training a neural network is not a one-shot action, but instead an iterative
procedure.

® \When choosing hyperparameters, it is important to verify that the model does not underfit

and does not overfit.
Underfitting can be checked by increasing model capacity or training longer.

® Qverfitting can be tested by observing train/dev difference and by trying stronger
regularization.

Specifically, this implies that:

® \We need to set number of training epochs so that training loss/performance no longer
increases at the end of training.

® Generally, we want to use a large batchsize that does not slow us down too much (GPUs
sometimes allow larger batches without slowing down training). However, with increasing
batch size we need to increase learning rate, which is possible only to some extent. Also,
small batch size sometimes work as regularization (especially for vanilla SGD algorithm).
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Convolutions can provide
O local interactions in spacial /temporal dimensions

O shift invariance
O much less parameters than a fully connected layer

Usually repeated 3 X 3 convolutions are enough, no need for larger filter sizes.

When pooling is performed, double number of channels.
Final fully connected layers are not needed, global average pooling is usually enough.

Batch normalization is a great regularization method for CNNs, allowing removal of
dropout.

Small weight decay (i.e., L2 regularization) of usually le-4 is still useful for regularizing
convolutional kernels.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet 1s presented in Fig. 4.
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Figure 5. A deeper residual function F for ImageNet. Left: a

1x1, 256

building block (on 56 x56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck’ building block for ResNet-50/101/152.
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0 =
ResNet — 2015 (3.6% error) PRl
layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 77, 64, stride 2
3% 3 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 ] Ix1,64 ]
comv2.x | 56x36 [ ;ig gj ]><2 [ gig gj ]><3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
’ ’ | 1x1,256 | | 1x1,256 | | 1x1,256 |
- - - - [ 1x1, 128 ] [ 1x1,128 | [ 1x1, 128 ]
conv3x | 28x28 gig 32 2 gig 32 x4 | | 3x3,128 | x4 3x3, 128 | x4 3x3, 128 | x8
- ’ - L ’ - | Ix1,512 | | Ix1,512 | | Ix1,512 |
. - - - [ 1x1,256 ] 1x1,256 | 1x1,256 ]
conv4_x 14x14 gxg’ ;gg X2 gig’ ;gg X6 3x3,256 | x6 3x3,256 | x23 3x3,256 | x36
L 2%, . L ’ - | 1x1,1024 | 1x1,1024 | 1x1,1024 |
- . - - [ 1x1,512 ] 1x1,512 1x1,512
convs.x | 77 iiggg 2 iii?ﬁ x3 || 3x3,512 |x3 3x3,512 | x3 3%3,512 | x3
- ’ - - ’ - | 1x1,2048 | 1x1,2048 1x1,2048
Ix1 average pool, 1000-d fc, softmax
FLOPs 1.8x10? 3.6x10° 3.8x10° 7.6%x10° 11.3x10°
Table 1 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet — 2015 (3.6% error) UpzL

VGG-19 34-layer plain 34-layer residual . . .
T T The residual connections cannot be applied
T directly when number of channels increases.

[ 38om128 ] [ Powez ]
R L. The authors considered several alternatives, and
=Sl = chose the one where in case of channels
| e increase a 1 X 1 convolution + BN is used on
ey CwmEE " :
***** == the projections to match the required number of
[38ows2 | [38om 18 ] . . . .
o) o channels. The required spacial resolution is
== achieved by using stride 2.
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Figure 3 of paper "Deep Residual Learning for Image Recognition”,
https: //arxiv.org/abs/1512.03385.
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ResNet — 2015 (3.6% error)
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

Figure 4 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet — 2015 (3.6% error) Ut

Figure 1 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.
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Training details:

® batch normalizations after each convolution and before activation

® SGD with batch size 256 and momentum of 0.9

® |earning rate starts with 0.1 and is divided by 10 when error plateaus
® no dropout, weight decay 0.0001

® during testing, 10-crop evaluation strategy is used, averaging scores across multiple scales —
the images are resized so that their smaller size is in {224,256, 384, 480, 640}
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method top-1 err. top-5 err.

VGG [41] ILSVRC’14) - 8.43T

GoogleNet [44] ILSVRC’14) - 7.89 method top-5 err. (test)
VGG [41] (v5) 24.4 7.1 VGG [41] ILSVRC’14) 7.32
PReLU-net [13] 21.59 5.71 Googl.eNet [44] (ILSVRC’ 14) 6.66
BN-inception [16] 21.99 5.81 VGG [41] (v5) 6.8
ResNet-34 B 21.84 5.71 PReLU-net [13] 4.94
ResNet-34 C 21.53 5.60 BN-inception [16] 4.82
ResNet-50 20.74 5.25 ResNet (ILSVRC’15) 3.57
ResNet-101 19.87 4.60 Table 5. Error rates (%) of ensembles. The top-5 error is on the
ResNet-152 19.38 4.49 test set of ImageNet and reported by the test server.

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except ' reported on the test set).

The ResNet-34 B uses the 1 x 1 convolution on residual connections with different number of

input and output channels; ResNet-34 C uses this convolution on all residual connections.
Variant B is used for ResNet-50/101/152.
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ResNet Ablations — Shortcuts Uz

The authors of ResNet published an ablation study several months after the original paper.

RelU

RelU

0.5

U (a) original U (b) constant scaling case | Fig. | on shortcut | on F | error (%) | remark
original [1] Fig. 2(a) 1 1 6.61
0 1 fail This is a plain net
C;);Sitiigt Fig. 2(b) 0.5 1 fail
0.5 0.5 12.35 frozen gating
\ bl conv | [3x3conv] \ 1xlsi?“rl\(d\ [3x3 conv | 1 1—g(x) g(x) fail init by=0 to —5
‘gmot ‘gmol exclusive .
sating Fig. 2(c) 1—g(x) g(x) 8.70 init by=-6
1-— .81 ini =-
o , 9) | g6 | 9BL | imith
Rl (c) exclusive gating ReLJ (d) shortcut-only gating shortcut-only Fig. 2(d) 1—-g(x) 1 12.86 init by =0
gating 1—g(x) 1 6.91 init by=-6
1x1 conv shortcut | Fig. 2(e) 1x1 conv 1 12.22
dropout shortcut | Fig. 2(f) | dropout 0.5 1 fail
Table 1 of paper "ldentity Mappings in Deep Residual Networks",
RetU RetU https: //arxiv.org/abs/1603.05027
[1x1conv] [3x3conv | [ dropout | [ 3x3 conv |

v A
addition addition
R (e) conv shortcut RelU (f) dropout shortcut

Figure 2 of paper "ldentity Mappings in Deep Residual Networks",
https: //arxiv.org/abs/1603.05027
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ResNet Ablations — Activations
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(a) original (e) full pre-activation

addition addition pre-activation
Figure 4 of paper "ldentity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027

case | Fig. | ResNet-110 | ResNet-164
original Residual Unit [1] | Fig. 4(a) 6.61 5.93
BN after addition Fig. 4(b) 8.17 6.50
ReLU before addition Fig. 4(c) 7.84 6.14
ReLU-only pre-activation | Fig. 4(d) 6.71 5.91
full pre-activation Fig. 4(e) 6.37 5.46

Table 2 of paper "ldentity Mappings in Deep Residual Networks", https://arxiv.org/abs/1603.05027
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The pre-activation architecture was evaluated also on ImageNet, in a single-crop regime.

method augmentation train crop | test crop top-1 | top-5
ResNet-152, original Residual Unit [1] scale 224x224|224x224| 23.0 | 6.7
ResNet-152, original Residual Unit [1] scale 224x224 1320320 | 21.3 | 5.5
ResNet-152, pre-act Residual Unit scale 224x224 | 320x320| 21.1 | 5.5
ResNet-200, original Residual Unit [1] scale 224x224|320x320| 21.8 | 6.0
ResNet-200, pre-act Residual Unit scale 224x224 | 320x320| 20.7 | 5.3
ResNet-200, pre-act Residual Unit scale+asp ratio | 224x224 | 320x320 | 20.17 | 4.8
Inception v3 [19] scale+asp ratio | 299x299 | 299x299 | 21.2 | 5.6

ResNetModifications
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Figure 1: Various residual blocks used in the paper. Batch normalization and ReLLU precede
each convolution (omitted for clarity)
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® Authors do not consider bottleneck blocks. Instead,
they experiment with different block types, e.g.,

B(1,3,1) or B(3,3).

block type | depth | # params | time,s | CIFAR-10
B(1,3,1) 40 1.4M 85.8 6.06
B(3,1) 40 1.2M 67.5 5.78
B(1,3) 40 1.3M 72.2 6.42
B(3,1,1) 40 1.3M 82.2 5.86
B(3,3) 28 1.5M 67.5 5.73
B(3,1,3) 22 1.1IM 59.9 5.78

group name | output size | block type = B(3,3)
convl 32 x 32 ] [3x3, 16]_
3x3, 16xk
conv2 32x32 _ 3%3. 16xk | XN
[ 3x3,32xk |
conv3 16x16 _ 3% 3. 32xk | XN
[ 3%3, 64xk |
conv4 8x8 _ 3% 3. 64xk | XN
avg-pool Ix1 [8 x 8]

The B(3,3) is used in further experiments, unless specified otherwised.

ResNetModifications
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® Authors evaluate various widening factors k

depth | k | #params | CIFAR-10 | CIFAR-100

40 1 0.6M 6.85 30.89
40 2 2.2M 5.33 26.04
40 4 8.9M 4.97 22.89
40 8 35. M 4.66 -

28 10 | 36.5M 4.17 20.50
28 12 | 52.5M 4.33 20.43
22 8 17.2M 4.38 21.22
22 10 | 26.8M 444 20.75
16 8 11.0M 4.81 22.07
16 10 17.1M 4.56 21.59

group name | output size | block type = B(3,3)
convl 32 x 32 ] [3x3, 16]_
3x3, 16xk
conv2 32x32 _ 3%3. 16xk | XN
[ 3x3,32xk |
conv3 16x16 _ 3% 3. 32xk | XN
[ 3%3,64xk |
conv4 8x8 _ 3% 3. 64xk | XN
avg-pool Ix1 [8 x 8]

ResNetModifications
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® Authors measure the effect of dropping out inside the

residual block (but not the residual connection itself)

depth | k£ | dropout | CIFAR-10 | CIFAR-100 | SVHN
16 4 5.02 24.03 1.85
16 4 v 5.24 2391 1.64
28 10 4.00 19.25 -
28 10 v 3.89 18.85 -
52 1 6.43 29.89 2.08
52 1 v 6.28 29.78 1.70
S\<HN ‘ ‘ ‘ 5
— ResNet-50(error 2.07%)
el —” WRN-16-4(error 1.85%) A
g A J:2
R R
10* \\\‘~—\::.\\\\,__~1
0 20 20 60 80 100 120 - 40169
Refresh ResNetModifications CNNRegularization

training loss

group name | output size | block type = B(3,3)
convl 32 x32 ] [3x3, 16]_
3x3, 16 xk
conv?2 32x32 _ 3%3. 165k | XN
3%3,32xk |
conv3 16x16 _ 3% 3. 32xk | XN
3%3, 64xk |
conv4 8x8 _ 3% 3. 64xk | xN
avg-pool Ix1 [8 x 8]
- ‘ SV‘HN ‘ ‘ 5
— V\;RN-1|6-4(error 1.85%)
................ —  WRN-16-4-dropout(error 1.64%) .
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N U\,
WideNet — Results =
Dataset Results
depth-k  # params CIFAR-10 CIFAR-100

NIN [20] 8.81 35.67

DSN [19] 8.22 34.57

FitNet [24] 8.39 35.04

Highway [28] 7.72 32.39

ELU [5] 6.55 24.28

.. 110 1.7M 6.43 25.16

original-ResNetl 1111500 100 7.93 27.82

110 1.7M 5.23 24.58

CIFAR stoc-depth(14] 202 102M 2ol :
110 1.7M 6.37 -

pre-act-ResNet[13] 164 1.7M 5.46 24.33

1001 10.2M 4.92(4.64) 22.71

40-4 8.9M 4.53 21.18

WRN (ours) 16-8 11.0M 4.27 20.43

28-10 36.5M 4.00 19.25

Table 5 of paper "Wide Residual Networks", https://arxiv.org/abs/1605.07146
Model top-1err, % | top-5err, % | #params | time/batch 16
ResNet-50 24.01 7.02 25.6M
ResNet-101 22.44 6.21 44.5M
|ma eNet ResNet-152 22.16 6.16 60.2M
g WRN-50-2-bottleneck 219 6.03 68.9M
pre-ResNet-200 21.66 5.79 64.7M
Table 8 of paper "Wide Residual Networks", https://arxiv.org/abs/1605.07146
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Figure 2 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993

Dense Block 1
‘horse”

Buljood
v
Jeaur

UOoNJOAUOD
Buljood

UONN|OAUOD
Y
v
uoNN|OAUOD
v
Buijood
Y

Figure 1 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993
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DenseNet — Architecture Uzt

The initial convolution generates 64 channels, each 1 X 1 convolution in dense block 256, each
3 X 3 convolution in dense block 32, and the transition layer reduces the number of channels in
the initial convolution by half.

Layers Output Size DenseNet-121 | DenseNet-169 | DenseNet-201 | DenseNet-264
Convolution 112 x 112 7 x 7 conv, stride 2
Pooling 56 x 56 3 x 3 max pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
56 x 56 6 6 6
(1) 8 [3><3conv]>< [3><3conv]>< [3><300nv}>< {3><3conv]
Transition Layer 56 x 56 1 x 1 conv
() 28 x 28 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
28 x 28 12 12 12 12
2) % [3><300nv]>< [3><3(:onv]>< [3><3conv}>< [3><3»c0nv]><
Transition Layer 28 x 28 1 x 1 conv
2) 14 x 14 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 X 1 conv 1 x 1 conv 1 x 1 conv
14 x 14 24 32 48 64
3) 8 [3><3conv]>< [3><3>conv]>< [3x3conv}x [3><3c0nv]><
Transition Layer 14 x 14 I x 1 conv
3) 7 x7 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
7 x7 16 32 32 48
4) % [3><3conv]>< [3><3conv]>< [3><3conv}>< [3><3conv]><
Classification 1 x1 7 x 7 global average pool
Layer 1000D fully-connected, softmax
Table 1 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993
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DenseNet — Results Urzt

Method Depth Params C10 C10+ C100 C100+ SVHN

Network in Network [22] - - 10.41 8.81 35.68 - 2.35
AlI-CNN [32] - - 9.08 7.25 - 33.71 -
Deeply Supervised Net [20] - - 9.69 7.97 - 34.57 1.92
Highway Network [34] - - - 7.72 - 32.39 -
FractalNet [17] 21 38.6M 10.18 5.22 35.34 23.30 2.01
with Dropout/Drop-path 21 38.6M 7.33 4.60 28.20 23.73 1.87 275 275
ResNet [11] 110 1.7M - 6.61 - - - 255 ResNet-34 ss ResNet-34
ResNet (reported by [13]) 110 1.7M 13.63 6.41 44.74 27.22 201 _ -
ResNet with Stochastic Depth [13] | 110 1M 1166 523 | 3780 2458 175 529 e 5 B s erkenor 121

1202 10.2M - 4.91 - - - S 245 ResNet-50 £ 245 et 80
Wide ResNet [42] 16 11.0M - 4.81 - 22.07 - B DenseNe(-169 £ s

28 36.5M - 4.17 - 20.50 - i DenseNet>2Q1 ResNet-101 g ResNet-101
Wlth DrOpout 16 27M _ _ _ _ 164 225 . N ResNet-152 225 ey ResNet-152
enseNet-264

ResNet (pre-activation) [12] 164 1.7M 11.26* 5.46 35.58* 24.33 - R T T T S S e NS T o 15 195 2 255 25

1001 10.2M 10.56* 4.62 33.47* 22.71 - | Fparameters X100 #iops x10"
DenseNet (k = 12) 40 1.0M 7.00 524 | 2755 2442 1.79 Figure 3 of paper "Densely Conzftcggff/ /Caor;%ig?:;; //}/ggg%rébsgé
DenseNet (k = 12) 100 7.0M 5.77 4.10 23.79 20.20 1.67 '
DenseNet (k = 24) 100 27.2M 5.83 3.74 23.42 19.25 1.59
DenseNet-BC (k = 12) 100 0.8M 5.92 4.51 24.15 22.27 1.76
DenseNet-BC (k = 24) 250 15.3M 5.19 3.62 19.64 17.60 1.74
DenseNet-BC (k = 40) 190 25.6M - 3.46 - 17.18 -

Table 2 of paper "Densely Connected Convolutional Networks", https://arxiv.org/abs/1608.06993
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Figure 1 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915
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PyramidNet — Growth Rate U=t

yA
yih LN
A AN
V -

(b) (c)

Figure 2 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915

In architectures up until now, number of filters doubled when spacial resolution was halved.

Such exponential growth would suggest gradual widening rule Dy, = |Dj_1 - o/ .

However, the authors employ a linear widening rule Dy, = |Dy_1 + a/ N |, where Dy, is
number of filters in the k-th out of IN convolutional block and « is number of filters to add in

total.
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PyramidNet — Residual Connections

No residual connection can be a real identity — the authors propose to zero-pad missing
channels, where the zero-pad channels correspond to newly computed features.

Input

/ \ ;- |
i | :
CO;HV y I :
Identity 0 : v Identity |
conv l :
| I I
: |
: [
L I TS A [

Output Out?put

(a) (b)

Figure 5 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915
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PyramidNet — CIFAR Results

A
| Network | #of Params | Output Feat. Dim. | Depth | Training Mem. | CIFAR-10 | CIFAR-100 |
NiN [18] - - - - 8.81 35.68
AlI-CNN [27] - - - - 7.25 33.71
DSN [17] - - - - 7.97 34.57
FitNet [21] - - - - 8.39 35.04
Highway [29] - - - - 7.72 32.39
Fractional Max-pooling [4] - - - - 4.50 27.62
ELU [29] - - - - 6.55 24.28
ResNet [7] 1.7M 64 110 547MB 6.43 25.16
ResNet [7] 10.2M 64 1001 2,921MB - 27.82
ResNet [7] 19.4M 64 1202 2,06OMB 7.93 - Group | Output size | Building Block |
Pre-activation ResNet [8] 1.7M 64 164 841MB 5.46 24.33
Pre-activation ResNet [] 102M 64 1001 | 2,921MB 4.62 271 el R
Stochastic Depth [10] 1.7M 64 110 547MB 5.23 2458 conv 2 32%32 3x 3, [164+alk—1)/N] | X2
Stochastic Depth [10] 10.2M 64 1202 2,06OMB 491 : 1 enie 33,16t alk—D/N] |~
FractalNet [14] 38.6M 1,024 21 - 4.60 23.73 3x3,[16+a(k—1)/N] ’
SwapOut v2 (widthx4) [20] 7.4M 256 32 - 4776 2272 conv 4 88 g " ; Hg I 3§Z - B% % Ny
Wide ResNet (widthx4) [34] 8.7M 256 40 775MB 497 2289 |agoeel T e ]
Wide ResNet (widthx 10) [34] 36.5M 640 28 1,383MB 4.17 20.50 Table 1 oF paper "Deap Pyramidal Residual Networke”
Weighted ResNet [24] 19.1M 64 1192 - 5.10 - https://arxiv.org/abs/1610.02915
DenseNet (k = 24) [9] 27.2M 2,352 100 4,381MB 3.74 19.25
DenseNet-BC (k = 40) [9] 25.6M 2,190 190 7,247TMB 3.46 17.18
PyramidNet (o = 48) 1.7M 64 110 655MB 4.584+0.06 | 23.1240.04
PyramidNet (o = 84) 3.8M 100 110 781MB 4.26+0.23 | 20.661+0.40
PyramidNet (« = 270) 28.3M 286 110 1,437MB 3.73£0.04 | 18.25+0.10
PyramidNet (bottleneck, o = 270) 27.0M 1,144 164 4,169MB 3.48+£0.20 | 17.01£0.39
PyramidNet (bottleneck, o = 240) 26.6M 1,024 200 4,451MB 3.44+0.11 | 16.51£0.13
PyramidNet (bottleneck, oo = 220) 26.8M 944 236 4,767MB 3.40+0.07 | 16.37£0.29
PyramidNet (bottleneck, o = 200) 26.0M 864 272 5,005MB 3.314+0.08 | 16.35+0.24
Table 4 of paper "Deep Pyramidal Residual Networks", https://arxiv.org/abs/1610.02915
NPFL114, Lecture 5 Refresh ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution 27/56



Network

| #of Params | Output Feat. Dim. |

Augmentation | Train Crop | Test Crop | Top-1 | Top-5 |

ResNet-152 [7] 60.0M 2,048 scale 224x224 | 224x224 23.0 6.7
Pre-ResNet-1521 [8] 60.0M 2,048 scale+asp ratio | 224x224 | 224x224 22.2 6.2
Pre-ResNet-2001 [£] 64.5M 2,048 scale+asp ratio 224 %224 224 %224 21.7 5.8
WRN-50-2-bottleneck [34] 68.9M 2,048 scale+asp ratio | 224x224 224 %224 21.9 6.0
PyramidNet-200 (o = 300) 62.1M 1,456 scalet+asp ratio | 224x224 | 224x224 | 20.5 5.3
PyramidNet-200 (o = 300)* 62.1M 1,456 scale+asp ratio | 224x224 | 224x224 | 20.5 54
PyramidNet-200 (o = 450)* 116.4M 2,056 scalet+asp ratio | 224x224 | 224x224 | 20.1 5.4
ResNet-200 [7] 64.5M 2,048 scale 224x224 | 320x320 | 21.8 6.0
Pre-ResNet-200 [9] 64.5M 2,048 scale+asp ratio 224 x224 320x320 20.1 4.8
Inception-v3 [32] - 2,048 scale+asp ratio | 299x299 | 299x299 | 21.2 5.6
Inception-ResNet-v1 [30] - 1,792 scale+asp ratio | 299x299 299x299 21.3 5.5
Inception-v4 [30] - 1,536 scale+asp ratio | 299x299 299 %299 20.0 5.0
Inception-ResNet-v2 [30] - 1,792 scale+asp ratio | 299x299 299 %299 19.9 49
PyramidNet-200 (o = 300) 62.1M 1,456 scale+asp ratio | 224x224 | 320x320 19.6 4.8
PyramidNet-200 (« = 300)* 62.1M 1,456 scale+asp ratio | 224x224 320x320 19.5 4.8
PyramidNet-200 (o = 450)* 116.4M 2,056 scale+asp ratio | 224x224 | 320x320 | 19.2 4.7
Refresh ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution
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i 256-din ¢ 256-din

— =

256, 1x1, 64 256, 1x1, 4 256, 1x1,4 total 32 256, 1x1, 4
v 4 k4 paths v

64, 3x3, 64 4,3x3,4 4,3x3,4 eoee 4,3x3,4
v v v 4

64, 1x1, 256 4,1x1, 256 4,1x1, 256 4, 1x1, 256

256-d out

256-d out

Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer 1s shown as (# in channels, filter size, # out channels).
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ResNeXt
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Figure 3. Equivalent building blocks of ResNeXt. (a): Aggregated residual transformations, the same as Fig. 1 right. (b): A block equivalent
to (a), implemented as early concatenation. (c): A block equivalent to (a,b), implemented as grouped convolutions [24]. Notations in bold

text highlight the reformulation changes. A layer is denoted as (# input channels, filter size, # output channels).
Figure 3 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431

NPFL114, Lecture 5 Refresh

ResNetModifications

CNNRegularization

EfficientNet

TransferLearning

TransposedConvolution

30/56



stage | output ResNet-50 ResNeXt-50 (32 x4d)
convl| 112x112 Tx7, 64, stride 2 7x7, 64, stride 2
33 max pool, stride 2 3x3 max pool, stride 2
conv?| 56x56 1x1, 64 1x1, 128
3x3, 64 X3 3x3,128, C=32 | X3
1x1,256 1x1,256
[ 1x1,128 | [ 1x1,256 ]
conv3| 28x28 3x3,128 | x4 3x3,256,C=32 | x4
1x1,512 I1x1,512
[ 1x1,256 | [ 1x1,512 ]
conv4d| 14x14 3x3, 256 X6 3%x3,512,C=32 | x6
i 1x1, 1024 | i 1x1, 1024 |
[ 1x1,512 ] 1x1, 1024
convd| 7x7 3x3,512 X3 3x3,1024, C=32 | X3
i 1x1,2048 | 1x1,2048
X1 global average pool global average pool
X
1000-d fc, softmax 1000-d fc, softmax
# params. 25.5x10° 25.0x10°
FLOPs 4.1x10° 4.2%10°
Refresh ResNetModifications CNNRegularization EfficientNet TransferLearning TransposedConvolution

31/56



ResNeXt =

50 |- —-—-ResNet-50 (1 x 64d) train 50 F —-—-ResNet-101 (1 x 64d) train
——ResNet-50 (1 x 64d) val —— ResNet-101 (1 x 64d) val
—-—-ResNeXt-50 (32 x 4d) train —-—-ResNeXt-101 (32 x 4d) train
451 —— ResNeXt-50 (32 x 4d) val 451 —— ResNeXt-101 (32 x 4d) val
40 - ] 40
§ 35 § 35
@ @
a a
230 230
25 25
20 - 20 -
15 | | | | | | | | | 15 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
epochs epochs

Figure 5. Training curves on ImageNet-1K. (Left): ResNet/ResNeXt-50 with preserved complexity (~4.1 billion FLOPs, ~25 million

parameters); (Right): ResNet/ResNeXt-101 with preserved complexity (~7.8 billion FLOPs, ~44 million parameters).
Figure 5 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431
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ResNeXt UL

setting top-1 error (%)
ResNet-50 1 x 64d 239 | setting top-1 err (%) | top-5 err (%)
ResNeXt-50 2 x 40d 23.0 1x complexity references:
ResNeXt-50 4 x 24d 22.6 ResNet-101 1 x 64d 22.0 6.0
ResNeXt-50 8 x 14d 22.3 ResNeXt-101 32 x 4d 21.2 5.6
ResNeXt-50 32 x 4d 22.2 2x complexity models follow:
ResNet-101 1 x 64d 22.0 ResNet-200 [15] 1 x 64d 21.7 5.8
ResNeXt-101 2 % 40d 21.7 ResNet-101, wider | 1 x 100d 21.3 5.7
ResNeXt-101 4 x 24d 21.4 ResNeXt-101 2 x 64d 20.7 5.5
ResNeXt-101 8 % 14d 213 ResNeXt- 1?1 64 ><. 4d 204 | 53 )
ResNeXt-101 32 % 4d 21.2 Table 4 of paper "Aggregated Residual TransformaL;;??;Sf??aejievﬁ.)o/r\éeﬂfsl//}/g;y%%/;.lsgi

Table 3 of paper "Aggregated Residual Transformations for Deep Neural Networks",
https://arxiv.org/abs/1611.05431

224 x224 320%320/299x%299

top-1 err |top-5 err | top-1 err| top-5 err
ResNet-101 [14] 22.0 6.0 - -
ResNet-200 [15] 21.7 5.8 20.1 4.8
Inception-v3 [39] - - 21.2 5.6
Inception-v4 [37] - - 20.0 5.0
Inception-ResNet-v2 [37] - - 19.9 4.9
ResNeXt-101 (64 x 4d) 20.4 5.3 19.1 4.4

Table 5 of paper "Aggregated Residual Transformations for Deep Neural Networks", https://arxiv.org/abs/1611.05431
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Deep Networks with Stochastic Depth UsL

1.0 0.9

active inactive

“ UL N

Figure 2 of paper "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382

We drop a whole block (but not the residual connection) with probability 1 — p;. During
inference, we multiply the block output by p; to compensate; or we can use the alternative
approach like in regular dropout, where we divide the activation by p; during training only.

All p; can be set to a constant, but more effective is to use a simple linear decay p; = 1 —

[/L(1 — pr) where py, is the final probability of the last layer, motivated by the intuition that

the initial blocks extract low-level features utilized by the later layers and should therefore be
present.
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Deep Networks with Stochastic Depth

110-layer ResNet on CIFAR-10 with Varying Survival Probabilities

8.0 | | | T T T T T
: \\ : . | — Stochastic Depth (linear decay)
- Lo . | - - Stochastic Depth (uniform)
o c S | = - Constant Depth ’

7.0

6.5

test error (%)

6.0

9.5

5.0

20 38 56 74 92 110

survival probability pr, network depth (in layers)
Figure 8 of paper "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382

According to the ablation experiments, linear decay with p;, = 0.5 was selected.
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Deep Networks with Stochastic Depth U

110-layer ResNet on CIFAR-10

110-layer ResNet on CIFAR-100

|
. - 10
Test Error with Constant Depth 0 Test Error w?th Constant_ Depth
Test Error with Stochastic Depth |} 10 45 Tes} !Error with Stochastlc Depth |1
: Training Loss with Constant Depth Tra!n!ng Loss w!th Constant. Depth
15\ o] Training Loss with Stochastic Depth/|7 Training Loss with Stochastic Depth
LA - : : .
3 40 {10°
-1

— _ 10 —~

S 2 8 2
N—" o S—"

— — S —
) o 35 :

= 107 1 2 = e
o c o 107" €
g : 1107 = 2 30 =

6.41%
St g 25 R
5.25% s 10
110°
! - . i 20 i i i i
0 100 200 300 400 500 0 100 200 300 400 500
epoch epoch

Figure 3 of paper "Deep Networks with Stochastic Depth", https://arxiv.org/abs/1603.09382
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Cutout UL

Figure 1 of paper "Improved Regularization of Convolutional Neural Networks with Cutout”, https://arxiv.org/abs/1708.04552

Drop 16 X 16 square in the input image, with randomly chosen center. The pixels are replaced
by a their mean value from the dataset.
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Cutout

97.2 81.5
—— Cutout —— Cutout
97.0 —— Baseline —— Baseline
81.0
96.8 — ;
g 96.6 g 805
8 %64 : g I
% 96.2 é %00
< g
96.0
( y 79.5
958 |
95.6 79.0
4 8 12 16 20 24 4 8 12 16 20
Patch Length (pixels) Patch Length (pixels)
(a) CIFAR-10 (b) CIFAR-100
Figure 3 of paper "Improved Regularization of Convolutional Neural Networks with Cutout”, https://arxiv.org/abs/1708.04552
Method C10 C10+ C100 C100+ SVHN
ResNet18 [5] 10.63 +0.26 4.72+0.21 36.68 £ 0.57 22.46 £ 0.31 -
ResNet18 + cutout 9.31 £0.18 3.99 £0.13 34.98 +0.29 21.96 £ 0.24 -
WideResNet [22] 6.97 £ 0.22 3.87 4+ 0.08 26.06 + 0.22 18.8 £ 0.08 1.60 £ 0.05
WideResNet + cutout 554+008 3.08+£0.16 | 23.94+0.15 18.41+0.27 | 1.30+0.03
Shake-shake regularization [4] - 2.86 - 15.85 -
Shake-shake regularization + cutout - 2.56 +0.07 - 15.20+0.21 -

NPFL114, Lecture 5 Refresh

Table 1 of paper "Improved Regularization of Convolutional Neural Networks with Cutout”, https://arxiv.org/abs/1708.04552
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DropBlock ezt

Dropout drops individual values, SpatialDropout drops whole channels, DropBlock drops
rectangular areas in all channels at the same time.

X

X XX
X

X
X

X

X
XXX
X
X

X
XX

"X

(b) (c)

Figure 1 of paper "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890

The authors mention that they also tried applying DropBlock in every channel separately, but
that masking all channels equally “tends to work better in our experiments”.
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DropBlock ezt

Algorithm 1 DropBlock

1: Input:output activations of a layer (A), block_size, v, mode

if mode == Inference then
return A
end if

Randomly sample mask M: M, ; ~ Bernoulli(y)

For each zero position M; ;, create a spatial square mask with the center being M; ;, the width,
height being block_size and set all the values of M in the square to be zero (see Figure 2).
Apply the mask: A = A x M

8: Normalize the features: A = A x count()/)/count_ones()M)

A AN

~

(a) (b)

Figure 2 of paper "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890
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DropBlock A
The authors have chosen block size=7 and also employ linear schedule of the keep probability,
which starts at 1 and linearly decays until the target value is reached at the end of training.

78.0 ////,,/"‘~\j\\ 78.0 T
c = / o \
o R s
5775 2775 .
(© © R kK
S77.0 A ©77.0 /| A \
>~ / > o"x
@ 4///7%£:;7ZL~\““‘*-——\\ @ ///// - \\
5 76.5/ S 76.5 '00
O / / v / \
% / —— SpatialDropout 2

76.0 dropout - 76.0 " e DropBlock wo scheduling -

/ —— DropBlock —— DropBlock
| | . [ [ I
0.5 0.6 0.7 0.8 0.9 1.0 0.75 0.80 0.85 0.90 0.95 1.00
keep prob

keep_prob

Figure 3 of paper "DropBlock: A regularization method for convolutional networks", https://arxiv.org/abs/1810.12890
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Model top-1(%) top-3(%)
ResNet-50 76.51 £+ 0.07 93.20 £ 0.05
ResNet-50 + dropout (kp=0.7) [1] 76.80 = 0.04 93.41 + 0.04
ResNet-50 + DropPath (kp=0.9) [17] 77.10 £+ 0.08 93.50 £+ 0.05
ResNet-50 + SpatialDropout (kp=0.9) [20] 77.41 £ 0.04 93.74 £+ 0.02
ResNet-50 + Cutout [23] 76.52 £+ 0.07 93.21 + 0.04
ResNet-50 + AutoAugment [27] 77.63 93.82
ResNet-50 + label smoothing (0.1) [28] 77.17 £0.05 93.45 +0.03
ResNet-50 + DropBlock, (kp=0.9) 78.13 £ 0.05 94.02 4 0.02
ResNet-50 + DropBlock (kp=0.9) + label smoothing (0.1) 78.35 £ 0.05 94.15 + 0.03

The results are averages of three runs.

CNNRegularization
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The ILSVRC 2017 winner was SENet, x Uy D R x
Squeeze and Excitation Network, / Fl\
which augments existing architectures

by a squeeze and excitation block. c’ c c

® squeeze (global information
embedding) computes the
average value of every channel

® excitation (adaptive
recalibration) computes a weight
for every channel using a sigmoid

activation function and multiplies | | s
Fig. 2. The schema of the original Inception module (left) and the SE-  Fig. 3. The schema of the original Residual module (left) and the SE-
the corresponding channel with it

Inception module (right). ResNet module (right).

To not increase the number of
parameters too much (by C?), an additional small hidden layer with C'/16 neurons is

employed.
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Mobile Inverted Bottleneck Convolution ezt

When designing convolutional neural networks for mobile phones, the following mobile inverted
bottleneck block was proposed.

(a) Residual block (b) Inverted residual block

'u 'u
+

® Regular convolution is replaced by
separable convolution, which
consists of
O a depthwise separable
convolution (for example 3 x 3)
acting on each channel Figure 3 of paper "MobileNetV2: Inverted Re;l/;ct/gz//si/gr;)c(/ivégga/g[i/o/ggggleﬁgé’i
separately (which reduces time
and space complexity of a regular convolution by a factor equal to the number of
channels)
O a pointwise 1 X 1 convolution acting on each position independently (which reduces

time and space complexity of a regular convolution by a factor of 3 - 3)

® The residual connections connect bottlenecks (layers with least channels)
® There is no non-linear activation on the bottlenecks (it would lead to loss of information

given small capacity of bottlenecks)
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Mobile Inverted Bottleneck Convolution

The mobile inverted bottleneck convolution is denoted for example as MBConv6 k3x3, where
the 6 denotes expansion factor after the bottleneck and 3 X 3 is the kernel size of the separable

convolution.

Furthermore, mobile inverted bottleneck convolution can be augmented with squeeze and
excitation blocks.

Convix1, BN

P HxWxF
Conv1x1, BN

Conv1x1, BN

SE (Pooling, FC, Relu,
FC, Slgmoid, MUL)
DWConv3x3, BN, Relu

HxWx6F
Conv1x1, BN, Relu

HxWx3F
DWConv5x5, BN, Relu

HxWx3F

DWConv3x3, BN, Relu

(d) SepConv (k3x3)

Figure 7 of paper "MnasNet: Platform-Aware Neural Conv1x1 , BN, Relu
Architecture Search for Mobile", (C) MBConv6 (k3X3)
https://arxiv.org/abs/1807.11626 Figure 7 of paper "MnasNet: Platform-Aware Neural
Architecture Search for Mobile",
https: //arxiv.org/abs/1807.11626 (b) MBConv3 (k5x5)

Figure 7 of paper "MnasNet: Platform-Aware Neural
Architecture Search for Mobile",
https: //arxiv.org/abs/1807.11626
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One of the best and most efficient architectures (as of Mar 2021) for image recognition is
EfficientNet.

The EfficientNet architecture was created using Stage Operator Resolution | #Channels | #Layers
: f At : ' i H; xW; Ci L
a multi-objective neural architecture search that 7 -

. . I Conv3x3 224 x 224 32 1
optimized both accuracy and computation 5 MBConv1. K3x3 19 % 119 P |
complexity. 3 MBConv6, k3x3 112 x 112 24 2

4 MBConv6, k5x5 56 x 56 40 2
The resulting network is denoted as 5 MBConvo, k3x3 28 x 28 80 3

- : 6 MBConv6, k5x5 14 x 14 112 3

EfficientNet-B0 baseline network. ; MBConv6, k55 4 14 192 )
. . . 8 MBConv6, k3x3 Tx7 320 1
It was trained using RMSProp with 5=0.9 and ¢ | convixi & Posling & FC | 7x 7 1980 )

momentum 0.9, weight decay 1le-5 and initial
learning rate 0.256 decayed by 0.97 every 2.4
epochs. Dropout with dropout rate 0.2 is used on the last layer, stochastic depth with survival

probability 0.8 is employed, and swish() = & - o'(x) activation function is utilized.
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EfficientNet — Compound Scaling -

#channels , . .
——————————— --------- wider B!
—_—

deeper

deeper

" higher
i resolution S

(c) depth scaling (d) resolution scaling (e) compound scaling

Figure 2 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", https://arxiv.org/abs/1905.11946

< layer_i

----higher
7} resolution HxW

__t__resolution

St

(a) baseline (b) width scaling

To effectively scale the network, the authors propose a simultaneous increase of three qualities:
® width, which is the number of channels;

® depth, which is the number of layers;

® resolution, which is the input image resolution.

By a grid search on a network with double computation complexity, the best trade-off of scaling
width by 1.1, depth by 1.2 and resolution by 1.15 was found (1.1% - 1.2 - 1.15% ~ 2).
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EfficientNet — Results Urzt

Model ‘ Top-1 Acc. Top-5 Acc. H #Params Ratio-to-EfficientNet H #FLOPS  Ratio-to-EfficientNet
EfficientNet-B0 77.3% 93.5% 5.3M 1x 0.39B 1x
ResNet-50 (He et al., 2016) 76.0% 93.0% 26M 4.9x 4.1B 11x
DenseNet-169 (Huang et al., 2017) 76.2% 93.2% 14M 2.6x 3.5B 8.9x
EfficientNet-B1 79.2% 94.5% 7.8M 1x 0.70B 1x
ResNet-152 (He et al., 2016) 77.8% 93.8% 60M 7.6x 11B 16x
DenseNet-264 (Huang et al., 2017) 77.9% 93.9% 34M 4.3x 6.0B 8.6x
Inception-v3 (Szegedy et al., 2016) 78.8% 94.4% 24M 3.0x 5.7B 8.1x
Xception (Chollet, 2017) 79.0% 94.5% 23M 3.0x 8.4B 12x
EfficientNet-B2 80.3% 95.0% 9.2M 1x 1.0B 1x
Inception-v4 (Szegedy et al., 2017) 80.0% 95.0% 48M 5.2x 13B 13x
Inception-resnet-v2 (Szegedy et al., 2017) 80.1% 95.1% 56M 6.1x 13B 13x
EfficientNet-B3 81.7% 95.6 % 12M 1x 1.8B 1x
ResNeXt-101 (Xie et al., 2017) 80.9% 95.6% 84M 7.0x 32B 18x
PolyNet (Zhang et al., 2017) 81.3% 95.8% 92M 7.7x 35B 19x
EfficientNet-B4 83.0% 96.3% 19M 1x 4.2B 1x
SENet (Hu et al., 2018) 82.7% 96.2% 146M 7.7x 42B 10x
NASNet-A (Zoph et al., 2018) 82.7% 96.2% 89M 4.7x 24B 5.7x
AmoebaNet-A (Real et al., 2019) 82.8% 96.1% 87T™M 4.6x 23B 5.5x
PNASNet (Liu et al., 2018) 82.9% 96.2% 86M 4.5x 23B 6.0x
EfficientNet-B5 83.7% 96.7 % 30M 1x 9.9B 1x
AmoebaNet-C (Cubuk et al., 2019) 83.5% 96.5% 155M 5.2x 41B 4.1x
EfficientNet-B6 84.2% 96.8 % 43M 1x 19B 1x
EfficientNet-B7 84.4% 97.1% 66M 1x 37B 1x
GPipe (Huang et al., 2018) 84.3% 97.0% 55T 8.4x - -

Table 2 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", https://arxiv.org/abs/1905.11946
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EfficientNet — Results
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Figure 5 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", Figure 1 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https://arxiv.org/abs/1905.11946.
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In many situations, we would like to utilize a model trained on a different dataset — generally,
this cross-dataset usage is called transfer learning.

In image processing, models trained on ImageNet are frequently used as general feature
extraction models.

The easiest scenario is to take a ImageNet model, drop the last classification layer, and use the
result of the global average pooling as image features. The ImageNet model is not modified

during training.

For efficiency, we may precompute the image features once and reuse it later many times.
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After we have successfully trained a network employing an ImageNet model, we may improve
performance further by finetuning — training the full network including the ImageNet model,
allowing the feature extraction to adapt to the current dataset.

® The layers after the ImageNet models should be already trained to convergence.

® Usually a smaller learning rate is necessary, because the original model probably finished
training with a very small learning rate. A good starting point is one tenth of the original
starting learning rate (therefore, 0.0001 for Adam).

® \We have to think about batch normalization, data augmentation or other regularization
techniques.
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So far, the convolution operation produces either an output of the same size, or it produced a
smaller one if stride was larger than one.

In order to come up with upscaling convolution, we start by considering how a gradient is
backpropagated through a fully connected layer and a regular convolution.

In a fully connected layer without activation:

® during the forward pass, input @ is multiplied by the weight matrix W as @ - W,

® during the backward pass, the gradient g is multiplied by the transposed weight matrix as
T
g W
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Analogously, in a convolutional layer without activation:

® during the forward pass, the cross-correlation operation between input | and kernel K is
performed as

(K* I)i,j,o — E Ii-S’+m,j'S+n,cKm,n,c,o;

m,n,c

® during the backward pass, we obtain G; ; , = 7l 9L and we need to backpropagate it to

K*I)i,j,o
obtain 8|— It is not difficult to show that

i,j,c
: : S S G la] O m,n,c,o-

i S+m ij- S+n J

7.76

This operation is called transposed or upscaling convolution and stride greater than one
makes the output larger, not smaller.
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Transposed Convolution Animation

lllustration of the padding schemes and different strides for a 3 X 3 kernel.

® valid, stride=1, regular: transposed:

https://github.com/vdumoulin/conv_arithmetic https://github.com/vdumoulin /conv_arithmetic

® valid, stride=2, regular: transposed:

https://github.com/vdumoulin /conv_arithmetic
https://github.com/vdumoulin /conv_ arithmetic
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Transposed Convolution Animation

lllustration of the padding schemes and different strides for a 3 X 3 kernel.

® same, stride=1, regular:

https://github.com/vdumoulin /conv_ arithmetic

® same, stride=2, regular: transposed:

https: //github.com/vdumoulin /conv_arithmetic

https: //github.com/vdumoulin /conv_arithmetic
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Transposed Convolution

Given that the transposed convolution must be implemented for efficient backpropagation of a
regular convolution, it is usually available for direct usage in neural network frameworks.

It is frequently used to perform upscaling of an image, as an “inverse” operation to pooling (or
convolution with stride > 1), which is useful for example in image segmentation:
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Figure 1 of paper "U-Net: Convolutional Networks for Biomedical Image Segmentation", https://arxiv.org/abs/1505.04597
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