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Convolutional Networks

Consider data with some structure (temporal data, speech, images, ...).

Unlike densely connected layers, we might want:

® |ocal interactions;

® parameter sharing (equal response everywhere);

® shift invariance.
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Convolution
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2D Convolution Uz
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Image from https://i.stack.imgur.com/YDusp.png.
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Convolution Operation UL

For a functions & and w, convolution x * w is defined as

(w * 2)(£) = / 2(t — a)w(a) da.
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For a functions & and w, convolution x * w is defined as

(w * z)(t) = / 2(t — a)w(a) da.
For vectors, we have
(’LU * m)t = Z Li_;W;.

Convolution operation can be generalized to two dimensions by

(K*I)ij=) TimjnKnn

Closely related is cross-corellation, where K is flipped:

(K*I)i,j — Zmn Ii—|—m,j—|—nKm,n'

Y

Convolution
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The K is usually called a kernel or a filter.

Note that usually we have a whole vector of values for a single pixel, the so-called channels.
These single pixel channel values have no longer any spacial structure, so the kernel contains a
different set of weights for every input dimension, obtaining

(K*I E :Iz—l-m,j—i—nc m,n,c*

m,n,c

Furthermore, we usually want to be able to specify the output dimensionality similarly to for
example a fully connected layer — the number of output channels for every pixel. Each output
channel is then the output of an independent convolution operation, so we can consider K to be

a four-dimensional tensor and the convolution if computed as

(P<‘*'I 1,7,0 — E :Iz—krn,]%—n,c m,n,c,o "

m,n,c
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To arrive at the complete convolution layer, we need to specify:

® the width W and height H of the kernel;
® the number of output channels F’;

® the stride denoting that every output pixel is computed for every every stride-th input pixel
(i.e., the output is half the size if stride is 2).

Considering an input image with C' channels, the convolution layer is then parametrized by a
kernel K of total size W x H x C x F' and is computed as

(K * I)z’,j,o — 5 Iz’-S+m,j-S+n,cKm,n,c,o-

m,n,c

Note that while only local interactions are performed in the image spacial dimensions (width
and height), we combine input channels in a fully connected manner.
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Convolution Layer

There are multiple padding schemes, most common are:

® valid: Only use valid pixels, which causes the result to be smaller than the input.
® same: Pad original image with zero pixels so that the result is exactly the size of the input.

lllustration of the padding schemes and different strides for a 3 X 3 kernel:

® valid padding, stride=1: stride=2:

h ://github. li ith ]
https: //github.com/vdumoulin /conv_arithmetic ttps://github.com/vdumoulin /conv_arithmetic

® same padding, stride=1: stride=2:

https: //github.com/vdumoulin /conv_arithmetic https://github.com/vdumoulin/conv_arithmetic
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There are two prevalent image formats (called data_format in TensorFlow):

® channels_last: The dimensions of the 4-dimensional image tensor are batch, height,
width, and channels.

The original TensorFlow format, faster on CPU.

® channels_first: The dimensions of the 4-dimensional image tensor are batch, channel,
height, and width.

Usual GPU format (used by CUDA and nearly all frameworks); on TensorFlow, not all CPU
kernels are available with this layout.

In TensorFlow, data is represented using the channels_last approach and the runtime will

automatically convert it to channels_first if it is more suitable for available hardware
(especially for a GPU).

CNNs
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Pooling is an operation similar to convolution, but we perform a fixed operation instead of
multiplying by a kernel.

® Max pooling (minor translation invariance)
® Average pooling

O B E
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High-level CNN Architecture UL

We repeatedly use the following block:

1. Convolution operation
2. Non-linear activation (usually ReLU)
3. Pooling

Input layer Convolutional layers Fully connected layers Output layer
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Image from https://cdn-images-1. medium.com/max/1200/0*QyXSpgpmIwc_Dt6V. .

NPFL114, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 14/55




| EN S\ 3
5\| N 3 LN N\
| 3 VI ’ 3
el 192 192 128 2048 2048 \d€NS€
55 27 148 RS
(ANERNEN 13 \ 13
N 3 ENN
224 sl | 3| ﬂ ENGE 3]} 5 > >
R 13 B R T
- NS 3|\ PiEs 13 dense dense
R 3| N 1000
\ 192 192 128 Max
, 2048 2048
Stride Max 128 Max pooling
lof 4 pooling pooling
3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096—4096-1000.
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Training details:

® 2 GPUs for 5-6 days
® SGD with batch size 128, momentum 0.9, weight decay 0.0005

® initial learning rate 0.01, manually divided by 10 when validation error rate stopped
improving

® RelLU non-linearities
® dropout with rate 0.5 on fully-connected layers

® data augmentation using translations and horizontal reflections (choosing random 224 x

224 patches from 256 X 256 images)

O during inference, 10 patches are used (four corner patches and a center patch, as well as
their reflections)
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AlexNet — ReLU vs tanh
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Figure 1 of paper "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al.
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LeNet — 1998 UsL

AlexNet built on already existing CNN architectures, mostly on LeNet, which achieved 0.8% test
error on MNIST.

C3: f. maps 16@10x10
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32x32 S2: f. maps C5: layer F6 layer OUTPUT

6@14x14 120
TN
|T_

DA

FuII conr%ec’uon Gau33|an connections

Convolutions Subsampling Convolutions Subsamplmg Full connectlon
Figure 2 of paper "Gradient-Based Learning Applied to Document Recognition”, http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf.
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Similarities in V1 and CNNs UL
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Figure 9.18, page 370 of Deep Learning Book, http://deeplearningbook.org

The primary visual cortex recognizes Gabor functions.
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Similarities in V1 and CNNs

Figure 9.19, page 371 of Deep Learning Book, http://deeplearningbook.org

Similar functions are recognized in the first layer of a CNN.
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CNNs as Regularizers — Deep Prior et
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Figure 1 of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers — Deep Prior L
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Figure 1 ofsupp/ementary material of paper "Deep Prior", https://arxiv.org/abs/1712.05016

Random noise from U0, =] used on input; in
large inpainting, meshgrid is used instead and
the skip-connections are not used.

Figure 2 of supplementary material of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers — Deep Prior

a brodleden | 4[.3"111[.3

(a) Original image (b) Corrupted image (c) Shepard networks [26] (d) Deep Image Prior

(e) Orlgmal image (f) Corrupted imag (g) [”’—L] PSNR = 28.1 (h) Deep Img. Prlor PSNR = 30.9
Figure 7 of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers — Deep Prior

Figure 5: Inpainting diversity. Left: original image (black pixels indicate holes). The remaining four images show results

obtained using deep prior corresponding to different input vector z.
Figure 5 of supplementary materials of paper "Deep Prior", https://arxiv.org/abs/1712.05016
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CNNs as Regularizers — Deep Prior
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(c) Ecoder—decoder depth=4

Ay =2

(e) ResNet, depth=8 (f) U-net, depth=5
Figure 8 of paper "Deep Prior", https://arxiv.org/abs/1712.05016

Deep Prior paper website with supplementary material
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https://dmitryulyanov.github.io/deep_image_prior

VGG - 2014 (6.8% error)
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Figure 1 of paper "Rethinking the Inception Architecture for Computer Vision",
https://arxiv.org/abs/1512. 00567

Table 2: Number of parameters (in millions).

Network A,A-LRN B C D E

Number of parameters 133 133 | 134 | 138 | 144

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Figure 1 of paper "Very Deep Convolutional Networks For Large-Scale Image Recognition”,

https:/,
NPFL114, Lecture 4 Convolution

CNNs AlexNet

/arxiv.org/abs/1409. 1556,

Deep Prior

Figure 2 of paper "Very Deep Convolutional Networks For Large-Scale Image Recognition”,
/arxiv.org/abs/1409. 1556.

https:/,

VGG Inception BatchNorm ResNet
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Training detail similar to AlexNet:

SGD with batch size 28 256, momentum 0.9, weight decay 0.0005

initial learning rate 0.01, manually divided by 10 when validation error rate stopped
Improving

RelLU non-linearities
dropout with rate 0.5 on fully-connected layers

data augmentation using translations and horizontal reflections (choosing random 224 X
224 patches from 256 X 256 images)

O additionally, a multi-scale training and evaluation was performed. During training, each
image was resized so that its smaller size was equal to .S, which was sampled uniformly

from (256, 512]

O during test time, the image was rescaled three times so that the smaller size was
256, 384, 512, respectively, and the results on the three images were averaged
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VGG - 2014 (6.8% error)

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1) smallest image side | top-1 val. error (%) | top-5 val. error (%)
train (S) | test (Q))
A 256 256 29.6 104
A-LRN 256 256 29.7 10.5
B 256 256 28.7 9.9
256 256 28.1 9.4
C 384 384 28.1 9.3
[256;512] 384 27.3 8.8
256 256 27.0 8.8
D 384 384 26.8 8.7
[256;512] 384 25.6 8.1
256 256 27.3 9.0
E 384 384 26.9 8.7
[256;512] 384 25.5 8.0

Table 3 of paper "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556.

Table 4: ConvNet performance at multiple test scales.

ConvNet config. (Table 1) smallest image side top-1 val. error (%) | top-5 val. error (%)
train (S) test (Q)
B 256 224,256,288 28.2 9.6
256 224,256,288 27.7 9.2
C 384 352,384,416 27.8 9.2
[256; 512] | 256,384,512 26.3 8.2
256 224,256,288 26.6 8.6
D 384 352,384,416 26.5 8.6
[256; 512] | 256,384,512 24.8 7.5
256 224,256,288 26.9 8.7
E 384 352,384,416 26.7 8.6
[256; 512] | 256,384,512 24.8 7.5

Table 4 of paper "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556.
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Method top-1 val. error (%) | top-5 val. error (%) | top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8
VGG (1 net, multi-crop & dense eval.) 24.4 7.1 7.0
VGG (ILSVRC submission, 7 nets, dense eval.) 24.7 7.5 7.3
GoogleNet (Szegedy et al., 2014) (1 net) - 7.9
GoogleNet (Szegedy et al., 2014) (7 nets) - 6.7
MSRA (He et al., 2014) (11 nets) - - 8.1
MSRA (He et al., 2014) (1 net) 27.9 9.1 9.1
Clarifai (Russakovsky et al., 2014) (multiple nets) - - 11.7
Clarifai (Russakovsky et al., 2014) (1 net) - - 12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 37.5 16.0 16.1
OverFeat (Sermanet et al., 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al., 2014) (1 net) 35.7 14.2 -
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) 38.1 164 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 -
VGG
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Inception (GooglLeNet) — 2014 (6.7% error) Vet

Inception block:

Filter
concatenation

Pl

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Previous layer

Figure 2 of paper "Going Deeper with Convolutions”, https://arxiv.org/abs/1409.4842.
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Inception (GooglLeNet) — 2014 (6.7% error) UL

Inception block with dimensionality reduction:

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions A A A
1x1 convolutions 1x1 convolutions 3x3 max pooling

—>

Previous layer

Figure 2 of paper "Going Deeper with Convolutions”, https://arxiv.org/abs/1409.4842.
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type pa::ﬂ;ize/ Olslitf:t depth #1x1 iiii #3X%X3 iiii #5X%X5 II;:((:.; params ops
convolution TXT/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56 X 56 X 64 0

convolution 3x3/1 56 X 56 X192 2 64 192 112K 360M
max pool 3x3/2 28 xX28x192 0

inception (3a) 28 x28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x28x480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 38M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TXTx832 0

inception (5a) TXTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) 7TX7x1024 2 384 192 384 48 128 128 1388K 71M
avg pool TXT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K IM
softmax 1x1x1000 0

Inception
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Inception (GooglLeNet) — 2014 (6.7% error) Vet

&
Figure 3 of paper "Going Deeper with Convolutions”, https://arxiv.org/abs/1409.4842.

Also note the two auxiliary classifiers (they have weight 0.3).
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Training details:

SGD with momentum 0.9
fixed learning rate schedule of decreasing the learning rate by 4% each 8 epochs

during test time, the image was rescaled four times so that the smaller size was

256, 288, 320, 352, respectively.

For each image, the left, center and right square was considered, and from each square six
crops of size 224 x 224 were extracted (4 corners, middle crop and the whole scaled-down

square) together with their horizontal flips, arriving at 4 - 3 - 6 - 2 = 144 crops per image

7 independently trained models were ensembled

Inception
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Number of models || Number of Crops | Cost | Top-S error | compared to base
1 1 1 10.07% base

1 10 10 9.15% -0.92%

1 144 144 | 7.89% -2.18%

7 1 7 8.09% -1.98%

7 10 70 7.62% -2.45%

7 144 1008 | 6.67% -3.45%

Inception
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Internal covariate shift refers to the change in the distributions of hidden node activations due
to the updates of network parameters during training.

Let € = (@q,...,2y) be d-dimensional input. We would like to normalize each dimension as

Var[z;]

Furthermore, it may be advantageous to learn suitable scale 4y, and shift 8, to produce

normalized value

Y; = V% + B;.
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Consider a mini-batch of m examples (21, .., x(™).
Batch normalizing transform of the mini-batch is the following transformation.

Inputs: Mini-batch (m(l), ey w(m)), ecR
Outputs: Normalized batch (y(l), e y(m))

¢ pi a2
* o7 — >0 (@) — p)’

o 2 (:13(7’)' —p)/Vo?+e
o y 72"+ B

Batch normalization is added just before a nonlinearity, and it is useless to add bias before it
(because it will cancel out). Therefore, we replace f(Wa + b) by f(BN(Wa)).

During inference, gt and o’ are fixed. They are either precomputed after training on the whole

training data, or an exponential moving average is updated during training.
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Batch Normalization Urzt

When a batch normalization is used on a fully connected layer, each neuron is normalized
individually across the minibatch.

However, for convolutional networks we would like the normalization to honour their properties,
most notably the shift invariance. We therefore normalize each channel across not only the
minibatch, but also across all corresponding spacial /temporal locations.

N
N
N
N
N
N

Adapted from Figure 2 of paper "Group Normalization", https://arxiv.org/abs/1803.08494.
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0.8

-------------- =
Model Steps to 72.2%  Max accuracy
Inception 31.0 - 10° 72.2%
. j BN-Baseline 13.3-10° 72.7%
) e e BN-x5 2.1-106 73.0%
] BN-xS BN-x30 2.7-10° 74.8%
! "+ BN-x5-Sigmoid BN-x5-Sigmoid 69.8%
: 4  Steps to match Inception
0.4 ' ' ' ' ' '
M 10M 15M 20M 25M 30M Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
Figure 2: Single crop validation accuracy of Inception reach the maximum accuracy of Inception (72.2%),
and its batch-normalized variants, vs. the number of and the maximum accuracy achieved by the net-
training steps. work.

The BN-x5 and BN-x30 use 5/30 times larger initial learning rate, faster learning rate decay, no
dropout, weight decay smaller by a factor of 5, and several more minor changes.
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Inception v2 and v3 — 2015 (3.6% error)

/

Figure 1 of paper "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567.
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Figure 3 of paper "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567.

BatchNorm ResNet

U=

40/55



NPFL114, Lecture 4 Convolution

Inception v2 and v3 —

Filter Concat

3x3
i
3x3 3x3 1x1
i i i
1x1 1x1 Pool 1x1
Base

Figure 5. Inception modules where each 5 x 5 convolution is re-
placed by two 3 x 3 convolution, as suggested by principle 3 of

Section 2.
Figure 5 of paper "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567.

CNNs

2015 (3.6% error)

Filter Concat

1x1 1x1 Pool 1x1
Base

Figure 6. Inception modules after the factorization of the n X n
convolutions. In our proposed architecture, we chose n = 7 for
the 17 x 17 grid. (The filter sizes are picked using principle 3)

Figure 6 of paper ”Rethinkiné the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567.

AlexNet Deep Prior VGG Inception

Filter Concat

1x1 1x1 Pool 1x1
Base

Figure 7. Inception modules with expanded the filter bank outputs.
This architecture is used on the coarsest (8 X 8) grids to promote
high dimensional representations, as suggested by principle 2 of
Section 2. We are using this solution only on the coarsest grid,
since that is the place where producing high dimensional sparse
representation is the most critical as the ratio of local processing
(by 1 x 1 convolutions) is increased compared to the spatial ag-
gregation.
Figure 7 of paper "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567.

BatchNorm ResNet
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patch size/stride

type or remarks input size

conv 3x3/2 299x299x 3
conv 3x3/1 149x149x 32
conv padded 3x3/1 147x147%x32
pool 3x3/2 147x147x64
conv 3x3/1 T3XT3x64

conv 3x3/2 T1x71x80

conv 3x3/1 35%35x%192
3 % Inception As in figure 5 39X 35X 288
5 xInception As in figure 6 17x17X768
2 xInception As in figure 7 8x 8% 1280

pool 8 X 8 8 X 8 x 2048
linear logits 1 x 1 x 2048
softmax classifier 1 x 1 x 1000

BatchNorm
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Inception v2 and v3 — 2015 (3.6% error)

Training details:

RMSProp with momentum of 8 = 0.9 and € = 1.0

batch size of 32 for 100 epochs

initial learning rate of 0.045, decayed by 6% every two epochs
gradient clipping with threshold 2.0 was used to stabilize the training

label smoothing was first used in this paper, with o = 0.1

input image size enlarged to 299 x 299
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Top-1 | Top-5 Cost

Network Error | Error | Bn Ops
GoogleNet [20] 29% 9.2% 1.5
BN-GoogleNet 26.8% - 1.5
BN-Inception [7] | 25.2% 7.8 2.0
Inception-v2 23.4% - 3.8
Inception-v2

RMSProp 23.1% 6.3 3.8
Inception-v2

Label Smoothing | 22.8% 6.1 3.8
Inception-v2

Factorized 7 X 7 | 21.6% 5.8 4.8
Inception-v2

BN-auxiliary 21.2% | 5.6% 4.8
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Crops Top-5 Top-1
Network Evalugted ErEor Erll?or
GoogleNet [20] 10 - 9.15%
GoogLeNet [20] 144 - 7.89%
VGG [18] - 24.4% 6.8%
BN-Inception [7] 144 22% 5.82%
PReLU [6] 10 2427% | 7.38%
PReLU [6] - 21.59% | 5.71%
Inception-v3 1947% | 4.48%
Inception-v3 144 18.77% | 4.2%
Crops Top-1 Top-5
Network Elx\f/;(l)l(li::(sed Evalugted Erf')or Erll?or
VGGNet [18] 2 - 23.7% 6.8%
GoogleNet [20] 7 144 - 6.67%
PReLU [6] - - - 4.94%
BN-Inception [7] 6 144 20.1% 4.9%
Inception-v3 4 144 17.2% | 3.58%"
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56-layer

20-layer

test error (%)

56-layer

20-layer

training error (%)
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iter.3 (164)4 itelr.3 (le4)4
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet 1s presented in Fig. 4.
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Figure 2. Residual learning: a building block.
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256-d

1x1, 64

lrem

3x3, 64

lrem

1x1, 256

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56 x56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck’ building block for ResNet-50/101/152.
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0 =
ResNet — 2015 (3.6% error) PRl
layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 77, 64, stride 2
3% 3 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 ] 1x1,64 ]
COMV2X | 5656 [ ;ig gj ]><2 [ gig gj ]><3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
’ ’ | 1x1,256 | | 1x1,256 | | 1x1,256 |
- - - - [ 1x1, 128 ] [ 1x1, 128 | [ 1x1, 128 |
conv3x | 28x28 gig 32 X2 gig 32 x4 | | 3x3,128 | x4 3x3, 128 | x4 3x3,128 | x8
- ’ - L ’ - | 1x1,512 | | 1x1,512 | | Ix1,512 |
h - . - [ 1x1,256 ] 1x1,256 ] 1x1,256 ]
conv4_x 14x14 gig’ ;gg X2 gig’ ;gg X6 3x3,256 | x6 3x3,256 | x23 3x3,256 | x36
L ’ - - ’ - | 1x1,1024 1x1,1024 | 1x1,1024 |
- . - - [ 1x1,512 ] 1x1,512 1x1,512
convS.x | Tx7 ;iggg 2 giggg x3 || 3x3,512 |x3 3x3,512 | x3 3%3,512 | x3
- ’ - - ’ - | 1x1,2048 1x1,2048 1x1, 2048
Ix1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° 3.6x10? 3.8x10? 7.6x10° 11.3x10°
Table 1 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet — 2015 (3.6% error) Upzt

VGG-19 34-layer plain 34-layer residual . . .
T T The residual connections cannot be applied
. .
0 directly when number of channels increase.
[ 36om128 ] [ Powez ]
R L. The authors considered several alternatives, and
[ Nmzwzﬁ [ N%W ] .
= e = chose the one where in case of channels
| increase a 1 X 1 convolution is used on the
ey CwmEE N :
***** === projections to match the required number of
s = channels.
[ 3ooms ]
e wG*I,/Z [ 3:::;2 ]
[ Mw;wvsu ] [ Mmyﬁﬁ
[ MG;MSH ] [ Nm;vﬁﬁ
[ Mm:vvs ] [ Mm;w?-'vﬁ
o R 7
Coar)
" =
o 33 conv, 512
ey avgpool

Figure 3 of paper "Deep Residual Learning for Image Recognition”,
https: //arxiv.org/abs/1512.03385.
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ResNet — 2015 (3.6% error)

60 60
50 50
S S
g 40 g 40
B 5
30 30
plain-18 ResNet-18
=—plain-34 —ResNet-34
200 10 20 30 40

20
50
iter. (1e4)

|

34-layer
0 10 20 30 40 50
iter. (led)
Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
their plain counterparts.

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

Figure 4 of paper "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385.
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ResNet — 2015 (3.6% error) Ut

Figure 1 of paper "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913.
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Training details:

® batch normalizations after each convolution and before activation

® SGD with batch size 256 and momentum of 0.9

® |earning rate starts with 0.1 and is divided by 10 when error plateaus
® no dropout, weight decay 0.0001

® during testing, 10-crop evaluation strategy is used, averaging scores across multiple scales —
the images are resized so that their smaller size is in {224,256, 384, 480, 640}
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method top-1 err. top-5 err.

VGG [41] ILSVRC’14) - 8.431

Googl.eNet [44] (ILSVRC’14) - 7.89 method top-5 err. (test)
VGG [41] (v5) 24.4 7.1 VGG [41] ILSVRC’14) 7.32
PReLU-net [13] 21.59 5.71 GoogleNet [44] ILSVRC’14) 6.66
BN-inception [16] 21.99 5.81 VGG [41] (v5) 6.8
ResNet-34 B 21.84 5.71 PReLLU-net [13] 4.94
ResNet-34 C 21.53 5.60 BN-inception [16] 4.82
ResNet-50 20.74 5.25 ResNet (ILSVRC’15) 3.57
ResNet-101 19.87 4.60 Table 5. Error rates (%) of ensembles. The top-5 error is on the
ResNet-152 19.38 4.49 test set of ImageNet and reported by the test server.

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except T reported on the test set).
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Convolutions can provide
O local interactions in spacial /temporal dimensions

O shift invariance
O much less parameters than a fully connected layer

Usually repeated 3 X 3 convolutions are enough, no need for larger filter sizes.

When pooling is performed, double number of channels.
Final fully connected layers are not needed, global average pooling is usually enough.

Batch normalization is a great regularization method for CNNs, allowing removal of
dropout.

Small weight decay (i.e., L2 regularization) of usually le-4 is still useful for regularizing
convolutional kernels.
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