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Putting It All Together

Let us have a dataset with training, validation and test sets, each containing examples .

Depending on , consider one of the following output activation functions:

If , we can use a neural network with an input layer of size , hidden layer of size 

with a non-linear activation function, and an output layer of size  (either 1 or number of

classification classes) with the mentioned output function.

BTW, there are of course many functions, which could be used as output activations instead of 

 and ; however,  and  are almost universally used. One of the reason is

that they can be derived using the maximum-entropy principle from a set of conditions, see the
Machine Learning for Greenhorns (NPFL129) lecture 5 slides. Additionally, they are the inverses
of canonical link functions of the Bernoulli and categorical distributions, respectively.
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 if y ∈ R,
 if y is a probability of an outcome,
 if y is a gold class index out of K classes (or a full distribution).
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Putting It All Together
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We have

where

 is a matrix of weights,

 is a vector of biases,

 is an activation function.

The weights are sometimes also called a kernel.

The biases define general behaviour in case of
zero/very small input.

Transformations of type  are called

affine instead of linear.
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Putting It All Together
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Similarly

with

 another matrix of weights,

 another vector of biases,

 being an output activation function.

o  =i f  W  h  + b  

(2) (
j
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(2)

j i
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W ∈(2) RO×H

b ∈(2) RO
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Putting It All Together

The parameters of the model are therefore  of total size 

.

To train the network, we repeatedly sample  training examples and perform SGD (or any of

its adaptive variants), updating the parameters to minimize the loss.

We set the hyperparameters (size of the hidden layer, hidden layer activation function, learning
rate, …) using performance on the validation set and evaluate generalization error on the test
set.

W ,W , b , b(1) (2) (1) (2) D × H +
H × O + H + O

m

θ  ←i θ  −i α  

∂θ  i

∂L
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Practical Issues

Processing all data in batches.

Vector representation of the network.

Instead of , we usually write

The derivatives

are then matrices (called Jacobians) or even higher-dimensional tensors.

h  =i f  W  x  + b  

(1) (∑j i,j
(1)

j i
(1))

h = f W x+ b(1) ( (1) (1))

o = f W h+ b =(2) ( (2) (2)) f W f W x+ b + b(2) ( (2) ( (1) ( (1) (1))) (2))

 ,
∂x

∂f W x+ b(1) ( (1) (1))

∂W (1)

∂f W x+ b(1) ( (1) (1))
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Computation Graph
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High Level Overview

Classical

('90s)
Deep Learning

Architecture    CNN, RNN, Transformer, VAE, GAN, …

Activation func. , ReLU, PReLU, ELU, GELU, Swish, Mish, …

Output function none, none, , 

Loss function MSE NLL (or cross-entropy or KL-divergence)

Optimization
SGD,

momentum
SGD (+ momentum), RMSProp, Adam, SGDW, AdamW, …

Regularization L2, L1
L2, Dropout, Label smoothing, BatchNorm, LayerNorm,

MixUp, WeightStandardization, …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

tanh,σ tanh

σ σ softmax

8/45NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence



Metrics and Losses

During training and evaluation, we use two kinds of error functions:

loss is a differentiable function used during training,
NLL, MSE, Huber loss, Hinge, …

metric is any (and very often non-differentiable) function used during evaluation,
any loss, accuracy, F-score, BLEU, …
possibly even human evaluation.

In TensorFlow, the losses and metrics are available in tf.losses and tf.metrics (aliases for
tf.keras.losses and tf.keras.metrics).
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TF Losses

The tf.losses offer two sets of APIs. The current ones are loss classes like

tf.losses.MeanSquaredError( 

    reduction=tf.losses.Reduction.AUTO, name='mean_squared_error' 

) 

The created objects are subclasses of tf.losses.Loss and can be always called with three
arguments:

__call__(y_true, y_pred, sample_weight=None) 

which returns the loss of the given data, reduced using the specified reduction. If
sample_weight is given, it is used to weight (multiply) the individual batch examples before
reduction.

tf.losses.Reduction.SUM_OVER_BATCH_SIZE, which is the default of .AUTO;
tf.losses.Reduction.SUM;
tf.losses.Reduction.NONE.
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TF Cross-entropy Losses

The cross-entropy losses need to specify also the distribution in question:

tf.losses.BinaryCrossentropy: the gold and predicted distributions are Bernoulli
distributions (i.e., a single probability);
tf.losses.CategoricalCrossentropy: the gold and predicted distributions are
categorical distributions;
tf.losses.SparseCategoricalCrossentropy: a special case, where the gold
distribution is one-hot distribution (i.e., a single correct class), which is represented as the
gold class index; therefore, it has one less dimension than the predicted distribution.

These losses expect probabilities on input, but offer from_logits argument, which can be
used to indicate that logits are used instead of probabilities.

Old losses API
In addition to the loss objects, tf.losses offers methods like
tf.losses.mean_squared_error, which process two arguments y_true and y_pred.
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TF Metrics

There are two important differences between metrics and losses.

1. metrics may be non-differentiable;
2. metrics aggregate results over multiple batches.

The metric objects are subclasses of tf.losses.Metric and offer the following method:

update_state(y_true, y_pred, sample_weight=None) updates the value of the
metric and stores it;
result() returns the current value of the metric;
reset_states() clears the stored state of the metric.

The most common pattern is using the provided

__call__(y_true, y_pred, sample_weight=None) 

method, which is a combination of update_state followed by a result().
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TF Metrics

Apart from analogues of the losses

tf.metrics.MeanSquaredError

tf.metrics.BinaryCrossentropy

tf.metrics.CategoricalCrossentropy

tf.metrics.SparseCategoricalCrossentropy

the tf.metrics provide

tf.metrics.Mean computes averaged mean;
tf.metrics.Accuracy returns accuracy, which is an average number of examples where
the prediction is equal to the gold value;
tf.metrics.BinaryAccuracy returns accuracy of predicting a Bernoulli distribution (the
gold value is 0/1, the prediction is a probability);
tf.metrics.CategoricalAccuracy returns accuracy of predicting a Categorical
distribution (the argmaxes of gold and predicted distributions are equal);
tf.metrics.SparseCategoricalAccuracy again a special case, there the gold
distribution is represented as the gold class index.

13/45NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence



Derivative of MSE Loss

Given the MSE loss of

the derivative with respect to  is simply:

L = (y −  (x; θ)) =ŷ
2

(  (x; θ) −ŷ y) ,
2

 ŷ

 =
 (x; θ)ŷ

∂L
2(  (x; θ) −ŷ y).
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Derivative of Softmax MLE Loss

o1
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Softmax

Let us have a softmax output layer with

o  =i  .
 e∑j
z  j

ez  i
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Derivative of Softmax MLE Loss

Consider now the MLE estimation. The loss for gold class index  is then

The derivation of the loss with respect to  is then

Therefore, , where  is 1 at index  and 0 otherwise.

gold

L(softmax(z), gold) = − logo  .gold

z

  

 =  − log  =
∂z  i

∂L
∂z  i

∂
[

 e∑j
z  j

ez  gold

]

=

=

−  +  

∂z  i

∂z  gold

∂z  i

∂ log(  e )∑j
z  j

− [gold = i] +  e
 e∑j
z  j

1 z  i

− [gold = i] + o  .i

 =∂z
∂L o− 1  gold 1  gold gold
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Derivative of Softmax MLE Loss
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Derivative of Softmax and Sigmoid MLE Losses

In the previous case, the gold distribution was sparse, with only one target probability being 1.

In the case of general gold distribution , we have

Repeating the previous procedure for each target probability, we obtain

Sigmoid
Analogously, for  we get , where  is the target gold probability.

g

L(softmax(z), g) = −  g  logo  .
i

∑ i i

 =
∂z
∂L

o− g.

o = σ(z)  =∂z
∂L o − g g
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Derivative of Softmax MLE Loss
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Regularization

As already mentioned, regularization is any change in the machine learning algorithm that is
designed to reduce generalization error but not necessarily its training error.

Regularization is usually needed only if training error and generalization error are different. That
is often not the case if we process each training example only once. Generally the more training
data, the better generalization performance.

Early stopping

L2, L1 regularization

Dataset augmentation

Ensembling

Dropout

Label smoothing
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Regularization – Early Stopping

 

Figure 7.3, page 246 of Deep Learning Book, http://deeplearningbook.org
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L2 Regularization

We prefer models with parameters small under L2 metric.

The L2 regularization, also called weight decay, Tikhonov regularization or ridge regression
therefore minimizes

for a suitable (usually very small) .

During the parameter update of SGD, we get

(θ;X) =J
~

J(θ;X) + λ∥θ∥  2
2

λ

θ  ←i θ  −i α  −
∂θ  i

∂J
2αλθ  i
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L2 Regularization

 

Figure 7.1, page 233 of Deep Learning Book, http://deeplearningbook.org
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L2 Regularization as MAP

Another way to arrive at L2 regularization is to utilize Bayesian inference.

With MLE we have

Instead, we may want to maximize maximum a posteriori (MAP) point estimate:

Using Bayes' theorem

we get

θ  =MLE  p(X; θ).
θ

arg max

θ  =MAP  p(θ;X)
θ

arg max

p(θ;X) = p(X; θ)p(θ)/p(X),

θ  =MAP  p(X; θ)p(θ).
θ

arg max
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L2 Regularization as MAP

The  are prior probabilities of the parameter values (our preference).

One possibility for such a prior is , which corresponds to small weights preference.

Then

By substituting the probability of the Gaussian prior, we get

p(θ)

N (θ; 0,σ )2

  

θ  MAP =  p(X; θ)p(θ)
θ

arg max

=   p(x ; θ)p(θ)
θ

arg max∏
i=1

m (i)

=   − log p(x ; θ) − log p(θ)
θ

arg min∑
i=1

m (i)

θ  =MAP   − log p(x ; θ)−  log(2πσ ) +
θ

arg min
i=1

∑
m

(i)

2
1 2

 

2σ2

∥θ∥  2
2
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L1 Regularization

Similar to L2 regularization, but we prefer low L1 metric of parameters. We therefore minimize

The corresponding SGD update is then

(θ;X) =J
~

J(θ;X) + λ∥θ∥  1

θ  ←i θ  −i α  −
∂θ  i

∂J
sign(θ  )αλ.i
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Regularization – Dataset Augmentation

For some data, it is cheap to generate slightly modified examples.

Image processing: translations, horizontal flips, scaling, rotations, color adjustments, …
Mixup (appeared in 2017)

 

Figure 1b of paper "mixup: Beyond Empirical Risk Minimization", https://arxiv.org/abs/1710.09412

Speech recognition: noise, frequency change, …

More difficult for discrete domains like text.

27/45NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence



Regularization – Ensembling

Ensembling (also called model averaging or in some contexts bagging) is a general technique for
reducing generalization error by combining several models. The models are usually combined by
averaging their outputs (either distributions or output values in case of a regression).

The main idea behind ensembling it that if models have uncorrelated (independent) errors, then
by averaging model outputs the errors will cancel out. If we denote the prediction of a model 

on a training example  as , so that  is the model error on

example , the mean square error of the model is 

Because for uncorrelated identically distributed random values  we have

we get that  so the errors should decrease with the

increasing number of models.

However, ensembling usually has high performance requirements.

y  i

(x, y) y  (x) =i y + ε  (x)i ε  (x)i

x E[(y  (x) −i t) ] =2 E[ε  (x)].i
2

x  i

Var x  =(∑ i) Var(x  ), Var(a ⋅∑ i x) = a Var(x),2

Var  ε  =(
n
1 ∑ i)  ⋅

n
1

 Var(ε  ),∑
n
1

i
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Regularization – Ensembling

There are many possibilities how to train the models to average:

Generate different datasets by sampling with replacement (bagging).

 

Figure 7.5, page 257 of Deep Learning Book, http://deeplearningbook.org

Use random different initialization.

Average models from last hours/days of training.
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Regularization – Dropout

How to design good universal features?

In reproduction, evolution is achieved using gene swapping. The genes must not be just
good with combination with other genes, they need to be universally good.

Idea of dropout by (Srivastava et al., 2014), in preprint since 2012.

When applying dropout to a layer, we drop each neuron independently with a probability of 

(usually called dropout rate). To the rest of the network, the dropped neurons have value of
zero.

 

Figure 4 of paper "Multiple Instance Fuzzy Inference Neural Networks" by Amine B. Khalifa et al.

p

30/45NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence



Regularization – Dropout

Dropout is performed only when training, during inference no nodes are dropped. However, in
that case we need to scale the activations down by a factor of  to account for more

neurons than usual.

1 − p
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Regularization – Dropout

Alternatively, we might scale the activations up during training by a factor of .1/(1 − p)
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Regularization – Dropout as Ensembling

 

Figure 7.6, page 260 of Deep Learning Book, http://deeplearningbook.org

33/45NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence



Regularization – Dropout Effect

 

Figure 7 of paper "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

34/45NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence



Regularization – Dropout Implementation

def dropout(inputs, rate=0.5, training=False): 

    def do_inference(): 

        return inputs 

 

    def do_train(): 

        random_noise = tf.random.uniform(tf.shape(inputs)) 

        mask = tf.cast(tf.less(random_noise, rate), tf.float32) 

        return inputs * mask / (1 - rate) 

 

    if training: 

        return do_train() 

    else: 

        return do_inference() 
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Regularization – Label Smoothing

Problem with softmax MLE loss is that it is never satisfied, always pushing the gold label
probability higher (but it saturates near 1).

This behaviour can be responsible for overfitting, because the network is always commanded to
respond more strongly to the training examples, not respecting similarity of different training
examples.

Ideally, we would like a full (non-sparse) categorical distribution of classes for training examples,
but that is usually not available.

We can at least use a simple smoothing technique, called label smoothing, which allocates some
small probability volume  uniformly for all possible classes.

The target distribution is then

α

(1 − α)1  +gold α  .
number of classes

1
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Regularization – Label Smoothing

37/45NPFL114, Lecture 3 NNTraining Metrics&Losses ∂Loss Regularization Dropout LabelSmoothing Convergence



Regularization – Good Defaults

When you need to regularize (your model is overfitting), then a good default strategy is to:

use data augmentation if possible;

use dropout on all hidden dense layers (not on the output layer), good default dropout rate
is 0.5 (or use 0.3 if the model is underfitting);

use L2 regularization for your convolutional networks;

use label smoothing (start with 0.1);

if you require best performance and have a lot of resources, also perform ensembling.
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Convergence

The training process might or might not converge. Even if it does, it might converge slowly or
quickly.

A major issue of convergence of deep networks is to make sure that the gradient with respect
to all parameters is reasonable at all times, i.e., it does not decrease or increase too much with
depth or in different batches.

There are many factors influencing the gradient, convergence and its speed, we now mention
three of them:

saturating non-linearities,
parameter initialization strategies,
gradient clipping.
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Convergence – Saturating Non-linearities
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Convergence – Parameter Initialization

Neural networks usually need random initialization to break symmetry.

Biases are usually initialized to a constant value, usually 0.

Weights are usually initialized to small random values, either with uniform or normal
distribution.

The scale matters for deep networks!

Originally, people used  distribution.

Xavier Glorot and Yoshua Bengio, 2010: Understanding the difficulty of training deep
feedforward neural networks.

The authors theoretically and experimentally show that a suitable way to initialize a 

 matrix is

U −  ,  [
 n

1
 n

1 ]

Rn×m

U −  ,  .[  

m + n

6
 

m + n

6
]
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Convergence – Parameter Initialization

 

Figure 6 of paper "Understanding the difficulty of training deep feedforward neural networks", http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.
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Convergence – Parameter Initialization

 

Figure 7 of paper "Understanding the difficulty of training deep feedforward neural networks", http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.
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Convergence – Gradient Clipping

 

Figure 8.3, page 289 of Deep Learning Book, http://deeplearningbook.org
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Convergence – Gradient Clipping

 

Figure 10.17, page 414 of Deep Learning Book, http://deeplearningbook.org

Using a given maximum norm, we may clip the gradient.

Clipping can be performed per weight (parameter clipvalue of
tf.optimizers.Optimizer), per variable (clipnorm) or for the gradient as a whole
(global clipnorm).

g ←   {
g

c  ∥g∥
g

 if ∥g∥ ≤ c,
 if ∥g∥ > c.
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