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What is Deep Learning

 

https://i.redd.it/t87gswsbmnq41.jpg
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Deep Learning Highlights

Image recognition

Object detection

Image segmentation,

Human pose estimation

Image labeling

Visual question answering

Speech recognition and generation

Lip reading

Machine translation

Machine translation without parallel data

Chess, Go and Shogi

Multiplayer Capture the flag

3/39NPFL114, Lecture 1 Organization Notation Random Variables Information Theory Machine Learning NNs '80s



Organization

Course Website https://ufal.mff.cuni.cz/courses/npfl114

Recordings of lectures and practicals, slides, assignments, exam questions.

Course Repository https://github.com/ufal/npfl114

Templates for the assignments, slide sources.

Piazza
Piazza will be used as a communication platform.

You can post questions or notes,
privately to the instructors, or
to everyone (signed or anonymously).

Students can answer other student's questions too, which allows you to get faster response.
Please do not send complete solutions to other students, only excerpts of the source files.

Please use Piazza for all communication with the instructors.

You will get the invite link after the first lecture.
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ReCodEx

https://recodex.mff.cuni.cz

The assignments will be evaluated automatically in ReCodEx.
If you have a MFF SIS account, you will be able to create an account using your CAS
credentials and will be automatically assigned to the right group.
Otherwise follow the instructions on Piazza; generally you will need to send me a message
with several pieces of information and I will send it to ReCodEx administrators in batches.
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Course Requirements

Practicals
There will be 2-3 assignments a week, each with 2-week deadline.

Deadlines can be extended, but you need to write before the deadline.

After solving the assignment, you get non-bonus points, and sometimes also bonus points.
To pass the practicals, you need to get 80 non-bonus points. There will be assignments for
at least 120 non-bonus points.
If you get more than 80 points (be it bonus or non-bonus), they will be all transferred to
the exam. Additionally, if you solve all the assignments, you obtain 50 bonus points.

Lecture
You need to pass a written exam (or solve all the assignments).

All questions are publicly listed on the course website.
There are questions for 100 points in every exam, plus the surplus points from the practicals
and plus at most 10 surplus points for community work (improving slides, …).
You need 60/75/90 points to pass with grade 3/2/1; 75 points for PhD students.
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Notation

, , , : scalar (integer or real), vector, matrix, tensor

all vectors are always column vectors
transposition changes a column vector into a row vector, so  is a row vector

we denote scalar product between vectors  and  as 

we understand it as matrix multiplication

, , : scalar, vector, matrix random variable

: derivative of  with respect to 

: partial derivative of  with respect to 

: gradient of  with respect to , i.e., 

a a A A

aT

a b a bT

a a A

 

dx
df f x

 ∂x
∂f f x

∇  f(x)x f x  ,  , … ,  ( ∂x  1

∂f (x)
∂x  2

∂f (x)
∂x  n

∂f (x))
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Random Variables

A random variable  is a result of a random process. It can be discrete or continuous.

Probability Distribution
A probability distribution describes how likely are individual values a random variable can take.

The notation  stands for a random variable  having a distribution .

For discrete variables, the probability that  takes a value  is denoted as  or explicitly as 

. All probabilities are non-negative and sum of probabilities of all possible values of 

is .

For continuous variables, the probability that the value of  lies in the interval  is given by 

.

x

x ∼ P x P

x x P (x)
P (x = x) x

 P (x =∑x x) = 1

x [a, b]
 p(x) dx∫

a

b
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Random Variables

Expectation
The expectation of a function  with respect to discrete probability distribution  is

defined as:

For continuous variables it is computed as:

If the random variable is obvious from context, we can write only  or even .

Expectation is linear, i.e.,

f(x) P (x)

E  [f(x)]x∼P =def
 P (x)f(x)

x

∑

E  [f(x)]x∼p =
def

 p(x)f(x) dx∫
x

E  [x]P E[x]

E  [αf(x) +x βg(x)] = αE  [f(x)] +x βE  [g(x)]x
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Random Variables

Variance
Variance measures how much the values of a random variable differ from its mean .

It is easy to see that

Variance is connected to , a second moment of a random variable – it is in fact a

centered second moment.

μ = E[x]

  

Var(x)

Var(f(x))

E (x− E[x]) , or more generally=def
[

2
]

E (f(x) − E[f(x)])=def
[

2
]

Var(x) = E x − 2xE[x] + (E[x]) =[ 2 2
] E x −[ 2] (E[x]) .

2

E[x ]2
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Common Probability Distributions

Bernoulli Distribution
The Bernoulli distribution is a distribution over a binary random variable. It has a single
parameter , which specifies the probability of the random variable being equal to 1.

Categorical Distribution
Extension of the Bernoulli distribution to random variables taking one of  different discrete

outcomes. It is parametrized by  such that .

φ ∈ [0, 1]

  

P (x)

E[x]

Var(x)

= φ (1 − φ)x 1−x

= φ

= φ(1 − φ)

k

p ∈ [0, 1]k  p  =∑i=1
k

i 1

  

P (x)

E[x  ]i

=  p  ∏
i

k

i
x  i

= p  , Var(x  ) = p  (1 − p  )i i i i
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Information Theory

Self Information
Amount of surprise when a random variable is sampled.

Should be zero for events with probability 1.
Less likely events are more surprising.
Independent events should have additive information.

I(x) =def − logP (x) = log  

P (x)
1
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Information Theory

Entropy
Amount of surprise in the whole distribution.

for discrete : 

for continuous : 

Note that in the continuous case, the continuous entropy
(also called differential entropy) has slightly different
semantics, for example, it can be negative.

From now on, all logarithms are natural logarithms with
base .

H(P ) =def E  [I(x)] =x∼P −E  [logP (x)]x∼P

P H(P ) = −  P (x) logP (x)∑x

P H(P ) = − P (x) logP (x) dx∫

e
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Information Theory

Cross-Entropy

Gibbs inequality

Proof: Using Jensen's inequality, we get

Corollary: For a categorical distribution with  outcomes, , because for 

 we get 

generally 

H(P ,Q) =def −E  [logQ(x)]x∼P

H(P ,Q) ≥ H(P )
H(P ) = H(P ,Q) ⇔ P = Q

 P (x) log  ≤
x

∑
P (x)
Q(x)

log  P (x)  =
x

∑
P (x)
Q(x)

log  Q(x) =
x

∑ 0.

n H(P ) ≤ logn
Q(x) = 1/n H(P ) ≤ H(P ,Q) = −  P (x) logQ(x) =∑x logn.

H(P ,Q) = H(Q,P )
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Information Theory

Kullback-Leibler Divergence (KL Divergence)
Sometimes also called relative entropy.

consequence of Gibbs inequality: ,  iff 

generally 

D  (P∥Q)KL =def
H(P ,Q) − H(P ) = E  [logP (x) −x∼P logQ(x)]

D  (P∥Q) ≥KL 0 D  (P∥Q) =KL 0 P = Q

D  (P∥Q) =KL  D  (Q∥P )KL
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Nonsymmetry of KL Divergence

 

Figure 3.6, page 76 of Deep Learning Book, http://deeplearningbook.org
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Common Probability Distributions

Normal (or Gaussian) Distribution
Distribution over real numbers, parametrized by a mean  and variance :

For standard values  and  we get .

 

Figure 3.1, page 64 of Deep Learning Book, http://deeplearningbook.org.

μ σ2

N (x;μ,σ ) =2
 exp −   

2πσ2

1
(

2σ2

(x− μ)2

)

μ = 0 σ =2 1 N (x; 0, 1) =  e 2π
1 −  2

x2
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Why Normal Distribution

Central Limit Theorem
The sum of independent identically distributed random variables with finite variance converges
to normal distribution.

Principle of Maximum Entropy
Given a set of constraints, a distribution with maximal entropy fulfilling the constraints can be
considered the most general one, containing as little additional assumptions as possible.

Considering distributions on all real numbers with a given mean and variance, it can be proven
(using variational inference) that such a distribution with maximum entropy is exactly the
normal distribution.
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Machine Learning

A possible definition of learning from Mitchell (1997):

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.

Task T
classification: assigning one of  categories to a given input

regression: producing a number  for a given input

structured prediction, denoising, density estimation, …

Measure P
accuracy, error rate, F-score, …

Experience E
supervised: usually a dataset with desired outcomes (labels or targets)
unsupervised: usually data without any annotation (raw text, raw images, …)
reinforcement learning, semi-supervised learning, …

k

x ∈ R
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Well-known Datasets

Name Description Instances

MNIST Images (28x28, grayscale) of handwritten digits. 60k

CIFAR-10 Images (32x32, color) of 10 classes of objects. 50k

CIFAR-

100

Images (32x32, color) of 100 classes of objects (with 20 defined

superclasses).
50k

ImageNet
Labeled object image database (labeled objects, some with bounding

boxes).
14.2M

ImageNet-

ILSVRC

Subset of ImageNet for Large Scale Visual Recognition Challenge,

annotated with 1000 object classes and their bounding boxes.
1.2M

COCO
Common Objects in Context: Complex everyday scenes with

descriptions (5) and highlighting of objects (91 types).
2.5M
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http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/
http://image-net.org/challenges/LSVRC/
http://cocodataset.org/


Well-known Datasets

ImageNet-ILSVRC

 

Image from "ImageNet Classification with Deep Convolutional Neural Networks" paper by Alex
Krizhevsky et al.

 

Image from http://image-net.org/challenges/LSVRC/2014/.
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Well-known Datasets

COCO
 

Image from http://mscoco.org/dataset/\#detections-challenge2016.
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Well-known Datasets

Name Description Instances

IAM-OnDB Pen tip movements of handwritten English from 221 writers. 86k words

TIMIT Recordings of 630 speakers of 8 dialects of American English. 6.3k sents

CommonVoice 400k recordings from 20k people, around 500 hours of speech. 400k

PTB
Penn Treebank: 2500 stories from Wall Street Journal, with POS

tags and parsed into trees.
1M words

PDT
Prague Dependency Treebank: Czech sentences annotated on 4

layers (word, morphological, analytical, tectogrammatical).

1.9M

words

UD
Universal Dependencies: Treebanks of 104 languages with

consistent annotation of lemmas, POS tags, morphology, syntax.

183

treebanks

WMT Aligned parallel sentences for machine translation. gigawords
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http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database
https://catalog.ldc.upenn.edu/LDC93S1
https://voice.mozilla.org/data
https://catalog.ldc.upenn.edu/LDC99T42
https://ufal.mff.cuni.cz/prague-dependency-treebank
http://universaldependencies.org/
http://statmt.org/


ILSVRC Image Recognition Error Rates
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ILSVRC Image Recognition Error Rates

In summer 2017, a paper came out describing automatic generation of neural architectures
using reinforcement learning.

 

Figure 5 of paper "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012.
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ILSVRC Image Recognition Error Rates

Currently, one of the best architectures is EfficientNet, which combines automatic architecture
discovery, multidimensional scaling and elaborate dataset augmentation methods.

 

Figure 5 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https://arxiv.org/abs/1905.11946.

 

Figure 1 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https://arxiv.org/abs/1905.11946.
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Introduction to Deep Learning History

 

https://www.slideshare.net/deview/251-implementing-deep-learning-using-cu-dnn/4
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How Good is Current Deep Learning

 

https://intl.startrek.com/sites/default/files/styles/content_full/public/images/2019-
07/c8ffe9a587b126f152ed3d89a146b445.jpg

DL has seen amazing progress in the last ten years.

Is it enough to get a bigger brain (datasets, models, computer power)?

Problems compared to Human learning:
Sample efficiency
Human-provided labels
Robustness to data distribution change
Stupid errors
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How Good is Current Deep Learning

 

https://en.wikipedia.org/wiki/File:Thinking,_Fast_and_Slow.jpg

Thinking fast and slow
System 1

intuitive
fast
automatic
frequent
unconscious

Current DL

System 2
logical
slow
effortful
infrequent
conscious

Future DL
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Curse of Dimensionality

 

Figure 5.9, page 156 of Deep Learning Book, http://deeplearningbook.org.
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Machine and Representation Learning

 

Figure 1.5, page 10 of Deep Learning Book, http://deeplearningbook.org.
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Neural Network Architecture à la '80s

x3 h3

h4

h1

h2

x4

x1

x2 o1

o2

Input
layer

Hidden
layer

Output
layer
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Neural Network Architecture

There is a weight on each edge, and an activation function  is performed on the hidden layers,

and optionally also on the output layer.

If the network is composed of layers, we can use matrix notation and write

where  is a matrix of weights and  is a

vector of biases.

f

h  =i f  w  x  + b  (
j

∑ i,j j i)

h = f Wx+ b ,( )

W ∈ R∣hidden neurons∣×∣input neurons∣ b ∈ R∣hidden neurons∣
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Neural Network Activation Functions

Output Layers
none (linear regression if there are no hidden layers)

 (sigmoid; logistic regression if there are no hidden layers)

is used to model a probability  of a binary event; its input is called a logit, 

 (maximum entropy model if there are no hidden layers)

is used to model probability distribution ; its input is called a logit, 

σ

σ(x) =def
 

1 + e−x

1

p log  1−p
p

softmax

 

softmax(x) ∝ ex

softmax(x)   i =def

 e∑j
x  j

ex  i

p log(p) + c
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Neural Network Activation Functions

Hidden Layers
none: does not help, composition of linear mapping is a linear mapping

: however, it works badly – nonsymmetrical, repeated application converges to the fixed

point , and 

result of making  symmetrical and making the derivative in zero 1

ReLU: 

σ

x = σ(x) ≈ 0.659  (0) =
dx
dσ 1/4

tanh
σ

tanh(x) = 2σ(2x) − 1

max(0,x)
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Universal Approximation Theorem '89

Let  be a nonconstant, bounded and nondecreasing continuous function.  

(Later a proof was given also for  and even for any nonpolynomial function.)

For any  and any continuous function , there exists , , 

 and , such that if we denote

where  is applied elementwise, then for all :

φ : R → R
φ = ReLU

ε > 0 f : [0, 1] →D R N ∈ N v ∈ RN
b ∈ RN W ∈ RN×D

F (x) = v φ(Wx+T b),

φ x ∈ [0, 1]D

∣F (x) − f(x)∣ < ε.
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Universal Approximation Theorem for ReLUs

Sketch of the proof:

If a function is continuous on a closed interval, it can be approximated by a sequence of
lines to arbitrary precision.

−1 −0.5 0 0.5 1

−0.1

0.05

0

0.05

0.1

However, we can create a sequence of  linear segments as a sum of  ReLU units – on

every endpoint a new ReLU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tanget and the tangent of the
approximation until this point.

k k
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Evolving ReLU Approximation

−1 −0.5 0 0.5 1

−0.1

0.05

0

0.05

0.1
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Universal Approximation Theorem for Squashes

Sketch of the proof for a squashing function  (i.e., nonconstant, bounded and

nondecreasing continuous function like sigmoid):

We can prove  can be arbitrarily close to a hard threshold by compressing it horizontally.

 

https://hackernoon.com/hn-images/1*N7dfPwbiXC-Kk4TCbfRerA.png

Then we approximate the original function using a series of straight line segments

 

https://hackernoon.com/hn-images/1*hVuJgUTLUFWTMmJhl_fomg.png

φ(x)

φ
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