NPFL114, Lecture 1 ==

Introduction to Deep Learning

Milan Straka

m March 01, 2021

a N Charles University in Prague @ 3) (0
L EUROPEAN UNION Faculty of Mathematics and Physics -~
European Structural and Investment Fund

ol Proorartms Recears Institute of Formal and Applied Linguistics .
LAN GTECH 82vel::pme|n't:angd EducatiR::Jn " pp g UnleSS Othel’Wlse Stated




What is Deep Learning
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Deep Learning Highlights

® Image recognition

® Object detection

® |mage segmentation,

® Human pose estimation

® Image labeling

® Visual question answering

® Speech recognition and generation
® Lip reading

® Machine translation

® Machine translation without parallel data
® Chess, Go and Shogi

® Multiplayer Capture the flag
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Course Website https://ufal.mff.cuni.cz/courses/npfl114

® Recordings of lectures and practicals, slides, assignments, exam questions.

Course Repository https://github.com/ufal/npfl114

® Templates for the assignments, slide sources.

Piazza

® Piazza will be used as a communication platform.

You can post questions or notes,
O privately to the instructors, or

O to everyone (signed or anonymously).

Students can answer other student's questions too, which allows you to get faster response.
Please do not send complete solutions to other students, only excerpts of the source files.

® Please use Piazza for all communication with the instructors.

® You will get the invite link after the first lecture.

Organization
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https://ufal.mff.cuni.cz/courses/npfl114
https://github.com/ufal/npfl114

https://recodex.mff.cuni.cz

® The assignments will be evaluated automatically in ReCodEx.
If you have a MFF SIS account, you will be able to create an account using your CAS
credentials and will be automatically assigned to the right group.

® QOtherwise follow the instructions on Piazza; generally you will need to send me a message
with several pieces of information and | will send it to ReCodEx administrators in batches.
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https://recodex.mff.cuni.cz/

Practicals

® There will be 2-3 assignments a week, each with 2-week deadline.
O Deadlines can be extended, but you need to write before the deadline.

® After solving the assighment, you get non-bonus points, and sometimes also bonus points.

® To pass the practicals, you need to get 80 non-bonus points. There will be assignments for
at least 120 non-bonus points.

® |f you get more than 80 points (be it bonus or non-bonus), they will be all transferred to
the exam. Additionally, if you solve all the assignments, you obtain 50 bonus points.

Lecture
You need to pass a written exam (or solve all the assignments).

® All questions are publicly listed on the course website.

® There are questions for 100 points in every exam, plus the surplus points from the practicals
and plus at most 10 surplus points for community work (improving slides, ...).

® You need 60/75/90 points to pass with grade 3/2/1; 75 points for PhD students.
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a, a, A, A: scalar (integer or real), vector, matrix, tensor
O all vectors are always column vectors

O transposition changes a column vector into a row vector, so a’

IS a row vector
O we denote scalar product between vectors @ and b as a’b
® we understand it as matrix multiplication

a, a, A: scalar, vector, matrix random variable

%: derivative of f with respect to x
g—x: partial derivative of f with respect to x
Ve f(x): gradient of f with respect to @, i.e., (655(6::@)7 agg) e ey 853(3::))
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A random variable x is a result of a random process. It can be discrete or continuous.

Probability Distribution
A probability distribution describes how likely are individual values a random variable can take.

The notation x ~ P stands for a random variable x having a distribution P.

For discrete variables, the probability that x takes a value x is denoted as P(x) or explicitly as
P(x = x). All probabilities are non-negative and sum of probabilities of all possible values of x

sy Plx=2z)=1
For continuous variables, the probability that the value of x lies in the interval |a, b] is given by

f; p(z) dz.

Random Variables
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Expectation
The expectation of a function f(x) with respect to discrete probability distribution P(x) is
defined as:

Ex-p[f(z)] £ P(z)f(z)
For continuous variables it is computed as:
Byl f(@)] £ [ p(@)f(0) da

If the random variable is obvious from context, we can write only Ep|x| or even E[x].

Expectation is linear, i.e.,

Ex|af(x) + Bg(x)] = aEx[f(x)] + BEx[g()]
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Variance

Variance measures how much the values of a random variable differ from its mean p = E[x].

Var(z) = F (a: — E[:p])z] , or more generally
Var(f(z)) 2 E | ((z) — Elf(2)])’]

It is easy to see that
Var(z) = E [o? - 20E[2] + (E[2])’| = E [+?] - (B[z])”

Variance is connected to E[z?], a second moment of a random variable — it is in fact a
centered second moment.
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Bernoulli Distribution

The Bernoulli distribution is a distribution over a binary random variable. It has a single
parameter @ € |0, 1], which specifies the probability of the random variable being equal to 1.

Bernoulli Variance

P(z)=¢"(1— )" 0221
Elzl =¢ o
Var(z) = ¢(1 - ¢) ol | | | | |

Categorical Distribution
Extension of the Bernoulli distribution to random variables taking one of k different discrete
outcomes. It is parametrized by p € [0, 1]* such that Zle p;, =1

k .
P(x)=]] »f
Elz;] = p;, Var(z;) = p;(1 — p;)
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Self Information

Amount of surprise when a random variable is sampled.

® Should be zero for events with probability 1.
® | ess likely events are more surprising.
® |ndependent events should have additive information.

I(z) = —log P(z) = log P(la:)
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Entropy

Amount of surprise in the whole distribution.
H(P) = Ex.p[I(z)] = —Ex.p[log P()

® for discrete P: H( ) _ Z P( )log P( ) PDF of a Normal Distribution

0.40 1 —— Low entropy

® for continuous P: H(P) = — fP Jlog P(z)dx o] High entropy

o
[
o

Note that in the continuous case, the continuous entropy
(also called differential entropy) has slightly different
semantics, for example, it can be negative.

probability density
© o o
= N N
w o w

o
=
o

From now on, all logarithms are natural logarithms with

' 0.05 A
base e. / \.
0.00 A
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Cross-Entropy
H(P,Q) = —Eyp[log Q(z)]

® Gibbs inequality
°© H(P,Q) > H(P)
© H(P):H(PaQ)@P:Q

O Proof: Using Jensen's inequality, we get

ZP logP <1ogZP zzlogZQ(a)):

o Corollary: For a categorical distribution with n outcomes, H(P) < logn, because for

Q(z) =1/nweget HP) < H(P,Q)=—)_,. P(z)logQ(z) = logn.
o generally H(P,Q) £ H(Q, P)
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Kullback-Leibler Divergence (KL Divergence)

Sometimes also called relative entropy.
Dx1.(P|Q) £ H(P, Q) — H(P) = Ey-p[log P(z) — log Q(x)]

® consequence of Gibbs inequality: Dkr, (P||Q) > 0, Dk (P||Q) =0 iff P = Q
® generally Dk, (PHQ) # Dy, (QHP)
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Nonsymmetry of KL Divergence

¢* = argmin,Dxw(p||q)

Probability Density

NPFL114, Lecture 1 Organization Notation Random Variables

¢" = argmin Dk (q||p)

Probability Density

U\,L

Figure 3.6, page 76 of Deep Learning Book, http://deeplearningbook.org
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Common Probability Distributions

Normal (or Gaussian) Distribution

Distribution over real numbers, parametrized by a mean @ and variance o

[ 1 (z — p)?
. 2\ —
N (z; p, %) 52 CXP 52

For standard values = 0 and 0 = 1 we get N'(z;0,1) = 4/ %6_7.
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Figure 3.1, page 64 of Deep Learning Book, http://deeplearningbook.org.
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Central Limit Theorem

The sum of independent identically distributed random variables with finite variance converges
to normal distribution.

Principle of Maximum Entropy

Given a set of constraints, a distribution with maximal entropy fulfilling the constraints can be
considered the most general one, containing as little additional assumptions as possible.

Considering distributions on all real numbers with a given mean and variance, it can be proven
(using variational inference) that such a distribution with maximum entropy is exactly the
normal distribution.

Information Theory

18/39



A possible definition of learning from Mitchell (1997):

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.

® Task T
O classification: assigning one of k categories to a given input

O regression: producing a number x € R for a given input
O structured prediction, denoising, density estimation, ...

® Measure P
O accuracy, error rate, F-score, ..

® Experience E
O supervised: usually a dataset with desired outcomes (/abels or targets)
O unsupervised: usually data without any annotation (raw text, raw images, ...)
O reinforcement learning, semi-supervised learning, ..
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Name
MNIST
CIFAR-10

CIFAR-
100

ImageNet

ImageNet-

ILSVRC

COCO

Description
Images (28x28, grayscale) of handwritten digits.
Images (32x32, color) of 10 classes of objects.

Images (32x32, color) of 100 classes of objects (with 20 defined

superclasses).

Labeled object image database (labeled objects, some with bounding

boxes).

Subset of ImageNet for Large Scale Visual Recognition Challenge,
annotated with 1000 object classes and their bounding boxes.

Common Objects in Context: Complex everyday scenes with

descriptions (5) and highlighting of objects (91 types).

Machine Learning

Instances
60k
50k

50k

14.2M

1.2M

2.5M
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http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/
http://image-net.org/challenges/LSVRC/
http://cocodataset.org/

Well-known Datasets

ImageNet-ILSVRC

mi i:e

container ship

motor scooter

black widow
cockroach
tick

container ship

motor scooter

lifeboat
amphibian

fireboat

drilling platform

musnroom

go-kart
moped
bumper car

erry

le
jaguar
cheetah
snow leopard

~ ok b 1
adagascar cat

convertible | agaric dalmatian squirrel monkey

grille mushreom grape spider monkey

:[_I pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri

fire engine | dead-man‘s-fingers currant howler monkey

Image from "ImageNet Classification with Deep Convolutional Neural Networks" paper by Alex
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Image from http://image-net.org/challenges/LSVRC/2014/.
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Well-known Datasets

COCO

mscoco.org/dataset /\ #detections-challenge2016.
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Name Description Instances

IAM-OnDB  Pen tip movements of handwritten English from 221 writers. 86k words
TIMIT Recordings of 630 speakers of 8 dialects of American English. 6.3k sents
CommonVoice | 400k recordings from 20k people, around 500 hours of speech. 400k

Penn Treebank: 2500 stories from Wall Street Journal, with POS

PTB _ 1M words
tags and parsed into trees.

PO Prague Dependency Treebank: Czech sentences annotated on 4 1.9M
layers (word, morphological, analytical, tectogrammatical). words

UD Universal Dependencies: Treebanks of 104 languages with 183

T consistent annotation of lemmas, POS tags, morphology, syntax. treebanks

WMT Aligned parallel sentences for machine translation. gigawords

Machine Learning 23/39


http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database
https://catalog.ldc.upenn.edu/LDC93S1
https://voice.mozilla.org/data
https://catalog.ldc.upenn.edu/LDC99T42
https://ufal.mff.cuni.cz/prague-dependency-treebank
http://universaldependencies.org/
http://statmt.org/

ILSVRC Image Recognition Error Rates et
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ILSVRC Image Recognition Error Rates FaL

In summer 2017, a paper came out describing automatic generation of neural architectures
using reinforcement learning.

85 1 85 1
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Figure 5 of paper "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012.
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ILSVRC Image Recognition Error Rates

Currently, one of the best architectures is EfficientNet, which combines automatic architecture
discovery, multidimensional scaling and elaborate dataset augmentation methods.
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Figure 5 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", Figure 1 of paper "EfficientNet: Rethinking Model Scaling for Convo/ut/ona/ Neural Networks",

https:/,
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Electronic Brain

S. McCulloch - W. Pitts

Perceptron

F. Rosenblatt B.

=

ADALIN

A

XOR
E
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idrow - M. Hoff
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h
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Perceptron Y
(Backpropagation)

A

.

1970

1980

D. Rumelhart - G. Hinton - R. Wiliams

1990

V. Vapnik - C. Cortes

Deep Neural Network

2000
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* XOR Problem

Random Variables

+ Solution to nonlinearly separable problems
+ Big computation, local optima and overfitting « Kernel function: Human Intervention
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+ Limitations of learning prior knowledge
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How Good is Current Deep Learning U

® DL has seen amazing progress in the last ten years.
® |s it enough to get a bigger brain (datasets, models, computer power)?

® Problems compared to Human learning:
O Sample efficiency
O Human-provided labels
O Robustness to data distribution change
O Stupid errors

SRR G A
://intl.startrek.com/sites/default /files /styles/content__full /public /images/2019-
07 /c8ffe9a587b126152ed3d89a146b 445, jpg
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How Good is Current Deep Learning

® Thinking fast and slow
O System 1
intuitive
m fast
automatic
frequent
uNconscious

Current DL

O System 2

" |ogical

" slow
effortful
infrequent
conscious

Future DL

Notation
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https: //en.wikipedia.org/wiki/File: Thinking,__Fast_and_Slow.jpg
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Curse of Dimensionality Uz

Figure 5.9, page 156 of Deep Learning Book, http://deeplearningbook.org.
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Machine and Representation Learning

NPFL114, Lecture 1 Organization

Output
Mapping from
Output Output fontures
Additional
Output Mapping from Mapping from layers of more
features features abstract
features
Hand- Hand- Simpl
designed designed Features Hefslte
features
program features
Input Input Input Input
) Deep
Rule-based Class.lc learning
machine
systems learning Representation

learning

Figure 1.5, page 10 of Deep Learning Book, http://deeplearningbook.org.
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U\L

Neural Network Architecture FX

There is a weight on each edge, and an activation function f is performed on the hidden layers,

and optionally also on the output layer.
i=f sz‘,jafj + b;
J

If the network is composed of layers, we can use matrix notation and write

h=f(Wz+b),

where W € R |hidden neurons| X [input neurons| o o Strix of weights and b € R |hidden neurons| ¢

vector of biases.
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Output Layers
® none (linear regression if there are no hidden layers)

® o (sigmoid; logistic regression if there are no hidden layers)

) 1
o(z) = ——
1+e”*
is used to model a probability p of a binary event; its input is called a logit, log ﬁ;p

® softmax (maximum entropy model if there are no hidden layers)

softmax(x) ox e*

ftmax(z), 2
softmax(x); = Zjewj

is used to model probability distribution p; its input is called a logit, log(p) + ¢
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Neural Network Activation Functions et

Hidden Layers

® none: does not help, composition of linear mapping is a linear mapping

® o: however, it works badly — nonsymmetrical, repeated application converges to the fixed
point z = o(z) ~ 0.659, and % (0) = 1/4

e tanh

O result of making o symmetrical and making the derivative in zero 1
o tanh(z) = 20(2z) — 1

® RelLU: max(0, x)
NPFL114, Lecture 1 Organization
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tanh(z)
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Universal Approximation Theorem '89

Let ¢ : R — R be a nonconstant, bounded and nondecreasing continuous function.
(Later a proof was given also for ¢ = ReL.U and even for any nonpolynomial function.)

For any € > 0 and any continuous function f : [0, 1] — R, there exists N € N, v € R¥,
bc RN and W € RY*P such that if we denote

F(z) = vl p(Wea +b),
where ¢ is applied elementwise, then for all & € [0, 1]P:

|F(x) — f(z)| <e.

NPFL114, Lecture 1 Organization Notation Random Variables Information Theory Machine Learning NNs '80s
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Universal Approximation Theorem for ReLUs UL

Sketch of the proof:

® |f a function is continuous on a closed interval, it can be approximated by a sequence of
lines to arbitrary precision.

0.1

0.05 /\
0
0.05 \J

® However, we can create a sequence of k linear segments as a sum of k RelLU units — on

every endpoint a new RelU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tanget and the tangent of the

approximation until this point.
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Evolving ReLU Approximation Uz
0.1

0.05

0.05

-0.1
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Universal Approximation Theorem for Squashes

Sketch of the proof for a squashing function () (i.e., nonconstant, bounded and

nondecreasing continuous function like sigmoid):

® \We can prove @ can be arbitrarily close to a hard threshold by compressing it horizontally.

1

7

A

b

D i WiTi

https://hackernoon.com/hn-images/1*N7dfPwbiX C-Kk4TCbfRerA.png

1

y — 1_|_e—(wT:c+b)

® Then we approximate the original function using a series of straight line segments

NPFL114, Lecture 1 Organization
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