Putting It All Together

Let us have a dataset with training, validation and test sets, each containing examples \((\mathbf{x}, y)\). Depending on \(y\), consider one of the following output activation functions:

\[
\begin{cases}
  \text{none} & \text{if } y \in \mathbb{R}, \\
  \sigma & \text{if } y \text{ is a probability of an outcome}, \\
  \text{softmax} & \text{if } y \text{ is a gold class index out of } K \text{ classes (or a full distribution)}.
\end{cases}
\]

If \(\mathbf{x} \in \mathbb{R}^D\), we can use a neural network with an input layer of size \(D\), hidden layer of size \(H\) with a non-linear activation function, and an output layer of size \(O\) (either 1 or number of classification classes) with the mentioned output function.

\textit{BTW, there are of course many functions, which could be used as output activations instead of} \(\sigma\) \textit{and softmax; however,} \(\sigma\) \textit{and softmax are almost universally used. One of the reason is that they can be derived using the maximum-entropy principle from a set of conditions, see the} \textit{Machine Learning for Greenhorns (NPFL129) lecture 5 slides}. \textit{Additionally, they are the inverses of canonical link functions of the Bernoulli and categorical distributions, respectively.}
We have

\[ h_i = f^{(1)} \left( \sum_j W^{(1)}_{i,j} x_j + b^{(1)}_i \right) \]

where

- \( W^{(1)} \in \mathbb{R}^{h \times d} \) is a matrix of weights,
- \( b^{(1)} \in \mathbb{R}^h \) is a vector of biases,
- \( f^{(1)} \) is an activation function.

The weights are sometimes also called a *kernel*.

The biases define general behaviour in case of zero/very small input.

Transformations of type \( wx + b \) are called *affine* instead of *linear*. 

\[ h = f^{(1)} \left( \sum_i W^{(1)}_{i} x_i + b^{(1)} \right) \]
Similarly

\[ o_i = f^{(2)} \left( \sum_j W^{(2)}_{i,j} h_j + b^{(2)}_i \right) \]

with

- \( W^{(2)} \in \mathbb{R}^o \times h \) another matrix of weights,
- \( b^{(2)} \in \mathbb{R}^o \) another vector of biases,
- \( f^{(2)} \) being an output activation function.
Putting It All Together

The parameters of the model are therefore $W^{(1)}, W^{(2)}, b^{(1)}, b^{(2)}$ of total size $D \times H + H \times O + H + O$.

To train the network, we repeatedly sample $m$ training examples and perform SGD (or any its adaptive variant), updating the parameters to minimize the loss.

$$\theta_i \leftarrow \theta_i - \alpha \frac{\partial L}{\partial \theta_i}$$

We set the hyperparameters (size of the hidden layer, hidden layer activation function, learning rate, ...) using performance on the validation set and evaluate generalization error on the test set.
Practical Issues

- Processing all data in *batches*.
- Vector representation of the network.

Instead of \( h_i = f^{(1)} \left( \sum_j W_{i,j}^{(1)} x_j + b_i^{(1)} \right) \), we usually write

\[
\begin{align*}
  h &= f^{(1)} \left( W^{(1)} x + b^{(1)} \right) \\
  o &= f^{(2)} \left( W^{(2)} h + b^{(2)} \right) = f^{(2)} \left( W^{(2)} \left( f^{(1)} \left( W^{(1)} x + b^{(1)} \right) \right) \right) + b^{(2)}
\end{align*}
\]

The derivatives

\[
\begin{align*}
  \frac{\partial f^{(1)}}{\partial x} \left( W^{(1)} x + b^{(1)} \right), \quad \frac{\partial f^{(1)}}{\partial W^{(1)}} \left( W^{(1)} x + b^{(1)} \right)
\end{align*}
\]

are then matrices (called *Jacobians*) or even higher-dimensional tensors.
Computation Graph

\[
\begin{align*}
x &\rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow h_4 \\
x_1 &\rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow h_4 \\
x_2 &\rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow h_4 \\
x_3 &\rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow h_4 \\
x_4 &\rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow h_4 \\
\end{align*}
\]
# High Level Overview

<table>
<thead>
<tr>
<th>Classical ('90s)</th>
<th>Deep Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>CNN, RNN, Transformer, VAE, GAN, ...</td>
</tr>
<tr>
<td>Activation func.</td>
<td>tanh, ReLU, PReLU, ELU, GELU, Swish, Mish, ...</td>
</tr>
<tr>
<td>Output function</td>
<td>none, σ, softmax</td>
</tr>
<tr>
<td>Loss function</td>
<td>MSE, NLL (or cross-entropy or KL-divergence)</td>
</tr>
<tr>
<td>Optimization</td>
<td>SGD, momentum, SGD (+ momentum), RMSProp, Adam, SGDW, AdamW, ...</td>
</tr>
<tr>
<td>Regularization</td>
<td>L2, L1, L2, Dropout, Label smoothing, BatchNorm, LayerNorm, MixUp, WeightStandardization, ...</td>
</tr>
</tbody>
</table>
Metrics and Losses

During training and evaluation, we use two kinds of error functions:

- **loss** is a *differentiable* function used during training,
  - NLL, MSE, Huber loss, Hinge, ...

- **metric** is any (and very often non-differentiable) function used during evaluation,
  - any loss, accuracy, F-score, BLEU, ...
  - possibly even human evaluation.

In TensorFlow, the losses and metrics are available in `tf.losses` and `tf.metrics` (aliases for `tf.keras.losses` and `tf.keras.metrics`).
The `tf.losses` offer two sets of APIs. The current ones are loss classes like

```python
 tf.losses.MeanSquaredError(
     reduction=tf.losses.Reduction.AUTO, name='mean_squared_error'
 )
```

The created objects are subclasses of `tf.losses.Loss` and can be always called with three arguments:

```python
__call__(y_true, y_pred, sample_weight=None)
```

which returns the loss of the given data, *reduced* using the specified reduction. If `sample_weight` is given, it is used to weight (multiply) the individual batch examples before reduction.

- `tf.losses.Reduction.SUM_OVER_BATCH_SIZE`, which is the default of `.AUTO`;
- `tf.losses.Reduction.SUM`;
- `tf.losses.Reduction.NONE`. 
TF Cross-entropy Losses

The cross-entropy losses need to specify also the distribution in question:

- `tf.losses.BinaryCrossentropy`: the gold and predicted distributions are Bernoulli distributions (i.e., a single probability);
- `tf.losses.CategoricalCrossentropy`: the gold and predicted distributions are categorical distributions;
- `tf.losses.SparseCategoricalCrossentropy`: a special case, where the gold distribution is one-hot distribution (i.e., a single correct class), which is represented as the gold class index; therefore, it has one less dimension than the predicted distribution.

These losses expect probabilities on input, but offer `from_logits` argument, which can be used to indicate that logits are used instead of probabilities.

**Old losses API**

In addition to the loss objects, `tf.losses` offers methods like `tf.losses.mean_squared_error`, which process two arguments `y_true` and `y_pred`. 
There are two important differences between metrics and losses.

1. metrics may be non-differentiable;
2. metrics **aggregate** results over multiple batches.

The metric objects are subclasses of `tf.losses.Metric` and offer the following method:

- `update_state(y_true, y_pred, sample_weight=None)` updates the value of the metric and stores it;
- `result()` returns the current value of the metric;
- `reset_states()` clears the stored state of the metric.

The most common pattern is using the provided

```
__call__(y_true, y_pred, sample_weight=None)
```

method, which is a combination of `update_state` followed by a `result()`.
TF Metrics

Apart from analogues of the losses

- `tf.metrics.MeanSquaredError`
- `tf.metrics.BinaryCrossentropy`
- `tf.metrics.CategoricalCrossentropy`
- `tf.metrics.SparseCategoricalCrossentropy`

the `tf.metrics` provide

- `tf.metrics.Mean` computes averaged mean;
- `tf.metrics.Accuracy` returns accuracy, which is an average number of examples where the prediction is equal to the gold value;
- `tf.metrics.BinaryAccuracy` returns accuracy of predicting a Bernoulli distribution (the gold value is 0/1, the prediction is a probability);
- `tf.metrics.CategoricalAccuracy` returns accuracy of predicting a Categorical distribution (the argmaxes of gold and predicted distributions are equal);
- `tf.metrics.SparseCategoricalAccuracy` again a special case, there the gold distribution is represented as the gold class index.
Derivative of MSE Loss

Given the MSE loss of

\[ L = (y - \hat{y}(x; \theta))^2 = (\hat{y}(x; \theta) - y)^2, \]

the derivative with respect to \( \hat{y} \) is simply:

\[ \frac{\partial L}{\hat{y}(x; \theta)} = 2(\hat{y}(x; \theta) - y). \]
Let us have a softmax output layer with

\[ o_i = \frac{e^{z_i}}{\sum_j e^{z_j}}. \]
Consider now the MLE estimation. The loss for gold class index \textit{gold} is then

$$L(\text{softmax}(z), \text{gold}) = - \log o_{\text{gold}}.$$ 

The derivation of the loss with respect to $z$ is then

$$\frac{\partial L}{\partial z_i} = \frac{\partial}{\partial z_i} \left[ - \log \frac{e^{z_{\text{gold}}}}{\sum_j e^{z_j}} \right] = - \frac{\partial z_{\text{gold}}}{\partial z_i} + \frac{\partial \log (\sum_j e^{z_j})}{\partial z_i}$$

$$= - \left[ \text{gold} = i \right] + \frac{1}{\sum_j e^{z_j}} e^{z_i}$$

$$= - \left[ \text{gold} = i \right] + o_i.$$

Therefore, $\frac{\partial L}{\partial z} = o - 1_{\text{gold}}$, where $1_{\text{gold}}$ is 1 at index \textit{gold} and 0 otherwise.
Derivative of Softmax MLE Loss

Gold distribution

Model distribution

Loss derivative with respect to the softmax inputs.
Derivative of Softmax and Sigmoid MLE Losses

In the previous case, the gold distribution was *sparse*, with only one target probability being 1. In the case of general gold distribution \( g \), we have

\[
L(\text{softmax}(z), g) = - \sum_i g_i \log o_i.
\]

Repeating the previous procedure for each target probability, we obtain

\[
\frac{\partial L}{\partial z} = o - g.
\]

**Sigmoid**

Analogously, for \( o = \sigma(z) \) we get \( \frac{\partial L}{\partial z} = o - g \), where \( g \) is the target gold probability.
Gold distribution

Model distribution

Loss derivative with respect to the softmax inputs.
As already mentioned, regularization is any change in the machine learning algorithm that is designed to reduce generalization error but not necessarily its training error.

Regularization is usually needed only if training error and generalization error are different. That is often not the case if we process each training example only once. Generally the more training data, the better generalization performance.

- Early stopping
- L2, L1 regularization
- Dataset augmentation
- Ensembling
- Dropout
- Label smoothing
Regularization – Early Stopping

![Graph showing training and validation set loss over time](http://deeplearningbook.org)

Figure 7.3, page 246 of Deep Learning Book, http://deeplearningbook.org
L2 Regularization

We prefer models with parameters small under L2 metric.

The L2 regularization, also called *weight decay*, *Tikhonov regularization* or *ridge regression* therefore minimizes

\[
\tilde{J}(\theta; X) = J(\theta; X) + \lambda \|\theta\|_2^2
\]

for a suitable (usually very small) \(\lambda\).

During the parameter update of SGD, we get

\[
\theta_i \leftarrow \theta_i - \alpha \frac{\partial J}{\partial \theta_i} - 2\alpha \lambda \theta_i
\]
L2 Regularization

Figure 7.1, page 233 of Deep Learning Book, http://deeplearningbook.org
Another way to arrive at L2 regularization is to utilize Bayesian inference. With MLE we have

$$\theta_{\text{MLE}} = \arg \max_\theta p(\mathbf{X}; \theta).$$

Instead, we may want to maximize maximum a posteriori (MAP) point estimate:

$$\theta_{\text{MAP}} = \arg \max_\theta p(\theta; \mathbf{X})$$

Using Bayes' theorem

$$p(\theta; \mathbf{X}) = p(\mathbf{X}; \theta)p(\theta)/p(\mathbf{X}),$$

we get

$$\theta_{\text{MAP}} = \arg \max_\theta p(\mathbf{X}; \theta)p(\theta).$$
L2 Regularization as MAP

The $p(\theta)$ are prior probabilities of the parameter values (our *preference*).

One possibility for such a prior is $\mathcal{N}(\theta; 0, \sigma^2)$.

Then

$$\theta_{\text{MAP}} = \arg\max_{\theta} p(X; \theta)p(\theta)$$

$$= \arg\max_{\theta} \prod_{i=1}^{m} p(x^{(i)}; \theta)p(\theta)$$

$$= \arg\min_{\theta} \sum_{i=1}^{m} -\log p(x^{(i)}; \theta) - \log p(\theta)$$

By substituting the probability of the Gaussian prior, we get

$$\theta_{\text{MAP}} = \arg\min_{\theta} \sum_{i=1}^{m} -\log p(x^{(i)}; \theta) - \frac{1}{2} \log(2\pi\sigma^2) + \frac{\|\theta\|^2}{2\sigma^2}$$
L1 Regularization

Similar to L2 regularization, but we prefer low L1 metric of parameters. We therefore minimize

$$\tilde{J}(\theta; X) = J(\theta; X) + \lambda \|\theta\|_1$$

The corresponding SGD update is then

$$\theta_i \leftarrow \theta_i - \alpha \frac{\partial J}{\partial \theta_i} - \text{sign}(\theta_i) \alpha \lambda.$$
For some data, it is cheap to generate slightly modified examples.

- Image processing: translations, horizontal flips, scaling, rotations, color adjustments, ...
  - Mixup (appeared in 2017)

![Diagram showing ERM and mixup](image)

(b) Effect of mixup on a toy problem. 
*Figure 1b of paper "Mixup: Beyond Empirical Risk Minimization", https://arxiv.org/abs/1710.09412*

- Speech recognition: noise, frequency change, ...
- More difficult for discrete domains like text.
Ensembling (also called *model averaging* or in some contexts *bagging*) is a general technique for reducing generalization error by combining several models. The models are usually combined by averaging their outputs (either distributions or output values in case of a regression).

The main idea behind ensembling is that if models have uncorrelated (independent) errors, then by averaging model outputs the errors will cancel out. If we denote the prediction of a model $y_i$ on a training example $(x, y)$ as $y_i(x) = y + \epsilon_i(x)$, so that $\epsilon_i(x)$ is the model error on example $x$, the mean square error of the model is $E[(y_i(x) - t)^2] = E[\epsilon_i^2(x)]$.

Because for uncorrelated identically distributed random values $x_i$ we have

$$\text{Var} \left( \sum x_i \right) = \sum \text{Var}(x_i), \text{Var}(a \cdot x) = a^2 \text{Var}(x),$$

we get that $\text{Var} \left( \frac{1}{n} \sum \epsilon_i \right) = \frac{1}{n} \text{Var}(\epsilon_1)$, so the errors should decrease with the increasing number of models.

However, ensembling usually has high performance requirements.
Regularization – Ensembling

There are many possibilities how to train the models to average:

- Generate different datasets by sampling with replacement (bagging).

- Use random different initialization.
- Average models from last hours/days of training.

Figure 7.5, page 257 of Deep Learning Book, http://deeplearningbook.org
How to design good universal features?

- In reproduction, evolution is achieved using gene swapping. The genes must not be just good with combination with other genes, they need to be universally good.

Idea of dropout by (Srivastava et al., 2014), in preprint since 2012.

When applying dropout to a layer, we drop each neuron independently with a probability of $p$ (usually called dropout rate). To the rest of the network, the dropped neurons have value of zero.

Figure 4 of paper "Multiple Instance Fuzzy Inference Neural Networks" by Amine B. Khalifa et al.
Regularization – Dropout

Dropout is performed only when training, during inference no nodes are dropped. However, in that case we need to *scale the activations down* by a factor of $1 - p$ to account for more neurons than usual.
Alternatively, we might *scale the activations up* during training by a factor of $1/(1 - p)$.
Regularization – Dropout as Ensembling

Figure 7.6, page 260 of Deep Learning Book, http://deeplearningbook.org
Regularization – Dropout Effect

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified linear units.

Figure 7 of paper “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
def dropout(inputs, rate=0.5, training=False):
    def do_inference():
        return inputs

    def do_train():
        random_noise = tf.random.uniform(tf.shape(inputs))
        mask = tf.cast(tf.less(random_noise, rate), tf.float32)
        return inputs * mask / (1 - rate)

    if training:
        return do_train()
    else:
        return do_inference()
Regularization – Label Smoothing

Problem with softmax MLE loss is that it is *never satisfied*, always pushing the gold label probability higher (but it saturates near 1).

This behaviour can be responsible for overfitting, because the network is always commanded to respond more strongly to the training examples, not respecting similarity of different training examples.

Ideally, we would like a full (non-sparse) categorical distribution of classes for training examples, but that is usually not available.

We can at least a simple smoothing technique, called *label smoothing*, which allocates some small probability volume $\alpha$ uniformly for all possible classes.

The target distribution is then

$$ (1 - \alpha)1_{\text{gold}} + \alpha \frac{1}{\text{number of classes}}. $$
Gold distribution

Smoothed distribution
When you need to regularize, then a good default strategy is to:

- use dropout on all hidden dense layers (not on the output layer), good default dropout rate is 0.5 (or use 0.3 if the model is underfitting);
- use L2 regularization for your convolutional networks;
- use label smoothing (start with 0.1);
- if you require best performance and have a lot of resources, also perform ensembling.
Convergence

The training process might or might not converge. Even if it does, it might converge slowly or quickly.

A major issue of convergence of deep networks is to make sure that the gradient with respect to all parameters is reasonable at all times, i.e., it does not decrease or increase too much with depth or in different batches.

There are *many* factors influencing the gradient, convergence and its speed, we now mention three of them:

- saturating non-linearities,
- parameter initialization strategies,
- gradient clipping.
Convergence – Saturating Non-linearities

Plot of the Sigmoid Function $\sigma(x)$

Plot of the ReLU Function

Plot of the Tanh Function
Convergence – Parameter Initialization

Neural networks usually need random initialization to *break symmetry*.

- Biases are usually initialized to a constant value, usually 0.
- Weights are usually initialized to small random values, either with uniform or normal distribution.
  - The scale matters for deep networks!
  - Originally, people used $U\left[-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right]$ distribution.

The authors theoretically and experimentally show that a suitable way to initialize a $\mathbb{R}^{n \times m}$ matrix is

$$U\left[-\sqrt{\frac{6}{m+n}}, \sqrt{\frac{6}{m+n}}\right].$$
Convergence – Parameter Initialization

Figure 6 of paper "Understanding the difficulty of training deep feedforward neural networks", http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.
Figure 7 of paper “Understanding the difficulty of training deep feedforward neural networks”, http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.
Convergence – Gradient Clipping

Figure 8.3, page 289 of Deep Learning Book, http://deeplearningbook.org
Using a given maximum norm, we may *clip* the gradient.

\[
g \left\{ \begin{array}{ll}
g & \text{if } \|g\| \leq c, \\
c \frac{g}{\|g\|} & \text{if } \|g\| > c.
\end{array} \right.
\]

Clipping can be performed per weight (parameter *clipvalue* of `tf.optimizers.Optimizer`), per variable (clipnorm) or for the gradient as a whole (global clipnorm).

*Figure 10.17, page 414 of Deep Learning Book, http://deeplearningbook.org*