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Neural Architecture Search (NASNet) – 2017

We can design neural network architectures using reinforcement learning.

The designed network is encoded as a sequence of elements, and is generated using an RNN
controller, which is trained using the REINFORCE with baseline algorithm.

  

   

   

  

  

  

  

     

   

 

Figure 1 of paper "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012.

For every generated sequence, the corresponding network is trained on CIFAR-10 and the
development accuracy is used as a return.
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Neural Architecture Search (NASNet) – 2017

The overall architecture of the designed network is fixed and only the Normal Cells and
Reduction Cells are generated by the controller.

 

Figure 2 of paper "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012.
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Neural Architecture Search (NASNet) – 2017

Each cell is composed of  blocks (  is used in NASNet).

Each block is designed by a RNN controller generating 5 parameters.

 

Figure 3 of paper "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012.

              

    

              

              

              

               

   

 

Page 3 of paper "Learning Transferable Architectures for Scalable Image Recognition",
https://arxiv.org/abs/1707.07012.

      

        

       

       

     

       

   

 

Figure 2 of paper "Learning Transferable Architectures for Scalable Image Recognition",
https://arxiv.org/abs/1707.07012.

B B = 5
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Neural Architecture Search (NASNet) – 2017

The final proposed Normal Cell and Reduction Cell:

 

Page 3 of paper "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012.
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EfficientNet Search

EfficientNet changes the search in two ways.

Computational requirements are part of the return. Notably, the goal is to find an
architecture  maximizing

where the constant  balances the accuracy and FLOPS.

Using a different search space, which allows to control kernel sizes and channels in different
parts of the overall architecture (compared to using the same cell everywhere as in
NASNet).

m

DevelopmentAccuracy(m) ⋅  (
FLOPS(m)

TargetFLOPS=400M
)

0.07

0.07
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EfficientNet Search

       

       

     

      

         

    

      

 

Page 4 of paper "MnasNet: Platform-Aware Neural
Architecture Search for Mobile",

https://arxiv.org/abs/1807.11626.

 

Figure 4 of paper "MnasNet: Platform-Aware Neural Architecture Search for Mobile", https://arxiv.org/abs/1807.11626.

 

The overall architecture consists of 7 blocks, each described by 6
parameters – 42 parameters in total, compared to 50 parameters of
NASNet search space.
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EfficientNet-B0 Baseline Network

    

 
 






     

      

      

      

      

      

      

      

         

 

Table 1 of paper "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", https://arxiv.org/abs/1905.11946
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WaveNet

Our goal is to model speech, using a auto-regressive model

 

Figure 2 of paper "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499.

P (x) =  P (x  ∣x  , … ,x ).
t

∏ t t−1 1
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WaveNet

 

Figure 3 of paper "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499.
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WaveNet

Output Distribution
The raw audio is usually stored in 16-bit samples. However, classification into  classes

would not be tractable, and instead WaveNet adopts -law transformation and quantize the

samples into 256 values using

Gated Activation
To allow greater flexibility, the outputs of the dilated convolutions are passed through the gated
activation units

65 536
μ

sign(x)  .
ln(1 + 255)

ln(1 + 255∣x∣)

z = tanh(W  ∗f x) ⋅ σ(W  ∗g x).
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WaveNet

 

Figure 4 of paper "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499.
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WaveNet

Global Conditioning
Global conditioning is performed by a single latent representation , changing the gated

activation function to

Local Conditioning
For local conditioning, we are given a time series , possibly with a lower sampling frequency.

We first use transposed convolutions  to match resolution and then compute

analogously to global conditioning

h

z = tanh(W  ∗f x + V  h) ⋅f σ(W  ∗g x + V  h).g

h  t

y = f(h)

z = tanh(W  ∗f x + V  ∗f y) ⋅ σ(W  ∗g x + V  ∗g y).
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WaveNet

The original paper did not mention hyperparameters, but later it was revealed that:

30 layers were used
grouped into 3 dilation stacks with 10 layers each
in a dilation stack, dilation rate increases by a factor of 2, starting with rate 1 and
reaching maximum dilation of 512

filter size of a dilated convolution is 3

residual connection has dimension 512

gating layer uses 256+256 hidden units

the  output convolution produces 256 filters

trained for  steps using Adam with a fixed learning rate of 

1 × 1

1 000 000 0.0002
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WaveNet

 

Figure 5 of paper "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499.
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Parallel WaveNet

The output distribution was changed from 256 -law values to a Mixture of Logistic (suggested

in another paper – PixelCNN++, but reused in other architectures since):

The logistic distribution is a distribution with a  as cumulative density function (where the

mean and scale is parametrized by  and ). Therefore, we can write

where we replace -0.5 and 0.5 in the edge cases by  and .

In Parallel WaveNet, 10 mixture components are used.

μ

ν ∼  π  logistic(μ  , s  ).
i

∑ i i i

σ

μ s

P (x∣π,μ, s) =  π  [σ((x +
i

∑ i 0.5 − μ  )/s  ) −i i σ((x − 0.5 − μ  )/s  )],i i

−∞ ∞
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Parallel WaveNet

Auto-regressive (sequential) inference is extremely slow in WaveNet.

Instead, we use a following trick. We will model  as  for a random  drawn

from a logistic distribution. Then, we compute

Usually, one iteration of the algorithm does not produce good enough results – 4 iterations
were used by the authors. In further iterations,

After  iterations,  is a logistic distribution with location  and scale  with

P (x  )t P (x  ∣z  )t <t z

x  =t
1 z  ⋅t s (z  ) +1

<t μ (z  ).1
<t

x  =t
i x  ⋅t

i−1 s (x  ) +i
<t
i−1 μ (x  ).i

<t
i−1

N P (x  ∣z  )t
N

≤t μ  tot s  tot

μ  =tot  μ (x  ) ⋅
i

∑
N

i
<t
i−1

 s (x  )   and  s  =(∏
j>i

N
j

<t
j−1 ) tot  s (x  ).

i

∑
N

i
<t
i−1
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Parallel WaveNet

The network is trained using a probability density distillation using a teacher WaveNet, using
KL-divergence as loss.

 

   

 



 

 

 

 

 

 

  

 

Figure 2 of paper "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433.

18/44NPFL114, Lecture 12 NASNet WaveNet ParallelWaveNet Tacotron NTM DNC MANN



Parallel WaveNet

Denoting the teacher distribution as  and the student distribution as , the loss is

specifically

Therefore, we do not only minimize cross-entropy, but we also try to keep the entropy of the
student as high as possible. That is crucial not to match just the mode of the teacher.
(Consider a teacher generating white noise, where every sample comes from  – in this

case, the cross-entropy loss of a constant , complete silence, would be maximal.)

In a sense, probability density distillation is similar to GANs. However, the teacher is kept fixed
and the student does not attempt to fool it but to match its distribution instead.

P  T P  S

D  (P  ∣∣P  ) =KL S T H(P  ,P  ) −S T H(P  ).S

N (0, 1)
0
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Parallel WaveNet

With the 4 iterations, the Parallel WaveNet generates over 500k samples per second, compared
to ~170 samples per second of a regular WaveNet – more than a 1000 times speedup.

   

    
     
     
    

     
    
    
    

 

Table 1 of paper "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433.
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Tacotron

 

Figure 1 of paper "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884.
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Tacotron

 

  

   

  

   

   

     

 

Table 1 of paper "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884.
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Tacotron

 

Figure 2 of paper "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884.
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Neural Turing Machines

So far, all input information was stored either directly in network weights, or in a state of a
recurrent network.

However, mammal brains seem to operate with a working memory – a capacity for short-term
storage of information and its rule-based manipulation.

We can therefore try to introduce an external memory to a neural network. The memory 

will be a matrix, where rows correspond to memory cells.

M
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Neural Turing Machines

The network will control the memory using a controller which reads from the memory and
writes to is. Although the original paper also considered a feed-forward (non-recurrent)
controller, usually the controller is a recurrent LSTM network.

 

Figure 1 of paper "Neural Turing Machines", https://arxiv.org/abs/1410.5401.
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Neural Turing Machine

Reading
To read the memory in a differentiable way, the controller at time  emits a read distribution 

over memory locations, and the returned read vector  is then

Writing
Writing is performed in two steps – an erase followed by an add. The controller at time  emits

a write distribution  over memory locations, and also an erase vector  and an add vector 

. The memory is then updates as

t w  t

r  t

r  =t  w  (i) ⋅
i

∑ t M  (i).t

t

w  t e  t

a  t

M  (i) =t M (i)[1 −t−1 w  (i)e  ] +t t w  (i)a  .t t
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Neural Turing Machine

The addressing mechanism is designed to allow both

content addressing, and
location addressing.

 

Figure 2 of paper "Neural Turing Machines", https://arxiv.org/abs/1410.5401.
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Neural Turing Machine

Content Addressing
Content addressing starts by the controller emitting the key vector , which is compared to all

memory locations , generating a distribution using a  with temperature .

The  measure is usually the cosine similarity

k  t

M  (i)t softmax β  t

w  (i) =t
c

 exp(β  ⋅ distance(k  ,M  (j))∑j t t t

exp(β  ⋅ distance(k  ,M  (i))t t t

distance

distance(a, b) = .
∣∣a∣∣ ⋅ ∣∣b∣∣

a ⋅ b
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Neural Turing Machine

Location-Based Addressing
To allow iterative access to memory, the controller might decide to reuse the memory location
from the previous timestep. Specifically, the controller emits interpolation gate  and defines

Then, the current weighting may be shifted, i.e., the controller might decide to “rotate” the
weights by a small integer. For a given range (the simplest case are only shifts ), the

network emits  distribution over the shifts, and the weights are then defined using a

circular convolution

Finally, not to lose precision over time, the controller emits a sharpening factor  and the final

memory location weights are 

g  t

w  =t
g

g  w  +t t
c (1 − g  )w  .t t−1

{−1, 0, 1}
softmax

 (i) =w~t  w  (j)s  (i −
j

∑ t
g

t j).

γ  t

w  (i) =t  (i) /   (j) .w~t
γ  t ∑j w

~
t

γ  t
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Neural Turing Machine

Overall Execution
Even if not specified in the original paper, following the DNC paper, the LSTM controller can
be implemented as a (potentially deep) LSTM. Assuming  read heads and one write head, the

input is  and  read vectors  from the previous time step, the output of the

controller are vectors , and the final output is . The  is a

concatenation of

R

x  t R r  , … , r  t−1
1

t−1
R

(ν  , ξ  )t t y  =t ν  +t W  [r  , … , r  ]r t
1

t
R ξ  t

k  , β  , g  , s  , γ  ,k  , β  , g  , s  , γ  , … ,k  , β  , g  , s  , γ  , e  ,a  .t
1

t
1

t
1

t
1

t
1

t
2
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2

t
2
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w
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Neural Turing Machines

Copy Task
Repeat the same sequence as given on input. Trained with sequences of length up to 20.

 

Figure 3 of paper "Neural Turing Machines", https://arxiv.org/abs/1410.5401.
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Neural Turing Machines

                

              

                

                

                

                 

              

     

 

Figure 4 of paper "Neural Turing Machines", https://arxiv.org/abs/1410.5401.
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Neural Turing Machines

             

              

               

              

          

 

Figure 5 of paper "Neural Turing Machines", https://arxiv.org/abs/1410.5401.
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Neural Turing Machines

 

Figure 6 of paper "Neural Turing Machines", https://arxiv.org/abs/1410.5401.
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Neural Turing Machines

Associative Recall
In associative recall, a sequence is given on input, consisting of subsequences of length 3. Then
a randomly chosen subsequence is presented on input and the goal is to produce the following
subsequence.
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Neural Turing Machines

 

Figure 11 of paper "Neural Turing Machines", https://arxiv.org/abs/1410.5401.
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Neural Turing Machines

 

Figure 12 of paper "Neural Turing Machines", https://arxiv.org/abs/1410.5401.
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Differentiable Neural Computer

NTM was later extended to a Differentiable Neural Computer.

  

  







  






























 

Figure 1 of paper "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101.
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Differentiable Neural Computer

The DNC contains multiple read heads and one write head.

The controller is a deep LSTM network, with input at time  being the current input  and 

read vectors  from previous time step. The output of the controller are vectors 

, and the final output is . The  is a concatenation of

parameters for read and write heads (keys, gates, sharpening parameters, …).

In DNC, the usage of every memory location is tracked, which enables performing dynamic
allocation – at each time step, a cell with least usage can be allocated.

Furthermore, for every memory location, we track which memory location was written to
previously ( ) and subsequently ( ), allowing to recover sequences in the order in which it

was written, independently on the real indices used.

The write weighting is defined as a weighted combination of the allocation weighting and write
content weighting, and read weighting is computed as a weighted combination of read content
weighting, previous write weighting, and subsequent write weighting.

t x  t R

r  , … , r  t−1
1

t−1
R

(ν  , ξ  )t t y  =t ν  +t W  [r  , … , r  ]r t
1

t
R ξ  t

b  t f  t
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Differentiable Neural Computer

 



 

 







  







 

 

 



























































































 

Figure 2 of paper "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101.
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Differentiable Neural Computer











 

































































































































































































































































  





































































































































































































































































  







      

 

Figure 3 of paper "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101.
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Memory-augmented Neural Networks

External memory can be also utilized for learning to learn. Consider a network, which should
learn classification into a user-defined hierarchy by observing ideally a small number of samples.

Apart from finetuning the model and storing the information in the weights, an alternative is to
store the samples in external memory. Therefore, the model learns how to store the data and
access it efficiently, which allows it to learn without changing its weights.

 

Figure 1 of paper "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065.
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Memory-augmented NNs

 

Page 3 of paper "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065.

 

Page 4 of paper "One-shot learning with Memory-Augmented Neural
Networks", https://arxiv.org/abs/1605.06065.
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Memory-augmented NNs

 

Figure 2 of paper "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065.
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