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Generative Models

Generative models are given a set  of realizations of a random variable  and their goal is to

estimate .

Usually the goal is to be able to sample from , but sometimes an explicit calculation of 

 is also possible.
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Deep Generative Models

 

Figure 1 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

One possible approach to estimate  is to assume that the random variable  depends on a

latent variable :

We use neural networks to estimate the conditional probability with .

P (x) x
z

P (x) =  P (z)P (x∣z) =
z

∑ E  P (x∣z).z∼P (z)

P  (x∣z)θ
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AutoEncoders

  

Autoencoders are useful for unsupervised feature extraction, especially when performing
input compression (i.e., when the dimensionality of the latent space  is smaller than the

dimensionality of the input).

When  is used as input, autoencoders can perform denoising.

However, the latent space  does not need to be fully covered, so a randomly chosen 

does not need to produce a valid .
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x + ε

z z

x
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Variational AutoEncoders

We assume  is fixed and independent on .

We approximate  using . However, in order to train an autoencoder, we need

to know the posterior , which is usually intractable.

We therefore approximate  by a trainable .

P (z) x

P (x∣z) P  (x∣z)θ

P  (z∣x)θ

P  (z∣x)θ Q  (z∣x)φ
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Variational AutoEncoders

Let us define variational lower bound or evidence lower bound (ELBO), denoted , as

Because KL-divergence is non-negative, 

By using simple properties of conditional and joint probability, we get that

L(θ,φ;x)

L(θ,φ;x) = log P  (x) −θ D  (Q  (z∣x)∣∣P  (z∣x)).KL φ θ

L(θ,φ;x) ≤ log P  (x).θ

 =L(θ,φ;x) E  [log P  (x) +Q  (z∣x)φ θ log P  (z∣x) −θ log Q  (z∣x)]φ

= E  [log P  (x, z) −Q  (z∣x)φ θ log Q  (z∣x)]φ

= E  [log P  (x∣z) +Q  (z∣x)φ θ log P (z) − log Q  (z∣x)]φ

= E  [log P  (x∣z)] −Q  (z∣x)φ θ D  (Q  (z∣x)∣∣P (z)).KL φ
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Variational AutoEncoders

We train a VAE by maximizing .

The distribution  is parametrized as a normal distribution , with the

model predicting  and  given .

The normal distribution is used, because we can sample from it efficiently, we can
backpropagate through it and we can compute  analytically; furthermore, if we

decide to parametrize  using mean and variance, the maximum entropy

principle suggests we should use the normal distribution.

The  is estimated using a single sample.

We use a prior .

L(θ,φ;x) = E  [log P  (x∣z)] −Q  (z∣x)φ θ D  (Q  (z∣x)∣∣P (z))KL φ

L(θ,φ;x)
Q  (z∣x)φ N (z∣μ,σ )2

μ logσ2 x

D  KL

Q  (z∣x)φ

E  Q  (z∣x)φ

P (z) = N (0,1)
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Variational AutoEncoders








  







  


 
 



Note that the loss has 2 intuitive components:

reconstruction loss – starting with , passing though , sampling  and then passing

through  should arrive back at ;

latent loss – over all , the distribution of  should be as close as possible to the

prior , which is independent on .

L(θ,φ;x) = E  [log P  (x∣z)] −Q  (z∣x)φ θ D  (Q  (z∣x)∣∣P (z))KL φ

x Q  φ z

P  θ x

x Q  (z∣x)φ

P (z) = N (0,1) x
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VAE – Reparametrization Trick

In order to backpropagate through , note that if

we can write  as

Such formulation then allows differentiating  with respect to  and  and is called a

reparametrization trick (Kingma and Welling, 2013).

z ∼ Q  (z∣x)φ

z ∼ N (μ,σ ),2

z

z ∼ μ + σ ⋅ N (0,1).

z μ σ
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Variational AutoEncoders

 

Figure 4 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.
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Variational AutoEncoders

 

Figure 5 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.
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VAE – Too High Latent Loss
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VAE – Too High Reconstruction Loss
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Generative Adversarial Networks

We have a generator, which given  generates data .

We denote the generator as .

Then we have a discriminator, which given data  generates a probability whether  comes

from real data or is generated by a generator.

We denote the discriminator as .

The discriminator and generator play the following game:

z ∼ P (z) x

G(z; θ  )g

x x

D(x; θ  )d

 E  [log D(x)] +
G

min
D

max x∼P  data E  [log(1 −z∼P (z) D(G(z)))].
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Generative Adversarial Networks

 

Figure 1 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.

The generator and discriminator are alternately trained, the discriminator by

and the generator by

In a sense, the discriminator acts as a trainable loss for the generator.

 E  [log D(x)] +
θ  d

arg max x∼P  data E  [log(1 −z∼P (z) D(G(z)))]

 E  [log(1 −
θ  g

arg min z∼P (z) D(G(z)))].
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Generative Adversarial Networks

Because  can saturate in the beginning of the training, where the

discriminator can easily distinguish real and generated samples, the generator can be trained by

instead, which results in the same fixed-point dynamics, but much stronger gradients early in
learning.

log(1 − D(G(z)))

 E  [− log D(G(z))]
θ  g

arg min z∼P (z)
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Generative Adversarial Networks

 

Algorithm 1 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.
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Generative Adversarial Networks

 

Figure 2 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.
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Conditional GAN

 

Figure 1 of paper "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784.
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Deep Convolutional GAN

In Deep Convolutional GAN, the discriminator is a convolutional network (with batch
normalization) and the generator is also a convolutional network, utilizing transposed
convolutions.

 

Figure 1 of paper "An Online Learning Approach to Generative Adversarial Networks", https://arxiv.org/abs/1706.03269.
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Deep Convolutional GAN

 

Figure 1 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN

 

Figure 2 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN

 

Figure 3 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN

 

Figure 4 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN

 

Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN

 

Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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Deep Convolutional GAN

 

Figure 8 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.
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GANs are Problematic to Train

Unfortunately, alternating SGD steps are not guaranteed to reach even a local optimum of a
minimax problem – consider the following one:

The update rules of  and  for learning rate  are

The update matrix is a rotation matrix multiplied by a constant 

so the SGD will not converge with arbitrarily small step size.

  x ⋅
x

min
y

max y.

x y α

 =[
x  n+1

y  n+1
]    .[

1
α

−α

1
] [

x  n

y  n
]

 >1 + α2 1

  =[
1
α

−α

1 ]  ⋅1 + α2
  ,[

cosφ
sin φ

− sin φ

cosφ ]
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GANs are Problematic to Train

 

Figure 1 of paper "Fictitious GAN: Training GANs with Historical Models", https://arxiv.org/abs/1803.08647.
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GANs are Problematic to Train

Mode collapse

 

Figure 2 of paper "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163.

If the generator could see the whole batch, similar samples in it would be candidates for
fake images.

Batch normalization helps a lot with this.

Historical averaging

Label smoothing of only positive samples helps with the gradient flow.
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Wasserstein GAN

Standard GANs optimize the Jensen-Shannon divergence

because for a fixed generator , the optimum discriminator 

Therefore,

JS(p, q) =  D  (p∣∣(p +
2
1

KL q)/2)+  D  (q∣∣(p +
2
1

KL q)/2),

G D  (x) =G
∗

 .
P  (x)+P  (x)data generator

P  (x)data

  

=

=

=

E  [log D  (x)] + E  [log(1 − D  (G(z)))]x∼P  data G
∗

z∼P (z) G
∗

E  [log D  (x)] + E  [log(1 − D  (x)))]x∼P  data G
∗

x∼P  generator G
∗

E  log  + E  log  x∼P  data [
P  (x) + P  (x)data generator

P  (x)data ] x∼P  generator [
P  (x) + P  (x)data generator

P  (x)generator ]

D  P    + D  P    + c.KL ( data
∥
∥
∥∥
∥

2
P  + P  data generator ) KL ( generator

∥
∥
∥∥
∥

2
P  + P  data generator )
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Wasserstein GAN

Instead of minimizing JS divergence

Wasserstein GAN minimizes Earth-Mover distance

The joint distribution  indicates how much “mass” must be transported from  to 

, and EM is the “cost” of the optimal transport plan.

JS(p, q) =  D  (p∣∣(p +
2
1

KL q)/2)+  D  (q∣∣(p +
2
1

KL q)/2),

W(p, q) =  E  [∣∣x −
γ∈Π(p,q)

inf (x,y)∼γ y∣∣].

γ ∈ Π(p, q) x

y
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Wasserstein GAN

 

Figure 1 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

The EM distance behaves much better than JS.

For example, imagine that  is a distribution on , which is uniform on  for 

 and that  is a distribution on  uniform on  for .

Then

while

P  0 R2 (0, y) 0 ≤
y ≤ 1 P  θ R2 (θ, y) 0 ≤ y ≤ 1

JS(P  ,P  ) =0 θ   ,{
0
log  2

if θ = 0
if θ  = 0

W(P  ,P  ) =0 θ ∣θ∣.
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Wasserstein GAN

Using a dual version of the Earth-Mover definition, we arrive at

so the discriminator returns a single output without activation and it needs to be 1-Lipschitz.

 

Figure 2 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

W(p, q) =  E  [f(x)]−
f ,∣∣f ∣∣  ≤1L

sup x∼p E  [f(x)],y∼q
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Wasserstein GAN

           
              

             
          

         
      

       

  
        

  
       

   








  




 




        
    
  

  
       

   





 


        
  

 

Algorithm 1 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.
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Wasserstein GAN

 

Figures 5 and 6 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.
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Wasserstein GAN

 

Figure 7 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.
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Development of GANs

Generative Adversarial Networks are still in active development:

Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen: Progressive Growing of GANs

for Improved Quality, Stability, and Variation https://arxiv.org/abs/1710.10196

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida: Spectral

Normalization for Generative Adversarial Networks https://arxiv.org/abs/1802.05957

Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Jiadong Liang, Weinan Zhang,
Zhihua Zhang, Yong Yu: Understanding the Effectiveness of Lipschitz-Continuity in

Generative Adversarial Nets https://arxiv.org/abs/1807.00751

Andrew Brock, Jeff Donahue, Karen Simonyan: Large Scale GAN Training for High

Fidelity Natural Image Synthesis https://arxiv.org/abs/1809.11096

Tero Karras, Samuli Laine, Timo Aila: A Style-Based Generator Architecture for

Generative Adversarial Networks https://arxiv.org/abs/1812.04948

Alternative approaches are also explored: Diederik P. Kingma, Prafulla Dhariwal: Glow:

Generative Flow with Invertible 1x1 Convolutions https://arxiv.org/abs/1807.03039
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BigGAN

 

Figure 1 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.

 

Figure 2 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.
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BigGAN

 

Figure 7 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.
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BigGAN Ingredients – Hinge Loss

The Wasserstein GAN formulation can be considered a linear classifier, which tries to
maximize the mean distance of real and generated images using their features.

 

Figure 2 of paper "Geometric GAN", https://arxiv.org/abs/1705.02894.
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BigGAN Ingredients – Hinge Loss

 

Figure 2 of paper "Geometric GAN", https://arxiv.org/abs/1705.02894.

We could aim for maximum margin classifier by using Hinge loss, updating the
discriminator by

and the generator by

  

  
θ  d

arg max E  [min(0, −1 + D(x)]x∼P  data

+ E  [min(0, −1 − D(G(z))]z∼P (z)

 E  [−D(G(z)))].
θ  g

arg min z∼P (z)
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BigGAN Ingredients – Spectral Normalization

     

    
                 


       

          

    
  

  
 

      

 


          

 

              

        


  

 

Algoritm 1 of paper "Spectral Normalization for Generative Adversarial Networks", https://arxiv.org/abs/1802.05957.

Satisfying the Lipschitz constraint by truncation is not very effective. Better approaches
were proposed, by using for example gradient penalties (WGAN-GP) or spectral
normalization.

In spectral normalization, the idea is to keep the spectral norm (the largest singular value) of all
convolutional and dense layers equal or close to 1, which in turn guarantees the Lipschitz
constraint of the model.

Spectral normalization can be
implemented efficiently by performing
one step of power iteration each time
the kernel in question is used in
training.
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BigGAN Ingredients – Self Attention

Because convolutions process local information only, non-local self attention module has
been proposed.

 

Figure 2 of paper "Self-Attention Generative Adversarial Networks", https://arxiv.org/abs/1805.08318.
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BigGAN Ingredients – Self Attention

def attention(self, x, ch): 

  f = conv(x, ch // 8, kernel=1, stride=1) # [bs, h, w, c'] 

  g = conv(x, ch // 8, kernel=1, stride=1) # [bs, h, w, c'] 

  h = conv(x, ch, kernel=1, stride=1) # [bs, h, w, c] 

 

  # N = h * w 

  s = tf.matmul( 

        hw_flatten(g), hw_flatten(f), transpose_b=True) # [bs, N, N] 

  beta = tf.nn.softmax(s)  # attention map 

 

  o = tf.matmul(beta, hw_flatten(h)) # [bs, N, C] 

  gamma = tf.get_variable("gamma", initializer=[0.0]) 

 

  o = tf.reshape(o, shape=x.shape) # [bs, h, w, C] 

  x = gamma * o + x 

  return x 
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BigGAN Ingredients – Architecture

 

Figure 15 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.
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BigGAN Ingredients – Architecture

              
    

  
   

  

      

   

   

   

   

   

   

      



 

    

   

   

   

   

   

   

  

   

   

 

 

Table 4 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.
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BigGAN Ingredients – Architecture

              
    

  
   

  

      

   

   

   

   

   

   

      



 

    

   

   

   

   

   

   

  

   

   

 

 

Table 4 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.
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BigGAN Ingredients – Truncation Trick

The so-called tuncation trick is used to trade between fidelity and variety – during
training,  is sampled from , while it is sampled from truncated normal during

generation.

In the following examle, samples were generated using threshold .

 

Figure 2 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.

z N (0,1)

2, 1, 0.5, 0.04
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