NPFL114, Lecture 10 Us

Deep Generative Models

Milan Straka

= May 4, 2020

[4 -
— L Charles University in Prague @ @) (O
F‘/L EUROPEAN UNION Faculty of Mathematics and Physics S

oo oo e ¢ Institute of Formal and Applied Linguistics ;

A LAN GTECH 825@73?2:'§$% Eoton PP g unless otherwise stated

Generative Models Uz

Generative models are given a set X of realizations of a random variable x and their goal is to
estimate P(x).

Usually the goal is to be able to sample from P(x), but sometimes an explicit calculation of

P(x) is also possible.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 2/49

Deep Generative Models

b -

.

N

_J

/

J

Figure 1 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

U=

One possible approach to estimate P(&) is to assume that the random variable x depends on a

latent variable z:

ZP

We use neural networks to estimate the conditional probability with Py(x|z).

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN

P(z|z) =

DCGAN

IEzNP(z)P(mLz)'

GANConvergence

L

3,/49

® Autoencoders are useful for unsupervised feature extraction, especially when performing
input compression (i.e., when the dimensionality of the latent space z is smaller than the

dimensionality of the input).
® When @ + € is used as input, autoencoders can perform denoising.

® However, the latent space 2 does not need to be fully covered, so a randomly chosen 2z
does not need to produce a valid .

Autoencoders 4 / 49

Variational AutoEncoders

We assume P(z) is fixed and independent on X.

We approximate P(@|z) using Py(x|z). However, in order to train an autoencoder, we need
to know the posterior Py(z|a), which is usually intractable.

We therefore approximate Pg(z|x) by a trainable Q. (2|x).

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN

U=

5/49

Let us define variational lower bound or evidence lower bound (ELBO), denoted £(8, ¢;x), as

£(8,¢; %) = log Po() — Dxr.(Qy (2])| | Po(z|)).

Because KL-divergence is non-negative, £(8, ¢;x) < log Py(x).

By using simple properties of conditional and joint probability, we get that

L(0,p;x) = Eg_(22)
= Eq,(zl2)
= Eq,(zl2)
= Eq,(zl2)

VAE

log Pp(x) + log Pp(z|x) — log Qu(2|)]
log Py(x, z) — log Q,(z|x)]

(
log Po(x|z) + log P(z) — log Q,(z|x)]
log Py(x|z)] — Dki(Qy,(2]2)[|P(2)).

6/49

L(0, p;x) = Eq,(z|z) [l0g Po(|2)] — Dk (Qy(2|2)||P(2))

We train a VAE by maximizing £(6, ¢;x).
The distribution Q,(z|x) is parametrized as a normal distribution A'(z|w, %), with the
model predicting it and log o given .

O The normal distribution is used, because we can sample from it efficiently, we can
backpropagate through it and we can compute Dki, analytically; furthermore, if we

decide to parametrize Q,(2|®) using mean and variance, the maximum entropy
principle suggests we should use the normal distribution.

The EQLP(ZM,) is estimated using a single sample.

We use a prior P(z) = N (0,1).

VAE 7/49

L(0, p;x) = Eq, (2| [l0g Po(|2)] — Dk (Qy(2|2)||P(2))

image distribution latent space image
x in latent space sample z T
Qyp(2|z)
n
Qp(z|z) sample z Py(x|2)
—_— e —_—

Note that the loss has 2 intuitive components:

® reconstruction loss — starting with @, passing though @Q,, sampling z and then passing

through Py should arrive back at

* latent loss — over all &, the distribution of Q,(2|x) should be as close as possible to the
prior P(z) = N(0, 1), which is independent on .

VAE

€T,

8/49

VAE — Reparametrization Trick

In order to backpropagate through z ~ Q,(z|x), note that if
z ~ N(p,0%),
we can write Z as
z~p+o-N(0,1).

Such formulation then allows differentiating 2z with respect to gt and o and is called a
reparametrization trick (Kingma and Welling, 2013).

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN

U=

9,/49

Variational AutoEncoders

QDA NANNANAANNN NN NNNNS
QAN ELLLLL LW NN~
QAVINNINLLLLLVYY Y N~ ~
QAVVNININLL Gt ©VIVVY e~~~
QOAVDHHINN VWV BVIVIY W@ - ——
QOO0 OHINININMHEBPBIIID W W - —
QQAQOOIMHINMMME QYO IO @ - ——
QOODOMMMMN MMM MO DD D e e —
OODOHNMMNMM NN MWD DD D e —
QODOWMMO MMM MDD WD S e e e —
QOMME MMM N N0 LA N on am o e —
QOMME MM "N 000000 e N on oo —
QA2 0?0000 00 0 n o~ o~ 0~ P~
RS N N N N N N Ul R R
DIt ofrororororrresos oo~
A dadogororrororradnN
SdadaddadogrrrrrcTIIINN
SAddddgrrrsrrrdFITTITIRINN
SAdTTTTrrrrr>rIr22RNN
S B g gl il ol ol ol ol ol S L N NI NN

S

o
5

HOH
HOH)
HH)
HH
HH
HOH
HOH
H

=
&

(b) Learned MNIST manifold

Figure 4 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

i)
—
2
'g
<
g
Q
Q
<
=~
>
=
=~
=
O
£
<
Q
—
~
<
~

10/49

*GAN BigGAN

GANConvergence WGAN

GAN CGAN DCGAN

VAE

Autoencoders

(=)
L
(<))
-
=]
fras
(O]
Q
-
<
i
L
|
L.
(a1
2

U=
FA'L

Variational AutoEncoders

Qoarrx~NpDOD-~mAd>ed
OrNV-2OW M
NP Qoo tA ()
MY e DS
RSNDS>OPOANT~S
NP "IN 0D
WENMT AN O rN
ONQO KoM e
N DTN
oo HV =Y

WO~ AN\~
M=~ HNQYxrr YO o
rMMO>f O
D0 AaQ N0 Nen ~
MO MENA QO ~
A O B AR K N
Y YR Yol "k X®)
~Mureew) N O
OO HIAINNCST~
NGl ~ Yl

AN~ TwOmra b
SN0 NYNYD
O~ NN o~y
=R O~m O
OMmPe NN NO
~ONT S or\O
W Mmewa~NmMmN T W
Ll S NwToor >
—WNesmmO M owsa
mLRWANN - JP I ™

T TMVNeMen —
-9 PN 0Oh
M~ PDMI 0HOYN
TR o ~=N . | aNT
VIS T —Ine~MNMH
T MamMOI oy
Nen M rm~
N OMaT e \NS9SW
werdad o>
OEQYQ T o

(c) 10-D latent space (d) 20-D latent space
Figure 5 of paper "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114.

(b) 5-D latent space

(a) 2-D latent space

11/49

*GAN BigGAN

GANConvergence WGAN

GAN CGAN DCGAN

VAE

Autoencoders

NPFL114, Lecture 10

L. 2. 2 2 A 2 A 3 A A A AR A A0 R R L R
.2 2 22 2.2 32 23222 bR 0 R R
05 O 06 OF 06 U9 06 06 0H &S 06 06 06 O th 8 08 08 ™ ™

12/49

VAE

13/49

VAE

We have a generator, which given z ~ P(z) generates data .
We denote the generator as G(z;8,).

Then we have a discriminator, which given data @ generates a probability whether & comes
from real data or is generated by a generator.

We denote the discriminator as D(x;6y).

The discriminator and generator play the following game:

min max Eq.p,,, [log D()] + Exp(s llog(1 ~ D(G(2)))]

GAN 14/49

Generative Adversarial Networks

*
.
D .,

fee-e-t

0
\
. ry
8 ey
Vo
\, e

/N

AN

/(Y

Figure 1 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.

The generator and discriminator are alternately trained, the discriminator by

arg max Eq. p,, [log D(2)] + E..ps) [log(1 — D(G(2)))]

and the generator by

argmin E. .y log(1 — D(G(2)].

In a sense, the discriminator acts as a trainable loss for the generator.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN

BigGAN

U=

15/49

Generative Adversarial Networks Uz

Because log(1 — D(G(z))) can saturate in the beginning of the training, where the
discriminator can easily distinguish real and generated samples, the generator can be trained by

arg min Esz(z) |—log D(G(2))]
09

instead, which results in the same fixed-point dynamics, but much stronger gradients early in
learning.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 16/49

Generative Adversarial Networks

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do
e Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior p,(z).
e Sample minibatch of m examples {x(!),... (™} from data generating distribution

pdata(w)
e Update the discriminator by ascending its stochastic gradient:

Vo2 3" [log D (2) +10 (1- D (6 ()]

end for

e Sample minibatch of m noise samples {z(V), ..., 2(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, o los (10 (6(=9))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Algorithm 1 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN

Generative Adversarial Networks

NPFL114, Lecture 10 Autoencoders

VAE

GAN

d)
Figure 2 of paper "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661.

CGAN DCGAN GANConvergence WGAN *GAN

BigGAN

U=

18/49

Conditional GAN Uz

Gscriminator D(xly) @ \

00000
. eeee® (@0000)

e Y Y Y T
YYYY

_

- 00000 00000
_ _/

Figure 1 of paper "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 19/49

Deep Convolutional GAN Uz

In Deep Convolutional GAN, the discriminator is a convolutional network (with batch
normalization) and the generator is also a convolutional network, utilizing transposed
convolutions.

/

(a) (c)

Figure 1 of paper "An Online Learning Approach to Generative Adversarial Networks", https://arxiv.org/abs/1706.03269.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 20/49

Deep Convolutional GAN Uz

3
A
128
256 ——
I A 1
1024
i
‘ : 32
100 z -4 .
o= Stride 2
4 F~
Stride 2 16 .
. Stride 2
Project and reshape CONV 1
CONV 2
CONV 3 64
CONV 4 -

G(2)

Figure 1 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 21/49

Deep Convolutional GAN Uz

e - e} o . R
Figure 2 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 22/49

Deep Convolutional GAN Uz

Figure 3 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 23/49

Deep Convolutional GAN =

'
Figure 4 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 24/49

Deep Convolutional GAN

smiling neutral neutral
woman woman man

Results of doing the same
arithmetic in pixel space

Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN

Deep Convolutional GAN

Fl =

woman

—
H
man

man
with glasses without glasses without glasses

Results of doing the same
arithmetic in pixel space

Ll
Figure 7 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN

Deep Convolutional GAN Uz

Figure 8 of paper "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv. org/abs]1511.06434.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 27/49

Unfortunately, alternating SGD steps are not guaranteed to reach even a local optimum of a
minimax problem — consider the following one:

min max - y.
z oy

The update rules of £ and y for learning rate « are
Tni1| |1 —af |z,
Ynt1 a 1] |yn]|
The update matrix is a rotation matrix multiplied by a constant v'1 + a? > 1

[1 —1a]: /71+a2.[cosg0 —singo],

Q sinp cos
so the SGD will not converge with arbitrarily small step size.

GANConvergence 28/49

GANs are Problematic to Train

0.2 A
0.1+
> 0.0

—0.1
—0.2 A

-0.2 -0.1 0.0

X
(a)

0.1

0.2

0.02 A
0.01 ~ ‘ h

0.00 ~

—0.01 A “ u

—0.02 A

\

0 2000

4000

6000

Iteration number

(b)

8000

Fig. 1: Performance of gradient method with fixed step size for Example 2. (a)
illustrates the choices of x and y as iteration processes, the red point (0.1,0.1) is

the initial value. (b) illustrates the value of zy as a function of iteration numbers.
Figure 1 of paper "Fictitious GAN: Training GANs with Historical Models", https://arxiv.org/abs/1803.08647.

NPFL114, Lecture 10 Autoencoders

VAE

GAN

CGAN

DCGAN

GANConvergence

WGAN

*GAN

BigGAN

10000

29/49

GANSs are Problematic to Train Uz

® Mode collapse

- ot - I - - T -
. @ - N - . -
: - - ’ - - I -
. ‘ - T -
® - - - . .
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Figure 2 of paper "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163.

O If the generator could see the whole batch, similar samples in it would be candidates for

fake images.
® Batch normalization helps a lot with this.

O Historical averaging

® |abel smoothing of only positive samples helps with the gradient flow.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 30/49

Standard GANs optimize the Jensen-Shannon divergence @

1

78(,a) = 5 Dcw (pll(p + 0)/2) + 5 D (al|(p +)/2),

— Pdata(w)
Pyiata (CC) +Pgenerat0r (w))

because for a fixed generator GG, the optimum discriminator D, ()

Therefore,

Bz~ Py [l0g DG ()] + B p) [log(1 — D (G(2)))]
= Eo P 108 D ()] + Ean Pyperair [108(1 — Dz ()]
P data(fB)]
Piata (@) + Pyenerator (T)

Pdata + 2P generator) 4+ DKL (Pgenerator

P enerator (m)
+ EwNP enerator llog :]
& Pdata(m) + Pgenerator(m)

Pdata + 2Pgenerator) + e

— EwNPdata []'Og

= Dk, (P data

WGAN 31/49

Instead of minimizing JS divergence @
1 1

JS(p,q) = 5 Dr1 (pll(p+q)/2) + 5 DKL (gll(p+q)/2),

Wasserstein GAN minimizes Earth-Mover distance

Wip,q) = inf E. ., ||lx— :
(pq)= inf e~y 1T = yll]

The joint distribution v € II(p, q) indicates how much “mass” must be transported from x to
Y, and EM is the “cost” of the optimal transport plan.

WGAN 32/49

The EM distance behaves much better than JS. @

For example, imagine that Py is a distribution on R?, which is uniform on (0,y) for 0 <
y < 1 and that Py is a distribution on R? uniform on (0,y) for 0 < y < 1.

Then

0 if0 =20

JS(Py, Py = ,
(Fo, Ps) {1og2 if0 £ 0

while

0.1

W (P, Py) = |6].

WGAN 33/49

Wasserstein GAN UF\RL

Using a dual version of the Earth-Mover definition, we arrive at

W(p, Q) — Sup Ea:rvp [f(il?)] -]Eywq [f(x)},

IS
so the discriminator returns a single output without activation and it needs to be 1-Lipschitz.
1.0 T T . T T
— Density of real
08l — Density of fake |
' —— GAN Discriminator
—— WGAN Critic
0.6 -

-0.2} Vanishing gradients
in regular GAN

"8 -6 -4 -2 0 2

4 6 8
Figure 2 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.
NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 34/49

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values o = 0.00005, ¢ = 0.01, m = 64, Neritic = O.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6y, initial generator’s parameters.
1: while # has not converged do
2 for t =0, ..., Neritic do
3 Sample {29}, ~ P, a batch from the real data.
4: Sample {z(V}™ ~ p(z) a batch of prior samples.
S gt Vi [E 0 ful(e®) = LS fu(gp(0))]
6:
7
8
9

w w + a - RMSProp(w, gy)
w <« clip(w, —¢, ¢)
end for
: Sample {z(V}™ ~ p(z) a batch of prior samples.
10: go+ =V >imy fulge(27))
11: 0 < 6 — o - RMSProp(0, gs)
12: end while

Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN

35/49

Wasserstein GAN Urzt

Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right:
standard GAN formulation. Both algorithms produce high quality samples.

Figure 6: Algorithms trained with a generator without batch normalization and constant
number of filters at every layer (as opposed to duplicating them every time as in [18]).
Aside from taking out batch normalization, the number of parameters is therefore reduced
by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN
formulation. As we can see the standard GAN failed to learn while the WGAN still was

able to produce samples.
Figures 5 and 6 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 36/49

Wasserstein GAN Uz

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReL U
nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a
strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the
DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant
degree of mode collapse in the GAN MLP.

Figure 7 of paper "Wasserstein GAN", https://arxiv.org/abs/1701.07875.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 37/49

Generative Adversarial Networks are still in active development:

Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen: Progressive Growing of GANs
for Improved Quality, Stability, and Variation https://arxiv.org/abs/1710.10196

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida: Spectral
Normalization for Generative Adversarial Networks https://arxiv.org/abs/1802.05957

Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Jiadong Liang, Weinan Zhang,
Zhihua Zhang, Yong Yu: Understanding the Effectiveness of Lipschitz-Continuity in
Generative Adversarial Nets https://arxiv.org/abs/1807.00751

Andrew Brock, Jeff Donahue, Karen Simonyan: Large Scale GAN Training for High
Fidelity Natural Image Synthesis https://arxiv.org/abs/1809.11096

Tero Karras, Samuli Laine, Timo Aila: A Style-Based Generator Architecture for
Generative Adversarial Networks https://arxiv.org/abs/1812.04948

Alternative approaches are also explored: Diederik P. Kingma, Prafulla Dhariwal: Glow:
Generative Flow with Invertible 1x1 Convolutions https://arxiv.org/abs/1807.03039

*GAN 38/49

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1807.00751
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1807.03039

Natural Image Synthesis", https://arxiv.org/abs/1809.11096.

Training for High Fidelity Natural Image Synthesis", https://arx

=

iv..org/abs /1809, 11096.

Figure 2 from paper "Large Scale GAN

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 39/49

BigGAN U=t

VL | FRMER) i = | R [
) R) R o A

(b)

Figure 7 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.

NPFL114, Lecture 10

Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 40/49

BigGAN Ingredients — Hinge Loss L
The Wasserstein GAN formulation can be considered a linear classifier, which tries to
maximize the mean distance of real and generated images using their features.
S
é'\(\(b Discrimin_ator_
& update direction
&
%)
Figure 2 of paper "Geometric GAN", https://arxiv.org/abs/1705.02894.
NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 41/49

BigGAN Ingredients — Hinge Loss ezt

We could aim for maximum margin classifier by using Hinge loss, updating the
discriminator by

argmax E, _p_ [min(0, —1 + D(x)]
ed e 0 ',/
\..,_\ '] .
. O 5 S . .
+ E. (g [min(0, —1 — D(G(2)) Y
& o \\\ " /,.r
Generator \l){' l\ Z O(z;) /x/
and the generatOr by Update direction/ QCCEQ.GM ,f"Discriminator
o 2 f N . / %pdate direction

X

argminE, p,) |[—D(G(2)))]. o
09 @) \\'

Figure 2 of paper "Geometric GAN", https://arxiv.org/abs/1705.02894.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 42/49

Satisfying the Lipschitz constraint by truncation is not very effective. Better approaches
were proposed, by using for example gradient penalties (WGAN-GP) or spectral
normalization.

In spectral normalization, the idea is to keep the spectral norm (the largest singular value) of all

convolutional and dense layers equal or close to 1, which in turn guarantees the Lipschitz

constraint of the model.

Algorithm 1 SGD with spectral normalization

Spectral normalization can be
implemented efficiently by performing bution)

one step of power iteration each time e For each update and each layer I:

. . . . 1. Apply power iteration method to a unnormalized weight W'
the kernel in question is used in
i = (W a/[[(W) |
training. 3 - -
u; < w ’Ul/HW ’01”2
2. Calculate Wsy with the spectral norm:

Wi (Wh = W /a(W), where o(W') = @] W',

3. Update W' with SGD on mini-batch dataset Dj; with a learning rate o

W W — aVy (Wi (WY, D)

e Initialize 4; € R% for [= 1, ..., L with a random vector (sampled from isotropic distri-

(20)
21)

(22)

(23)

BigGAN

43/49

BigGAN Ingredients — Self Attention UL

Because convolutions process local information only, non-local self attention module has
been proposed.

f(x) _
~ transpose :
convolution 1xIconv —_— attention
ma
feature maps (x) . P
e 1 softmax .
& g ® ;ﬂ self-attention
i g(x) ‘ featg;ei maps (0)
........ 1 1 é L|7 V(X) .
xlconv > g
______________ X i i
Ixlconv
h(x)
Ix1conv
Figure 2 of paper "Self-Attention Generative Adversarial Networks", https://arxiv.org/abs/1805.08318.
NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 44 /49

BigGAN Ingredients — Self Attention et

def attention(self, x, ch):
= conv(x, ch // 8, kernel=1, stride=1) # [bs, h, w, c'
C

f]
g = conv(x, ch // 8, kernel=1, stride=1) # [bs, h, w, c']
h = conv(x, ch, kernel=1, stride=1) # [bs, h, w, cl

N =h *x w

s = tf.matmul (

hw_flatten(g), hw_flatten(f), transpose_b=True) # [bs, N, N]
beta = tf.nn.softmax(s) # attention map

o = tf.matmul(beta, hw_flatten(h)) # [bs, N, C]
gamma = tf.get_variable('"gamma", initializer=[0.0])

o = tf.reshape(o, shape=x.shape) # [bs, h, w, C]

X = gamma * O + X
return X

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 45/49

BigGAN Ingredients — Architecture Ut

z Class

an

[Linear J
— 4x4x16c¢h

Linear

Linear

Image

(a) (b) (c)

Figure 15: (a) A typical architectural layout for BigGAN’s G; details are in the following tables.
(b) A Residual Block (ResBlock up) in BigGAN’s G. (c) A Residual Block (ResBlock down) in
BigGAN’s D.

Figure 15 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 46/49

Table 4: BigGAN architecture for 128 x 128 images. ch represents the channel width multiplier in

each network from Table 1.

z € R ~ N(0,1)
Embed(y) € R128

RGB image ¢ € R128x128x3

Linear (20 + 128) — 4 x 4 x 16ch

ResBlock down ch — 2ch

ResBlock up 16ch — 16c¢ch

Non-Local Block (64 x 64)

ResBlock up 16ch — 8ch

ResBlock down 2ch — 4ch

ResBlock up 8ch — 4ch

ResBlock down 4ch — 8ch

ResBlock up 4ch — 2ch

ResBlock down 8ch — 16c¢h

Non-Local Block (64 x 64)

ResBlock down 16ch — 16¢h

ResBlock up 2ch — ch

ResBlock 16ch — 16¢h

BN, ReLLU, 3 x 3 Conv ch — 3

ReLU, Global sum pooling

Tanh

Embed(y)-h + (linear — 1)

(a) Generator

(b) Discriminator

BigGAN

47 /49

Table 4: BigGAN architecture for 128 x 128 images. ch represents the channel width multiplier in

each network from Table 1.

z € R ~ N(0,1)
Embed(y) € R128

RGB image ¢ € R128x128x3

Linear (20 + 128) — 4 x 4 x 16ch

ResBlock down ch — 2ch

ResBlock up 16ch — 16c¢ch

Non-Local Block (64 x 64)

ResBlock up 16ch — 8ch

ResBlock down 2ch — 4ch

ResBlock up 8ch — 4ch

ResBlock down 4ch — 8ch

ResBlock up 4ch — 2ch

ResBlock down 8ch — 16c¢h

Non-Local Block (64 x 64)

ResBlock down 16ch — 16¢h

ResBlock up 2ch — ch

ResBlock 16ch — 16¢h

BN, ReLLU, 3 x 3 Conv ch — 3

ReLU, Global sum pooling

Tanh

Embed(y)-h + (linear — 1)

(a) Generator

(b) Discriminator

BigGAN

48/49

BigGAN Ingredients — Truncation Trick

The so-called tuncation trick is used to trade between fidelity and variety — during
training, z is sampled from N (0, 1), while it is sampled from truncated normal during

generation.

In the following examle, samples were generated using threshold 2,1, 0.5, 0.04.

Figure 2 from paper "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.

NPFL114, Lecture 10 Autoencoders VAE GAN CGAN DCGAN GANConvergence WGAN *GAN BigGAN 49/49

