NPFL114, Lecture 9

Word2Vec, Seq2seq, NMT

Milan Straka

🖬 April 27, 2020

EUROPEAN UNION European Structural and Investment Fund Operational Programme Research, Development and Education Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Unsupervised Word Embeddings

The embeddings can be trained for each task separately.

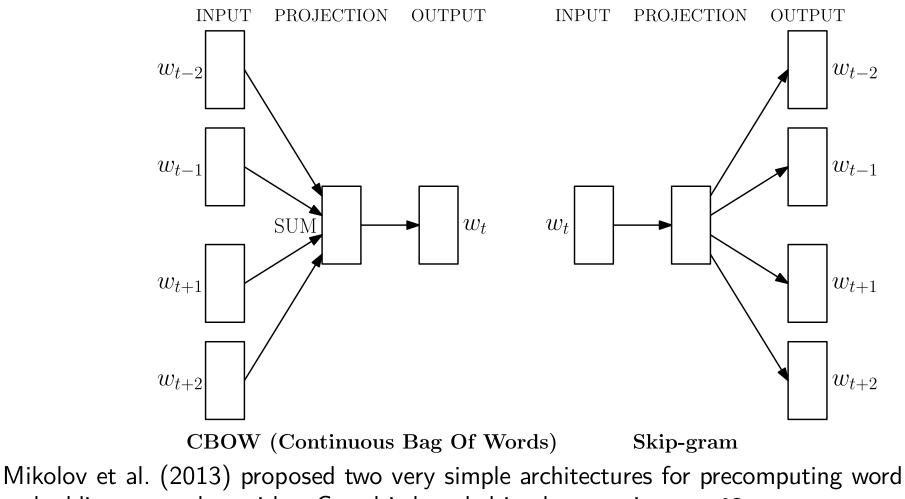
However, a method of precomputing word embeddings have been proposed, based on *distributional hypothesis*:

Words that are used in the same contexts tend to have similar meanings.

The distributional hypothesis is usually attributed to Firth (1957):

You shall know a word by a company it keeps.

Word2Vec



embeddings, together with a C multi-threaded implementation word2vec.

NPFL114, Lecture 9

Seq2seq

Attention SubWords

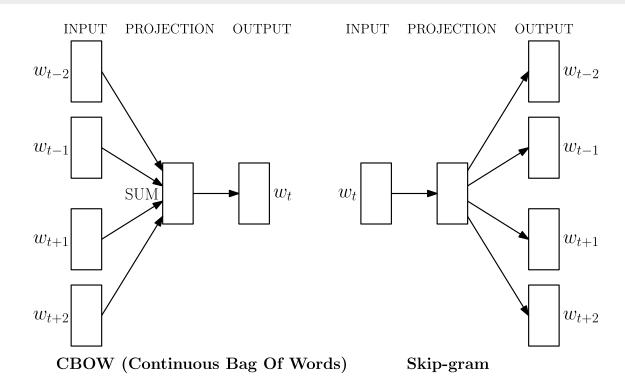
Word2Vec

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Einstein - scientist Messi: midfielder		Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	rlusconi - Silvio Sarkozy: Nicolas		Obama: Barack	
Microsoft - Windows Google: Android		IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Microsoft - Ballmer Google: Yahoo		Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

Table 8 of paper "Efficient Estimation of Word Representations in Vector Space", https://arxiv.org/abs/1301.3781.

Word2Vec – SkipGram Model



Considering input word w_i and output w_o , the Skip-gram model defines

$$p(w_o|w_i) \stackrel{ ext{def}}{=} rac{e^{oldsymbol{W}_{w_o}^ op oldsymbol{V}_{w_i}}}{\sum_w e^{oldsymbol{W}_w^ op oldsymbol{V}_{w_i}}}.$$

NPFL114, Lecture 9

Attention SubWords

Word2Vec – Hierarchical Softmax

Instead of a large softmax, we construct a binary tree over the words, with a sigmoid classifier for each node.

If word w corresponds to a path n_1, n_2, \ldots, n_L , we define

$$p_{ ext{HS}}(w|w_i) \stackrel{\scriptscriptstyle ext{def}}{=} \prod_{j=1}^{L-1} \sigma([+1 ext{ if } n_{j+1} ext{ is right child else -1}] \cdot oldsymbol{W}_{n_j}^ op oldsymbol{V}_{w_i}).$$

Word2Vec – Negative Sampling

Instead of a large softmax, we could train individual sigmoids for all words. We could also only sample the *negative examples* instead of training all of them. This gives rise to the following *negative sampling* objective:

$$l_{ ext{NEG}}(w_o, w_i) \stackrel{ ext{\tiny def}}{=} \log \sigma(oldsymbol{W}_{w_o}^ op oldsymbol{V}_{w_i}) + \sum_{j=1}^k \mathbb{E}_{w_j \sim P(w)} \logig(1 - \sigma(oldsymbol{W}_{w_j}^ op oldsymbol{V}_{w_i})ig).$$

For P(w), both uniform and unigram distribution U(w) work, but

 $U(w)^{3/4}$

outperforms them significantly (this fact has been reported in several papers by different authors).

NPFL114, Lecture 9

Word2vec Subword Embeddings

Attention SubWords

Recurrent Character-level WEs

increased	John	Noahshire	phding
reduced	Richard	Nottinghamshire	mixing
improved	George	Bucharest	modelling
expected	James	Saxony	styling
decreased	Robert	Johannesburg	blaming
targeted	Edward	Gloucestershire	christening

Table 2: Most-similar in-vocabular words under the C2W model; the two query words on the left are in the training vocabulary, those on the right are nonce (invented) words.

Figure 1 of paper "Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation", https://arxiv.org/abs/1508.02096.

GNMT

NPFL114, Lecture 9

Convolutional Character-level WEs

	In Vocabulary				Out-of-Vocabulary			
	while	his	you	richard	trading	computer-aided	misinformed	loooook
	although	your	conservatives	jonathan	advertised	_	_	_
LSTM-Word	letting	her	we	robert	advertising	_	_	_
LSTN-word	though	my	guys	neil	turnover	_	_	_
	minute	their	i	nancy	turnover	_	—	—
	chile	this	your	hard	heading	computer-guided	informed	look
LSTM-Char	whole	hhs	young	rich	training	computerized	performed	cook
(before highway)	meanwhile	is	four	richer	reading	disk-drive	transformed	looks
	white	has	youth	richter	leading	computer	inform	shook
	meanwhile	hhs	we	eduard	trade	computer-guided	informed	look
LSTM-Char	whole	this	your	gerard	training	computer-driven	performed	looks
(after highway)	though	their	doug	edward	traded	computerized	outperformed	looked
	nevertheless	your	i	carl	trader	computer	transformed	looking

Table 6: Nearest neighbor words (based on cosine similarity) of word representations from the large word-level and character-level (before and after highway layers) models trained on the PTB. Last three words are OOV words, and therefore they do not have representations in the word-level model.

Table 6 of paper "Character-Aware Neural Language Models", https://arxiv.org/abs/1508.06615.

GNMT

NPFL114, Lecture 9

Word2vec Subword Embeddings

Seq2seq

Character N-grams

Ú_F≩L

Another simple idea appeared simultaneously in three nearly simultaneous publications as <u>Charagram</u>, <u>Subword Information</u> or <u>SubGram</u>.

A word embedding is a sum of the word embedding plus embeddings of its character *n*-grams. Such embedding can be pretrained using same algorithms as word2vec.

The implementation can be

- dictionary based: only some number of frequent character *n*-grams is kept;
- hash-based: character *n*-grams are hashed into K buckets (usually $K \sim 10^6$ is used).

Seq2seq

query	tiling	tech-rich	english-born	micromanaging	eateries	dendritic
sisg	tile	tech-dominated	british-born	micromanage	restaurants	dendrite
	flooring	tech-heavy	polish-born	micromanaged	eaterie	dendrites
sg	bookcases	technology-heavy	most-capped	defang	restaurants	epithelial
	built-ins	.ixic	ex-scotland	internalise	delis	p53

Table 7: Nearest neighbors of rare words using our representations and skipgram. These hand picked examples are for illustration.

Table 7 of paper "Enriching Word Vectors with Subword Information", https://arxiv.org/abs/1607.04606.

GNMT

NPFL114, Lecture 9

Word2vec Subword Embeddings

Seq2seq

Charagram WEs

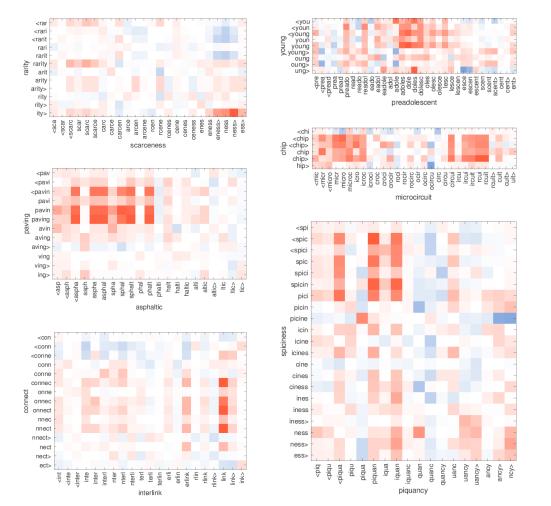


Figure 2: Illustration of the similarity between character *n*-grams in out-of-vocabulary words. For each pair, only one word is OOV, and is shown on the *x* axis. Red indicates positive cosine, while blue negative.
Figure 2 of paper "Enriching Word Vectors with Subword Information", https://arxiv.org/abs/1607.04606.

NPFL114, Lecture 9

Word2vec Subword Embeddings Seq2seq Attention SubWords GNMT

12/27

Sequence-to-Sequence Architecture

NPFL114, Lecture 9

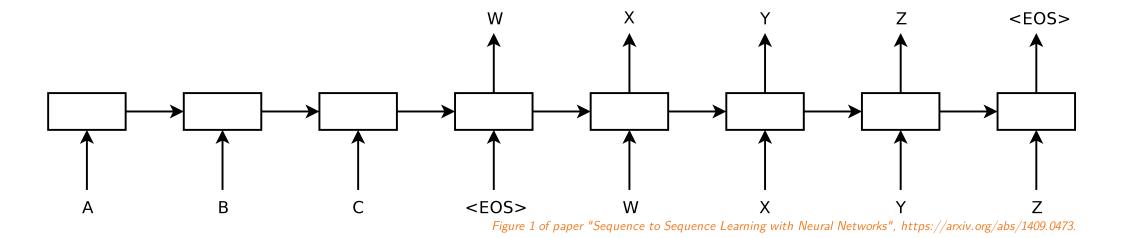
Word2vec Subword Embeddings

s Seq2seq

Attention SubWords

s GNMT

Sequence-to-Sequence Architecture



NPFL114, Lecture 9

Word2vec Subword Embeddings

gs Seq2seq

Attention SubWords

ords GNMT

14/27

Sequence-to-Sequence Architecture

Decoder

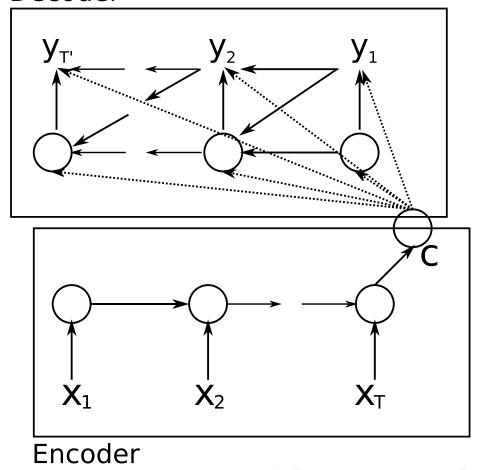


Figure 1 of paper "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", https://arxiv.org/abs/1406.1078.

NPFL114, Lecture 9 Word2vec

Seq2seq

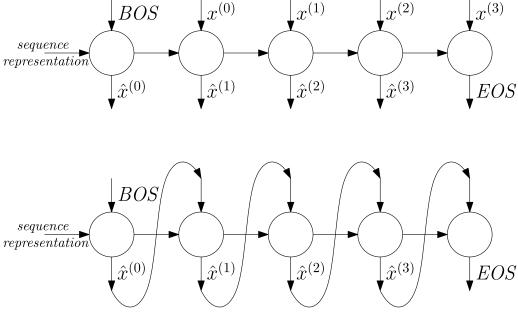
SubWords Attention

The so-called *teacher forcing* is used during training – the gold outputs are used as inputs during training.

Inference

During inference, the network processes its own predictions.

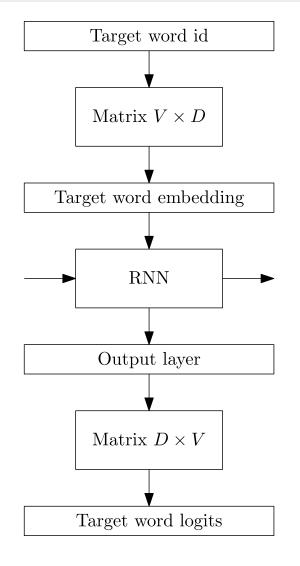
Usually, the generated logits are processed by an $\arg \max$, the chosen word embedded and used as next input.



GNMT

Sequence-to-Sequence Architecture

Tying Word Embeddings



NPFL114, Lecture 9

Attention

As another input during decoding, we add *context vector* c_i :

$$oldsymbol{s}_i = f(oldsymbol{s}_{i-1},oldsymbol{y}_{i-1},oldsymbol{c}_i).$$

We compute the context vector as a weighted combination of source sentence encoded outputs:

$$oldsymbol{c}_i = \sum_j lpha_{ij}oldsymbol{h}_j$$

The weights $lpha_{ij}$ are softmax of e_{ij} over j,

Word2vec

 $oldsymbol{lpha}_i = ext{softmax}(oldsymbol{e}_i),$

with e_{ij} being

$$e_{ij} = oldsymbol{v}^ op anh(oldsymbol{V}oldsymbol{h}_j + oldsymbol{W}oldsymbol{s}_{i-1} + oldsymbol{b}).$$

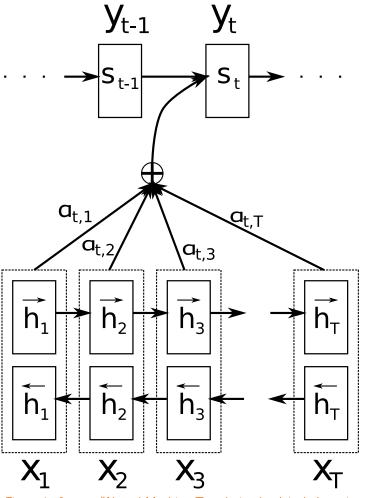


Figure 1 of paper "Neural Machine Translation by Jointly Learning to Align and Translate", https://arxiv.org/abs/1409.0473.

NPFL114, Lecture 9

Seq2seq

Attention SubWords

Vords GNMT

Attention

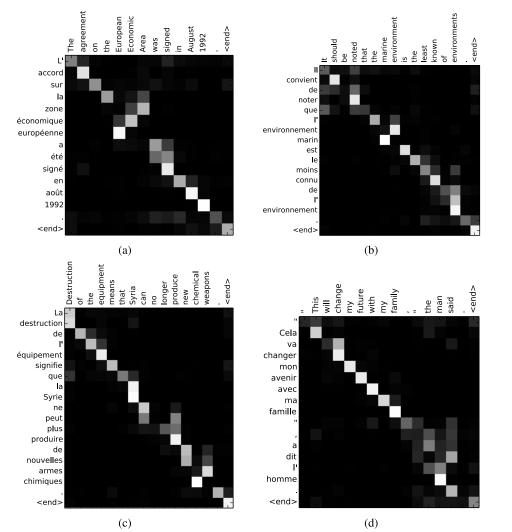


Figure 3 of paper "Neural Machine Translation by Jointly Learning to Align and Translate", https://arxiv.org/abs/1409.0473.

NPFL114, Lecture 9

Word2vec Subword Embeddings

ngs Seq2seq

Attention SubWords

GNMT

19/27

Subword Units

Translate *subword units* instead of words. The subword units can be generated in several ways, the most commonly used are:

• **BPE**: Using the *byte pair encoding* algorithm. Start with individual characters plus a special end-of-word symbol \cdot . Then, merge the most occurring symbol pair A, B by a new symbol AB, with the symbol pair never crossing word boundary (so that the end-of-word symbol cannot be inside a subword).

Considering a dictionary with words *low, lowest, newer, wider*, a possible sequence of merges:

 $egin{array}{ccc} r \cdot
ightarrow r \cdot \ l & o
ightarrow lo \ lo & w
ightarrow lo w \ e & r \cdot
ightarrow er \cdot \end{array}$

NPFL114, Lecture 9

Word2vec Subword Embeddings

Seq2seq

Attention SubWords

Subword Units

• Wordpieces: Given a text divided into subwords, we can compute unigram probability of every subword, and then get the likelihood of the text under a unigram language model by multiplying the probabilities of the subwords in the text.

When we have only a text and a subword dictionary, we divide the text in a greedy fashion, iteratively choosing the longest existing subword.

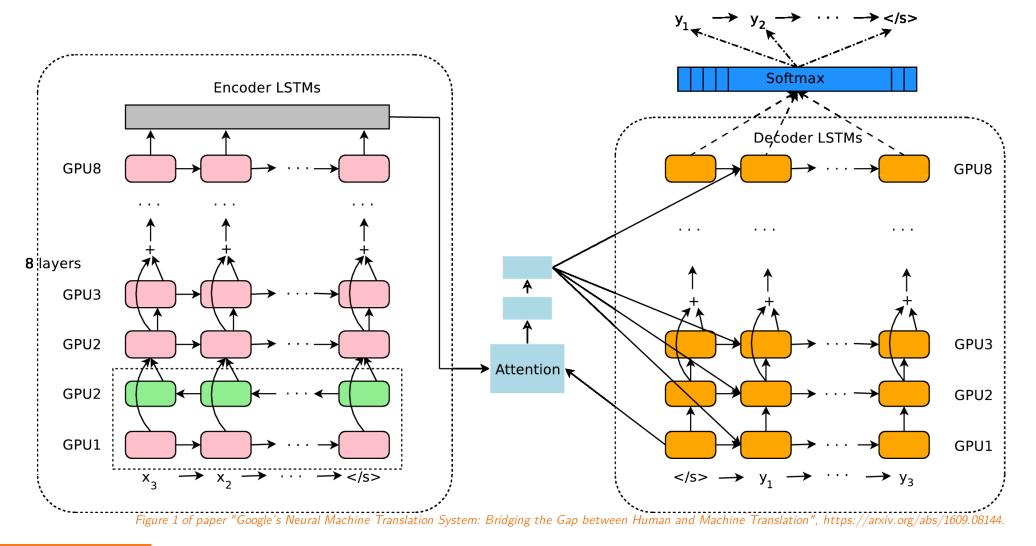
When constructing the subwords, we again start with individual characters, and then repeatedly join such a pair of subwords, which increases the unigram language model likelihood the most.

Both approaches give very similar results; a biggest difference is that during the inference:

- for BPE, the sequence of merges must be performed in the same order as during the construction of the BPE;
- for Wordpieces, it is enough to find longest matches from the subword dictionary.

Usually quite little subword units are used (32k-64k), often generated on the union of the two vocabularies (the so-called *joint BPE* or *shared wordpieces*).

Google NMT



GNMT

NPFL114, Lecture 9

Word2vec Subword Embeddings Seq2seq Attention SubWords

Google NMT

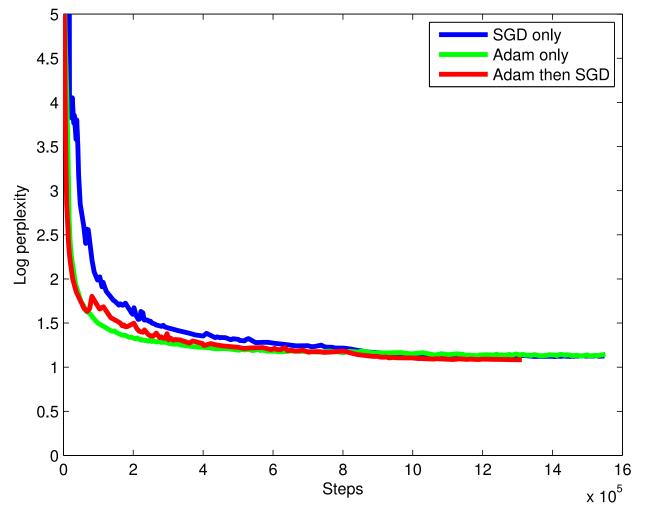


Figure 5 of paper "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation", https://arxiv.org/abs/1609.08144.

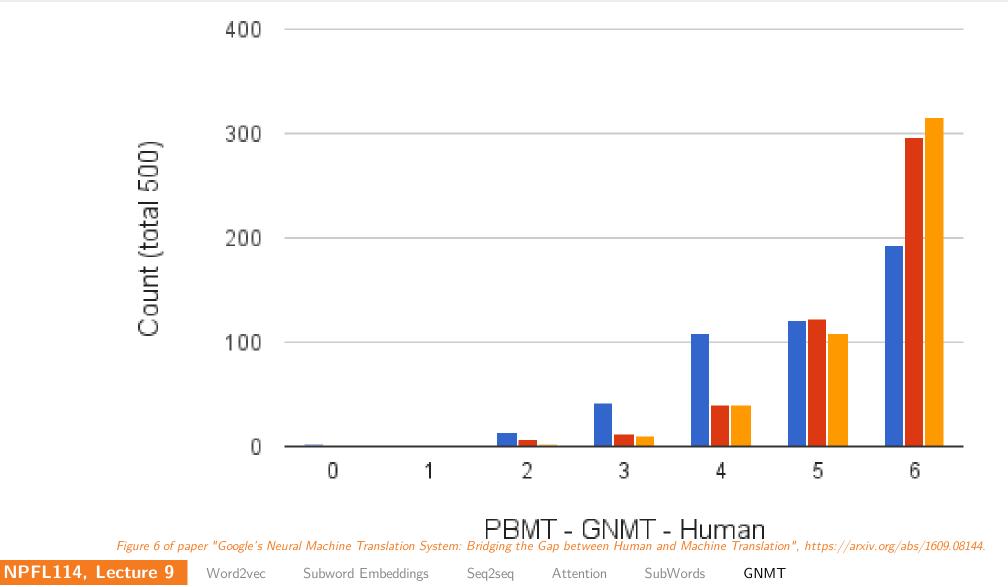
NPFL114, Lecture 9

Word2vec Subword Embeddings

ngs Seq2seq

Attention SubWords

Google NMT



Beyond one Language Pair

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

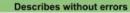
A skateboarder does a trick

A little girl in a pink hat is

A red motorcycle parked on the

A refrigerator filled with lots of food and drinks.

A yellow school bus parked



Describes with minor errors

Somewhat related to the image

Unrelated to the image

Fig. 5. A selection of evaluation results, grouped by human rating.

Figure 5 of "Show and Tell: Lessons learned from the 2015 MSCOCO...", https://arxiv.org/abs/1609.06647.

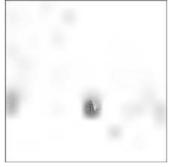
Seq2seq

Beyond one Language Pair

What vegetable is the dog chewing on? MCB: carrot GT: carrot

What kind of dog is this MCB: husky GT: husky

What kind of flooring does the room have? MCB: carpet GT: carpet



What color is the traffic light? MCB: green GT: green

Is this an urban area? MCB: yes GT: yes Where are the buildings? MCB: in background GT: on left

Figure 6 of "Multimodal Compact Bilinear Pooling for VQA and Visual Grounding", https://arxiv.org/abs/1606.01847.

NPFL114, Lecture 9

Word2vec Subword Embeddings

gs Seq2seq

Attention SubWords

Multilingual and Unsupervised Translation

Ú F_AL

Many attempts at multilingual translation.

- Individual encoders and decoders, shared attention.
- Shared encoders and decoders.

Surprisingly, even unsupervised translation is attempted lately. By unsupervised we understand settings where we have access to large monolingual corpora, but no parallel data.

In 2019, the best unsupervised systems were on par with the best 2014 supervised systems.

		WMT-14			
		fr-en	en-fr	de-en	en-de
Unsupervised	Proposed system <i>detok. SacreBLEU</i> *	33.5 33.2	36.2 33.6	27.0 26.4	22.5 21.2
Supervised	WMT best [*] Vaswani et al. (2017) Edunov et al. (2018)	35.0	35.8 41.0 45.6	29.0 - -	20.6^{\dagger} 28.4 35.0

Table 3: Results of the proposed method in comparison to different supervised systems (BLEU).

Table 3 of paper "An Effective Approach to Unsupervised Machine Translation", https://arxiv.org/abs/1902.01313.

GNMT

NPFL114, Lecture 9

ngs Seq2seq